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Abstract. The iteratively reweighted least sqaures (IRLS) method is
not recommended for the cases of p = 1,∞ among the many approaches to
solve such problems. However, some useful properties are pointed out here:
It is simple to use, it offers fast convergence for polynomial best uniform
approximations and it can be easily extended to multivariate polynomial
(or more generally: linear) approximations. It helps finding the extremal
set, moreover, it has offered invaluable help to formulate a generalized de
la Vallée Poussin type characterization (p = ∞), when Haar condition does
not apply.

1. Introduction

Let A ∈ Rm×n be a rectangular matrix, b ∈ Rm and a solution is needed to
the system

(1.1) Ax = b.

Two cases are considered usually. The system is overdetermined in the first
case, m > n, b /∈ Range(A) and the solution is sought for x such that the
residual vector r(x) = b−Ax have a minimal norm:

(1.2) find x to minimize ‖r(x)‖ .

Such solution will be called a minimal residual solution.
Key words and phrases: Best solutions of under- or overdetermined linear systems, pseudoin-
verse, Haar condition, weighted least squares, uniform approximation of functions in one or
more variables, generalized de la Vallée Poussin characterization.
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The system is underdetermined in the other case, when usually m ≤ n holds,
there is a bundle of solutions and we look for the minimal norm solution:

(1.3) min ‖x‖ , subject to Ax = b.

The power norm will be considered here for the choices: p = 1, 2,∞.
Formulation of such problems can be traced back to the XVIII-th cen-

tury. Gauss had declared to find his least squares method in 1795. In his
survey paper, Watson [19] gives a deep historical account. Regarding prob-
lems in l1 norm, Bidabad [4] also gives interesting details, going back even to
Galilei (1632) and Boscovich (1760). Now these methods are common tools
in statistics, robotics and also, they have strong connections to best uniform
approximations.

Using the Euclidean norm (p = 2), the pseudoinverse A+ gives an easy an-
swer to both problems as A+b is the minimal residual solution for the overde-
termined system and it is the minimal norm solution in the underdetermined
case. There are many books in the literature about generalized inverses, among
them such as pseudoinverse, see e.g. [1].

This paper considers the pseudoinverse formulation for weighted least squa-
res. By introducing diagonal weight matrices, one can give iteratively reweight-
ed least squares (IRLS) methods to find solutions for the other norms. Such
methods are shortly discussed in Watson’s paper [19] for 1 < p < ∞, p 	= 2.
According to Watson, they have been introduced first by Beaton and Tukey [3].
The iteration process converges locally if p is close to 2, and if zero components
of r are avoided, it is globally convergent (from any initial approximation) for
1 < p < ∞ [9]. However, convergence can be slow, particularly as p nears 1 –
it is linear with convergence constant |p− 2|, as shown by Wolfe [20].

The main results of this paper come from numerical experimentation with
IRLS. It has turned out that one can achieve fast convergence for polynomial
best uniform approximations and it can be easily extended to multivariate
polynomial (or more generally: linear) approximations.

For p = ∞ the characterization of the best residual norm solution is easy
if the Haar condition is satisfied. If Haar condition does not apply, our exper-
imentation suggests a more complicated characterization by revealing groups
in the extremal set with different absolute value levels of the residual vector
elements.

Despite of convergence problems, such approach is attractive because of
its simplicity and the well elaborated least squares programs. It is also given,
how pseudoinverse theory helps to reformulate minimum norm problems to
minimum residual ones.

Finally some tricks are considered to assure convergence in the p = 1 case.
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2. Weighted least squares

The interested reader can find thorough treatment of least squares methods
in the book of Björck [2], where weighted versions are also given.

In the case of weights, the norm ‖r‖W = (rT Wr)1/2 should be minimized,
where W is a symmetric positive definite (SPD) matrix of appropriate size. If
A is not of full rank or we have the underdetermined case, we may look for the
minimum of ‖x‖C , where C is another SPD matrix.

Now introduce the Cholesky decomposition for matrices W and C: W =
= LT L and C = KT K, then one has ‖r‖2W = rT LT Lr and the minimum of
‖Lr‖2 is sought.

In a similar way, define y = Kx and find the minimum of ‖y‖22 instead of
‖x‖2C → min.

Substituting y for x gives the minimization problem in terms of y

(2.1)
∥∥Lb− LAK−1y

∥∥2

2
→ min,

where practically there are no weights, their contribution is incorporated into
the new residual. If this problem is solved by the pseudoinverse, then the result
can be transformed back to the weighted problem. Our further considerations
will be concerned with the pseudo-solutions of (2.1) as

(2.2) y =
(
LAK−1

)+
Lb.

