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Abstract. The classical Lebesgue’s theorem about the convergence of the
Fejér means at Lebesgue points is generalized for five different summabil-
ity methods and for two-dimensional functions from the Wiener amalgam
space W (L1, �∞)(Rd).

1. Introduction

For the Fejér means [11] of an integrable function f , the classical theorem
of Lebesgue [20] says that

lim
T→∞

1
T

∫ T

0

stf(x) dt = f(x)

at each Lebesgue point of f , thus almost everywhere, where stf denotes the
tth Dirichlet integral of the one-dimensional function f . In the present survey
paper five different summability methods and five generalizations of this result
will be given for two-dimensional functions. All the five summability methods
are investigated exhaustively in the literature.
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A general method of summation, the so called θ-summation method, which
is generated by a single function θ and which includes the well known Fejér,
Riesz, Weierstrass, Abel, etc. summability methods, is studied intensively in
the literature (see e.g. Butzer and Nessel [6], Trigub and Belinsky [2, 29, 30],
Liflyand [21], Gát [12, 13, 14], Goginava [15, 16, 17], Simon [26], Persson, Teph-
nadze and Wall [24] and Weisz [33, 34]). Lebesgue points of multi-dimensional
functions are investigated in Belinsky, Liflyand and Trigub [3, 1] and in Fe-
ichtinger and Weisz [9, 10].

For two-dimensional functions the θ-summability can be defined by

σθ
T f(x, y) :=

1
2π

∫
R2

θ

(
‖(u, v)‖q

T

)
f̂(u, v)eı(xu+yv) du dv (T > 0)

or by

σθ
T f(x, y) :=

1
2π

∫
R2

θ1

(
|u|
T1

)
θ2

(
|v|
T2

)
f̂(u, v)eı(xu+yv) du dv (T1, T2 > 0).

The second type of summation was considered e.g. in Zygmund [38], Gát [12]
and Weisz [33, 34]. In the first definition the cases q = 1, 2,∞ are investigated
exhaustively in the literature, the case q = 2 in Stein and Weiss [26], Davis and
Chang [8] and Grafakos [18], the case q = 1 in Berens [4, 5], Szili and Vértesi
[28] and the case q = ∞ in Marcinkiewicz [22], Zhizhiashvili [37] and Weisz
[33, 34].

In this paper we introduce a new concept of Lebesgue points for each
summability just mentioned. We generalize Lebesgue’s theorem for these new
Lebesgue points and for the different summability methods and for two-dimen-
sional functions from the Wiener amalgam space W (L1, �∞)(Rd) ⊃ L1(Rd).
All the results of this paper hold e.g. for the Weierstrass, Abel, Picard, Bessel,
Fejér, de La Vallée-Poussin, Rogosinski and Riesz summations.

This paper was the base of my talk given at the 11th Joint Conference on
Mathematics and Computer Science, May 2016, in Eger (Hungary).

2. Wiener amalgam spaces

The space Lp(Rd) is equipped with the norm

‖f‖p :=

{ (∫
R2 |f |p dλ

)1/p

, 0 < p < ∞;
supR2 |f |, p = ∞,
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where the dimension d is 1 or 2. A measurable function f belongs to the Wiener
amalgam space W (Lp, �q)(Rd) (1 ≤ p, q ≤ ∞) if

‖f‖W (Lp,�q) :=

⎛⎝∑
k∈Zd

‖f(·+ k)‖q
Lp[0,1)d

⎞⎠1/q

< ∞,

with the obvious modification for q = ∞.
It is easy to see that W (Lp, �p)(Rd) = Lp(Rd) and

W (L∞, �1)(Rd) ⊂ Lp(Rd) ⊂ W (L1, �∞)(Rd) (1 ≤ p ≤ ∞).

3. The one-dimensional θ-summability

The Fourier transform of a one-dimensional function f ∈ L1(R) is given by

f̂(x) =
1√
2π

∫
R

f(u)e−ıxu du (x ∈ R),

where ı =
√
−1. If f ∈ Lp(R) for some 1 ≤ p ≤ 2, then

(3.1) f(x) =
1√
2π

∫
R

f̂(u)eıxu du (x ∈ R, f̂ ∈ L1(R)).

The integrability condition of f̂ is a very strong condition. If this not holds,
we may consider the Dirichlet integral sT f :

sT f(x) :=
1√
2π

∫ T

−T

f̂(u)eıxu du,

which is well defined. It is known that for f ∈ Lp(R), 1 < p < ∞,

lim
T→∞

sT f = f in the Lp(R)-norm and a.e.

The norm convergence is due to Riesz [25] and the almost everywhere con-
vergence is the famous Carleson’s theorem (see Carleson [7] and Hunt [19] or
recently Grafakos [18]).

This convergence does not hold for p = 1. However, using a summability
method, we can generalize these results. We may take a general summability
method, the so called θ-summation defined by a function θ : R+ → R satisfying
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θ(0) = 1. This summation contains all well known summability methods, such
as the well known Weierstrass, Abel, Picar, Bessel, Fejér, de La Vallée-Poussin,
Rogosinski and Riesz summations. This means that we multiply the integrand
by a suitable function θ in the Fourier inversion formula (3.1). More precisely,
in the one-dimensional case let

(3.2) σθ
T f(x) :=

1√
2π

∫
R

θ

(
|u|
T

)
f̂(u)eıxu du.

This definition can easily be extended to all f ∈ W (L1, �∞)(R).

4. One-dimensional Lebesgue’s theorem

A point x ∈ R is called a Lebesgue point of f ∈ W (L1, �∞)(R) if

lim
h→0

1
2h

∫ h

−h

|f(x− s)− f(x)| ds = 0.

It is known that almost every point x ∈ R is a Lebesgue point of f .
For θ(t) = max((1− |t|), 0), we obtain the Fejér means:

σT f(x) :=
1√
2π

∫ T

−T

(
1− |u|

T

)
f̂(u)eıxu du

=
1
T

∫ T

0

stf(x) dt.

The following well known theorem is due to Lebesgue [20] (see also [11]).

Theorem 4.1. For all Lebesgue points of f ∈ L1(R),

lim
T→∞

σT f(x) = f(x).

5. The two-dimensional θ-summability

Let us turn to the two-dimensional functions. The first question is, how
can we generalize the definition (3.2) for two-dimensional functions? There are
some generalizations, which are investigated exhaustively in the literature. In
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the first natural generalization, instead of |u| we write the q-norm ‖(u, v)‖q of
the two-dimensional vector (u, v) and the function θ remains a one-dimensional
function. More exactly,

σθ
T f(x, y) :=

1
2π

∫
R2

θ

(
‖(u, v)‖q

T

)
f̂(u, v)eı(xu+yv) du dv.

Here T is a positive real number. In this paper and also in the literature the
cases q = 1, 2,∞ are investigated. These summations are called triangular,
circular and cubic summability, respectively.

In the other natural generalization, instead of the function θ we write two
one-dimensional functions θ1 and θ2:

σθ
T f(x, y) :=

1
2π

∫
R2

θ1

(
|u|
T1

)
θ2

(
|v|
T2

)
f̂(u, v)eı(xu+yv) du dv.

In this definition T = (T1, T2) ∈ R2
+. We suppose that θ(0) = θi(0) = 1,

i = 1, 2. Two subcases of this summability will be investigated, the restricted
(when T ∈ R2

+ is in a cone) and the unrestricted (when T ∈ R2
+) summability.

For each five generalization we need a new concept of Lebesgue points. The
proofs are strongly different for different cases.

6. Circular summability

First we consider the circular summability, when q = 2. Suppose that

θ0(u, v) := θ(
√

u2 + v2), θ0 ∈ L1(R2), θ̂0 ∈ L1(R2).

Then the θ-means can be written in the form

σθ
T f(x, y) =

1
2π

∫
R2

θ0

( u

T
,
v

T

)
f̂(u, v)eı(xu+yv) du dv.

We denote by B(c, h) (c ∈ Rd, h > 0) the ball {x ∈ Rd : ‖x− c‖2 < h}. Let
the dyadic coronas be defined by

Qk := B(0, 2k) \B(0, 2k−1) (k > 0), Q0 := B(0, 1).