3. Infinity norm solutions

According to [19], the minimal residual problem in this norm goes back to
Laplace in 1786. Later on, the intensive work of Chebyshev led to the theory of
the uniform approximation of functions, such that many times the term infinity
norm was replaced by the Chebyshev norm.

Nowadays the theory behind infinity norm solutions is well elaborated, one
can find abundant materials in the books of Cheney [7] or Watson [18] about
the existence, uniqueness or characterization, see also [6]. The reader can find
easily accessible material in the Master Thesis of Earle [11] about the existing
minimal residual and minimal norm methods in infinity norm.

At first we recall some definitions and conventions. It is assumed here that
the system is overdetermined: m > n. We shall use the sign vector notation
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s = sign(r) with the meaning eT
i s = sign(eT

i r), ei is the i-th Cartesian unit vec-
tor, T is the transpose. Matrix A is called of full rank if rank(A) = min(m, n).
It satisfies the Haar condition if each n× n submatrix is nonsingular. Observe
that Haar condition is more demanding than full rank, for example, take the
first three columns of a 10× 10 unit matrix.

Many times the following situation is found in the solution of the minimal
residual problem:

There exists a reordering of the rows in two blocks A1 and A2

(3.1) Ax =
[

A1

A2

]
x =

[
b1

b2

]
having the following properties:

1) A1 has k rows, they form the extremal set of solution.
2) With the aid of A1 it is possible to set up the extremal system of linear

equations for finding the solution x∗.
3) The norm of the residual r1 = b1 −A1x

∗ is equal to the norm of the full
residual: ‖r‖∞ = ‖r1‖∞.

4) The other residual subvector r2 = b2−A2x
∗ has smaller absolute elements

such that ‖r2‖∞ < ‖r1‖∞ holds.
We have the following characterization theorem:

Theorem 3.1. If A satisfies the Haar condition, all elements of r1 have equal
absolute values in the minimal residual solution (1.2) (p = ∞) and k = n + 1.
Moreover:

(1) There is no other vector x for which

(3.2) ‖r(x)‖∞ < ‖r(x∗)‖∞ .

(2) There exists a vector vT = [ vT
1 vT

2 ] such that vT A = 0, v2 = 0 and
the signs of the fully nonzero vector v1 can be adjusted so that

(3.3) sign(v1) = sign(r1(x∗)).

Proof. It rests on solving the easier problem, when m = n + 1. In that case
enlarge A1 by s1, ‖s1‖∞ = 1 as a last column and form the system

(3.4)
[

A1 s1

] [ x∗

ξ

]
= b1.

The residual now is r1 = ξs1 and (3.4) can be solved for all residual vectors
having infinity norm |ξ|. As n + 1 rows should be linearly dependent, one can
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always find a nonzero v1 for vT
1 A1 = 0. If multiplying the above equation by

this vT
1 , one gets for ξ:

(3.5) ξ =
vT
1 b1

vT
1 s1

.

Here the numerator has a fix value. The smallest absolute ξ results for
s1 = sign(v1) in the denominator, that is, (3.3) holds. The found s1 is unique
if all elements of v1 are nonzero, otherwise some components of s1 can be freely
chosen between [−1, 1]. But if v1 has a zero element, then there exist n linearly
dependent rows in A1 and that contradicts the Haar condition.

For larger m the solution is found by checking all subsets of n + 1 rows of
A and the maximal absolute ξ identifies the extremal set. Here we have locally
unique solution for each subset of rows. That explains the < sign in (3.2). See
also [7], [18]. �

This theorem is essentially due to de la Vallée Poussin (1911), who identi-
fied the signs from Cramer’s rule. Haar’s paper [12] appeared in 1918. Later
Cadzow [5] found a solution in terms of pseudoinverses for the (n + 1) × n
subproblem. The vT A = 0 characterization is the discrete analogue of Kirch-
berger’s 1903 result for the continuous problem [14]. The formulation and proof
here can be considered an attempt to collect all observations in one to make
things as simple as possible.

For non Haar systems we have found a more complicated characterization
by computer experiments. This time the extremal set has g groups. In each
group the residual vector elements have the same absolute values – they will
be called group levels – and they are different between groups. The size of the
extremal system is n + g. Let the j-th group have nj elements. Then we have
the equality

(3.6)
g∑

j=1

nj = n + g.

The sign vector s1 is distributed into g subvectors and g new columns are
added to matrix A1. For instance, in case of 3 groups, rows of A1 are collected
in three blocks and we have the equation:

(3.7)

⎡⎣ A11 s11

A21 s21

A31 s31

⎤⎦
⎡⎢⎢⎣

x∗

ξ1

ξ2

ξ3

⎤⎥⎥⎦ =

⎡⎣ b11

b21

b31

⎤⎦ .

Now there are three independent left zero space vectors such that vT
j A1 = 0,

j = 1, 2, 3, where AT
1 =

[
AT

11 AT
21 AT

31

]
. The group values can be given
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similarly as before:

(3.8) ξj =
vT

j bj1

vT
j sj1

, j = 1, 2, 3.

If we apply group numbering according to increasing values of group levels |ξj |,
then vectors vj are such that they have 0 elements for the preceding – or in
other words: lower level – groups. This fact necessitates new groups to come
in. We also have the same sign rule within one group as in the simple case and
all vj elements proved to be nonzero for their respective group and that assures
uniqueness of the solution.

Despite generality of the scheme, one can still give full rank matrices, where
it will not apply. Trivial example is having an invertible n× n block in A and
the other rows are zero. A little more sophisticated example is the following:

AT =
[

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1

]
with b vector:

bT =
[

1 −1 2 −2 1 1 2 2
]
.

There are three groups in the solution with number of elements 4,2 and 2, so
that altogether 10 rows would be needed in the extremal set, but there are only
8. If we multiply A from the right with the matrix

B =
1
2

[
1 1
1 −1

]
,

then the result is

BT AT =
[

0 0 0 0 −1 −1 −1 −1
1 1 1 1 0 0 0 0

]
showing that the problem falls apart into independent subproblems. This shows
some kind of reducibility that may be difficult to notice. However, if we apply
random numbers for the right vector b, then we see an ordinary situation.

In the case of rank deficiency, rank(A) < min(m, n), one can apply a de-
composition of A, e.g. QR-decomposition. Now Q is a full rank matrix and
Range(A) =Range(Q), thus the minimal residual problem should give the same
distance. Replacing A by Q may give a unique minimal residual solution with
vector y and then solving Rx = y gives the bundle of solutions of the starting
problem.
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3.1. The IRLS algorithm for the minimal residual norm problem

Let r = b − Ax be the residual vector and denote by |r| the vector of
absolute elements of r. Introduce vector eT =

[
1 1 . . . 1

]T and the
diagonal matrix

(3.9) W = W (r) = diag(|r|)/ ‖r‖∞ .

Then it is easy to see that

(3.10) lim
k→∞

∥∥W kr
∥∥

2

‖W ke‖2
= ‖r‖∞

will tend to the infinity norm of r. Hence infinity norm can be approximated
by computing weighted two-norms.

If psedoinverse is used as in (2.1), the weighted residual will be minimized
and by increasing the power of W , the process should tend to the minimum of
the inifinity norm of r.

Now K is chosen to be the identity matrix in (2.1) and the weight matrix
L = W is computed iteratively. At the beginning W = I is chosen and the
first weight is W1 = W (r1), where x1 = A+b and r1 = b− AA+b. The divisor
in (3.10) is omitted because it can be considered a constant multiplier and it
does not influence minimization. Instead, the weight is normalized such that
the largest diagonal element is equal to 1. It is observed computationally that
the pseudo-solution of the next problem W1A = W1b gives usually a smaller
infinity norm of the residual. Therefore the next weight is computed to the
residual of the first weighted system: W1r2 = W1(b−A(W1A)+W1b),

W2 = W (r2)

such that the updated weight will be γ2W2W1. Here γ2 is the normalizer.
Having the k-th iterate xk, the belonging residual vector will be denoted by

rk = b−Axk and the k-th weight update is :

(3.11) Wk = γk diag(|rk|)Wk−1.

This choice approximates the infinity norm of r as the larger elements are
accentuated. The convergence can slow down if a weight component gets nearly
zero at a place where maximum should be in the solution. To avoid such events,
restarting may be applied with some higher power of the residual values.

This algorithm was tested for weighted orthogonal polynomials and tab-
ulated function values. The results were unexpectedly good. For instance,
Runge’s example: 1/(1+25x2) was approximated in Chebyshev norm by a poly-
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
Function: Runge, it: 9

Error and weight function

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

0.8

1
Function: Runge, it: 9

Approximating polynomial

nomial of degree 20 and the result is shown in the figures. The oscillating error
function and the positive valued weight function are shown in the left figure.
These functions have different order of magnitude such that the weight func-
tion, having maximal value 1, was proportionally adjusted to the magnitude of
the error function. The resulting polynomial and Runge’s function are shown
in the other figure. It is close to the best uniform approximating polynomial
after the ninth step of iteration. The functions were tabulated between −2 and
2 with 201 equally spaced points. The speed of convergence was similar to that
of the Remez algorithm such that it was not necessary to use the de la Vallée
Poussin characterization by solving for the extremal set. For weighted least
squares there is a hidden self-adjungate tridiagonal matrix in the background,
the good behaviour can be attributed to it.