The Herz space Eq(Rd) contains all measurable functions f for which

‖f‖Eq :=
∞∑

k=0

2dk(1−1/q) ‖f1Qk
‖q < ∞.
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Then obviously

L1(Rd) = E1(Rd) ⊃ Eq(Rd) ⊃ Eq′(Rd) ⊃ E∞(Rd), 1 < q < q′ < ∞.

By Lebesgue’s differentiation theorem,

lim
h→0

1
4h2

∫ h

−h

∫ h

−h

f(x− s, y − t) ds dt = f(x, y)

for almost every (x, y) ∈ R2. Then

lim
h→0

1
4h2

∫ h

−h

∫ h

−h

f(x− s, y − t)− f(x, y) ds dt = 0.

If we can write the absolute value in the integrand, which is a stronger condi-
tion, then (x, y) is a Lebesgue point. More exactly, a point (x, y) ∈ R2 is called
a p-Lebesgue point of f (1 ≤ p < ∞) if

lim
h→0

(
1

4h2

∫ h

−h

∫ h

−h

|f(x− s, y − t)− f(x, y)|p ds dt

)1/p

= 0.

By Hlder’s inequality, all r-Lebesgue points are p-Lebesgue points, whenever
p < r. The following theorem can be found in Butzer and Nessel [6], Stein and
Weiss [27] or Feichtinger and Weisz [9, 10].

Theorem 6.1. Almost every point (x, y) ∈ R2 is a p-Lebesgue point of
f ∈ W (Lp, �∞)(R2) if 1 ≤ p < ∞.

The first generalization of Lebesgue’s theorem reads as follows.

Theorem 6.2. Let θ0 ∈ L1(R2), 1 ≤ p < ∞ and 1/p+1/q = 1. If θ̂0 ∈ Eq(R2),
then

lim
T→∞

σθ
T f(x, y) = f(x, y)

for all p-Lebesgue points of f ∈ W (Lp, �∞)(R2).

The theorem is due to Feichtinger and Weisz [10]. Originally, it was proved
for Riesz summation, for p = 1 and for integrable functions without using the
Herz spaces in Stein and Weiss [27] or Butzer and Nessel [6]. We proved in [10]
that the converse of the theorem holds also.

Theorem 6.3. Suppose that θ0 ∈ L1(R2), θ̂0 ∈ L1(R2), 1 ≤ p < ∞ and
1/p + 1/q = 1. If

lim
T→∞

σθ
T f(x, y) = f(x, y)

for all p-Lebesgue points of f ∈ Lp(R2), then θ̂0 ∈ Eq(R2).

Note that W (Lp, �∞)(R2) ⊃ Lp(R2).
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7. Rectangular summability

The Lebesgue points of the rectangular summability are similar to the pre-
vious ones. Suppose that θi ∈ L1(R2), θ̂i ∈ L1(R2) (i = 1, 2) and T = (T1, T2).
Recall that

σθ
T f(x, y) =

1
2π

∫
R2

θ1

(
|u|
T1

)
θ2

(
|v|
T2

)
f̂(u, v)eı(xu+yv) du dv.

The Wiener amalgam space W (Lp, �∞)(R2) was defined with the norm

‖f‖W (Lp,�∞) :=
(

sup
n,m∈Z

∫ n+1

n

∫ m+1

m

|f(x, y)|p dydx

)1/p

.

If we change one integral and one supremum in this expression, then we ob-
tain the definition of the iterated Wiener amalgam spaces. In other words,
a function f is in the iterated Wiener amalgam spaces WI(Lp, �∞)(R2) or
WI(Lp log L, �∞)(R2) (1 ≤ p ≤ ∞) if

‖f‖WI(Lp,�∞) :=
(

sup
n∈Z

∫ n+1

n

sup
m∈Z

∫ m+1

m

|f(x, y)|p dydx

)1/p

< ∞

or
‖f‖WI(Lp log L,�∞) :=

:=
(

sup
n∈Z

∫ n+1

n

sup
m∈Z

∫ m+1

m

|f(x, y)|p log+ |f(x, y)| dydx

)1/p

< ∞.