However, convergence was not so fast when applied to an overdetermined
set of general linear equations. The speed of convergence was even slower in
cases when having residuals nearly the same in absolute value. We have found
oscillations in the weights and residuals such that it was necessary to introduce
some damping. Actually diag(|rk|) was replaced by

(3.12) diag(|rk|)/ ‖rk‖∞ + 1/k

in (3.11). In this way we could get convergence in all randomly generated, not
very large cases. Another successful damping was to apply the convex linear
combination

(3.13) Wk−1 + (diag(|rk|) ‖rk‖∞ −Wk−1) β

instead of diag(|rk|) in (3.11) with β = min{1, k/10}, where k is the step size.
This method applies damping only in the first 9 steps. After some while of
experimentation, we have found the choice (3.12) appropriate.
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If convergence is slow then it may be enough to get to a stage where it is
possible to identify the extremal set and the belonging sign vector. Then the
exact solution may be computed by (3.4).

When looking for numbers in the iteration process, it is interesting to ob-
serve that elements of Wk are tending to zero for rows not belonging to the
extremal set, thus such rows are eradicated from the approximation process.
But the multipliers for rows of the extremal set are not necessarily tending
to 1. Usually one of them is equal to 1 and the other values tend to a number
between 0 and 1.

Thus numerical experimentation suggests a new characterization of the ex-
tremal set: There exists a diagonal submatrix W̃ having diagonal elements in
(0, 1] such that the pseudosolution of the system

(3.14) W̃A1x = W̃ b1

gives the minimal residual solution: x∗ = (W̃A1)+W̃ b1.
We have used Matlab’s pinv function in the tests. It computes the pseudoin-

verse by solving the singular value problem that is also used to find the rank of
the matrix. For computing the pseudoinverse, rank revealing QR-factorization
[8] can also be used. It was shown in [13] that Gram-Schmidt orthogonalization
with reorthogonalization is a competitive alternative. Then we may compute
the factorization A = QR or A = Q1BQT

2 , where B is a nonsingular bidiagonal
matrix. In the case of full rank, the pseudoinverse can be calculated by the
formula A+ = R−1QT . Otherwise, A+ = Q2B

−1QT
1 may be used in the rank

loss case. We did our experimentation in Matlab and one step of iteration was:

One step of IRLS algorithm (MATLAB)
x=pinv(diag(w)*A)*diag(w)*b; r=b-A*x;
plot(1:m,r,1:m,0.8*max(abs(r))*w);
w=w.*(abs(r)/norm(r,’inf’)+ic^(-1));

Among others a 299 × 24 matrix problem was encountered coming from a
l∞ norm spline approximation problem to human heart cardiogram data. More
than 200 steps of iteration were needed to identify groups in the exremal set.
The data of the extremal set can be seen in the following table:

Group Number of elements Group level
1 6 6.8586
2 13 6.8604
3 1 6.8702
4 1 7.1251
5 1 7.1500
6 1 7.3995
7 1 7.4065
8 8 7.5599
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The extremal equation here was 32× 32 and we could check all properties
given in the previous paragraph. Regarding the zero space vectors vj , they were
computed as the last 8 lines of the inverse. Only the zeros of v2 in the first six
positions were not very convincing (not accurate for 15 digits), but it may be
explained with the ill-conditioned character of the matrix: The first two group
levels are close. Such events may give a hint that the sign vectors should be
put in as first vectors of the extremal matrix. The plot of the residual vector
in the solution, ordered by increasing absolute values, can be seen in the next
figure.
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The matrix and the Matlab codes can be downloaded from:

http://numanal.inf.elte.hu/~hegedus/bestnormpack.zip

3.2. Minimum norm solutions

For computing minimum norm problems, the previously given method can
be used. One can do it by finding the explicit form of the bundle of solutions
and apply the residual norm method. Pseudoinverse theory, see [1], gives an
elegant approach. The bundle of solutions can be expressed by

x = x+ + (I −A+A)t,
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where x+ = A+b and t ∈ Rn, otherwise arbitrary. Now rearrange this equation
into the new linear system:

(3.15) (A+A− I)t = x+

and find the minimal residual solution. The residual vector belonging to the
here calculated solution t∗ gives the solution of the starting problem:

(3.16) x∗ = x+ + (I −A+A)t∗.