Moreover, f is in the set Lp log L(R2) (1 ≤ p < ∞) if

‖f‖Lp log L :=
(∫

R2
|f |p log+ |f | dλ

)1/p

< ∞,

where log+ u := max(0, log u). It is easy to see that

W (Lp, �∞)(R2) ⊃ WI(Lp log L, �∞)(R2) ⊃ Lp log L(R2), Lr(R2)

for all 1 ≤ p < r ≤ ∞. Note that the space WI(Lp log L, �∞)(R2) does not
contain Lp(R2).

A point (x, y) ∈ R2 is called a strong p-Lebesgue point of f (1 ≤ p < ∞) if

lim
h→0

(
1

4h1h2

∫ h1

−h1

∫ h2

−h2

|f(x− s, y − t)− f(x, y)|p ds dt

)1/p

= 0.
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We suppose also that the supremum of the last expression over all h ∈ R2
+ is

finite. Here h → 0 means that both h1 → 0 and h2 → 0.

The following two theorems are due to the author [35].

Theorem 7.1. Almost every point (x, y) ∈ R2 is a strong p-Lebesgue point of
f ∈ WI(Lp log L, �∞)(R2) if 1 ≤ p < ∞.

Theorem 7.2. Let θi ∈ L1(R), 1 ≤ p < ∞ and 1/p + 1/q = 1. If θ̂i ∈ Eq(R)
(i = 1, 2), then

lim
T→∞

σθ
T f(x, y) = f(x, y)

for all strong p-Lebesgue points of f ∈ WI(Lp log L, �∞)(R2).

Here T → ∞ means again that T1 → ∞ and T2 → ∞. The iterated
Wiener amalgam space WI(Lp log L, �∞)(R2) is the largest function space for
which these two theorems hold, even if we consider another type of Lebesgue
points or only almost everywhere convergence. So they are not true either for
W (Lp, �∞)(R2) or for Lp(R2) (see Gát [12]).

8. Restricted rectangular summability

The third generalization is almost the same as the second one, the difference
is that we assume here that T is in a cone. So the definition of the θ-means
are the same as before:

σθ
T f(x, y) =

1
2π

∫
R2

θ1

(
|u|
T

)
θ2

(
|v|
T

)
f̂(u, v)eı(xu+yv) du dv.

Suppose that θi ∈ L1(R2), θ̂i ∈ L1(R2) (i = 1, 2), τ ≥ 0 and T is in a cone, i.e.,

T = (T1, T2) ∈ R2
τ := {x ∈ R2

+ : 2−τ ≤ x1/x2 ≤ 2τ}.

Instead of the Herz spaces we use here a weighted version of these spaces.
The weighted Herz space Eμ

q (R) (μ ≥ 0) contains all measurable functions f
for which

‖f‖Eμ
q

:=
∞∑

k=0

2k(μ+1−1/q) ‖f1Qk
‖q < ∞.

Obviously,
Eq(R) = E0

q (R) ⊃ Eμ
q (R) 0 ≤ μ < ∞
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Figure 1. The cone for d = 2.

and

L1(R) ⊃ Eμ
1 (R) ⊃ Eμ

q (R) ⊃ Eμ
q′(R) ⊃ Eμ

∞(R), 1 < q < q′ < ∞.

Recall the definition of the Lebesgue and strong Lebesgue points given
before:

lim
h→0

(
1

4h2

∫ h

−h

∫ h

−h

|f(x− s, y − t)− f(x, y)|p ds dt

)1/p

= 0

and

lim
h→0

(
1

4h1h2

∫ h1

−h1

∫ h2

−h2

|f(x− s, y − t)− f(x, y)|p ds dt

)1/p

= 0.