The algorithm for the problem[
5 3 −1 3
0 −4 4 5

]
x =

[
2
5

]
of [11] will be shown here. The weights are 1’s at the beginning and the second
damping method is used, see (3.13). The subsequent resulting weights are
shown in the next table:

0.9455 1 0.9818 0.9636
0.8112 1 0.9379 0.8751
0.6256 1 0.8785 0.7581

It is seen, the first component is the lowest in all steps and it is diminishing
the fastest. The rank is known to be 2 , therefore we seek 3 rows into the
extremal set. The first row is neglected and rows 2, 3, 4 are kept for the
extremal set. The residual vector in the third step is:

0.3675 0.3484 −0.3768 −0.4198 .

The belonging sign vector is chosen accordingly [1 -1 -1]. Now we delete the first
row in the system (3.15), attach the column

[
1 −1 −1

]T to the matrix,
form the augmented system (3.4) and get the pseudoinverse solution:

0.1057 −0.0936 0.0067 −0.0803 0.3846

The residual norm in the optimal solution is shown by the last element: 0.3846.
The first four elements give the solution vector t∗. The residual to this solution
comes from (3.16) and it is

0.3231 0.3846 −0.3846 −0.3846 ,

the sought solution vector to the starting problem.
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4. 1-norm solutions

For an overview of methods, see a recent lecture in [15], where a good
account is given with many references therein. It is followed by a research
paper of the authors [16] about a new suggested method.

The minimum residual problem in l1 norm is also called as the Least Abso-
lute Deviation (LAD) problem. It can be treated with the previous ideas, only
the weighting should be changed. The here chosen weight update formula were

Wk+1 = Wk

(
Wk diag(|rk|)−1/2 + i−2

)1/2

,

where the damping i−2 was added to all components of |rk|. It turned out in
testing that some rows got too small factors in the iterations in the initial phase
of computation. Finally it was hard to get into the extremal set. To overcome
this difficulty, we have applied restarting sometimes by choosing Wk = I.

The characterization of the solution for the minimal residual problem is
given in [18], [17], we cite it from [15]:

Theorem 4.1. Let A ∈ Rm×n, m > n, be a rectangular matrix of full column
rank and b ∈ Rm a given vector. Then there exists a permutation matrix
Π ∈ Rm×m such that

ΠA =
[

A1

A2

]
, Πb =

[
b1

b2

]
,

A1 ∈ Rn×n, A2 ∈ R(m−n)×n, b1 ∈ Rn, b2 ∈ Rm−n,

whereby A1 is a nonsingular matrix and there exists a LAD-solution x∗ ∈ Rn

such that A1x
∗ = b1. Furthermore, if matrix

[
A1 b

]
satisfies the Haar

condition, then the solution x∗ of the system A1x = b1 is a solution of the
LAD problem if and only if vector

v =
(
AT

1

)−1
AT

2 s, s = sign(b2 −A2x
∗)

satisfies ‖v‖∞ ≤ 1. Moreover, x∗ is a unique solution if and only if ‖v‖∞ < 1.

This theorem also refers to an extremal set that can be identified after
enough number of iterations and then the accurate solution can be computed.

In case of lower rank, Watson still gives the result, that rank(A) number of
rows are needed in the extremal set to find a solution that always exists.

Applying the weighted least squares method to the example found in [15],
five rows of six are good in the extremal set after the second step of iteration.
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Only the 14-th step will bring in the missing vector. This shows once again that
some steps of iteration may serve useful information even if the convergence is
not fast.

It is shown in the following, how the minimum norm problem can be treated.
Now m < n holds and the matrix has an LQ-factorization as A = LQT..
(Transpose the AT = QR form.) A+ = QL−1 in the full rank case and the
bundle of solution is given by

x+ +
(
I −QQT

)
t = x+ + PPT t.

Introducing the new parameter vector y = −PT t will not effect the goal of
finding the minimal residual solution for

Py = x+.

Here P is a full column rank matrix having orthogonal columns and if it satisfies
the Haar condition, the previous characterization applies. Observe that this
trick can also be used in the case of Chebyshev norm for the minimal norm
solution.

5. Conclusions

Although the IRLS method is not considered the first choice when solving
best lp-norm problems for linear systems, it is found that it performs beautifully
for finding the best uniform polynomial approximation to functions even in
multidimensional cases. The here given example was a tabulated version for
functions but the applied scalar products may be replaced by integrals for more
accurate results.

Despite the fact that it is not recommended for l1 and l∞ problems, still it
may provide useful information in these cases.
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