In the first definition, we integrate over squares and we can prove the conver-
gence result for the large Wiener amalgam space W (Lp, �∞)(R2). In the second
one, we integrate over rectangles with sides parallel to the axes and the result
holds for the smaller iterated Wiener amalgam space WI(Lp log L, �∞)(R2).
The reason of this is that e.g. h1 can be small and h2 large. It is easy to see
that the second definition can also be rewritten as

lim
r→0

sup
0<h1,h2<r

(
1

4h1h2

∫ h1

−h1

∫ h2

−h2

|f(x− s, y − t)− f(x, y)|p ds dt

)1/p

= 0.

In the next definition, we will integrate again over rectangles and one side
of the rectangle can be small and the other large. However, now we multiply
by a weight function. A point (x, y) ∈ R2 is a modified p-Lebesgue point of f if
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for all μ > 0,

lim
r→0

sup
i,j∈N,h>0

2ih<r,2jh<r

2−μ(i+j)

(
1

4 · 2i+jh2

∫ 2ih

−2ih

∫ 2jh

−2jh

|f(x− s, y − t)− f(x, y)|p ds dt

)1/p

= 0.(8.1)

We assume also that the supremum over all r > 0 is finite.
The next two theorems are due to the author [31]. A first version of Theorem

8.2 was shown by Marcinkiewicz and Zygmund [23] in 1939. Later Gát [12] and
the author [33, 34] proved the almost everywhere convergence.

Theorem 8.1. Almost every point (x, y) ∈ R2 is a modified p-Lebesgue point
of f ∈ W (Lp, �∞)(R2) if 1 ≤ p < ∞.

Theorem 8.2. Let θi ∈ L1(R), 1 ≤ p < ∞ and 1/p + 1/q = 1 and μ > 0. If
θ̂i ∈ Eμ

q (R) (i = 1, 2), then

lim
T→∞,T∈R2

τ

σθ
T f(x, y) = f(x, y)

for all modified p-Lebesgue points of f ∈ W (Lp, �∞)(R2).

9. Cubic summability

In the fourth generalization, when q = ∞, we do not use Herz spaces.
Instead, we suppose that θ is continuous on R+, the support of θ is [0, c] for
some 0 < c ≤ ∞ and θ is differentiable on (0, c). Suppose further that∫ ∞

0

(t ∨ 1)2|θ′(t)| dt < ∞, lim
t→∞

t2θ(t) = 0,

where ∨ denotes the maximum and ∧ the minimum. Assume also that∣∣∣∣∫ ∞

0

θ′(t) cos(tu) dt

∣∣∣∣ ≤ Cu−α,

∣∣∣∣∫ ∞

0

θ′(t) t sin(tu) dt

∣∣∣∣ ≤ Cu−α

for all u > 0 and for some 0 < α < ∞. Recall that the cubic summability
means are defined by

σθ
T f(x, y) =

1
2π

∫
R2

θ

(
|u| ∨ |v|

T

)
f̂(u, v)eı(xu+yv) du dv.
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If in addition to the definition of the modified p-Lebesgue point, we suppose
that for all μ > 0,

lim
r→0

sup
i,j∈N,h>0

2ih<r,2jh<r

2−μ(i+j)

(
1

4 · 2i+jh2

∫ 2ih

−2ih

∫ s+2jh

s−2jh

|f(x− s, y − t)− f(x, y)|p dt ds

)1/p

= 0,

then we say that (x, y) ∈ R2 is a modified strong p-Lebesgue point. We assume
also that the supremum over all r > 0 is finite. Here we integrate over paral-
lelograms with sides parallel to one of the axes and to one of the diagonals of
the square [0, 1]2.

The next theorems of this section were proved in [36].

Theorem 9.1. Almost every point (x, y) ∈ R2 is a modified strong p-Lebesgue
point of f ∈ W (Lp, �∞)(R2) if 1 ≤ p < ∞.

If p > 1 and f ∈ W (Lp, �∞)(R2), then we do not need the concept of
modified strong p-Lebesgue points just introduced, it is enough to consider
modified p-Lebesgue points.

Theorem 9.2. If 1 < p < ∞ and f ∈ W (Lp, �∞)(R2), then

lim
T→∞

σθ
T f(x, y) = f(x, y)

for all modified p-Lebesgue points of f .

This result does not hold for p = 1. In this case, we need the concept of
modified strong p-Lebesgue points.

Theorem 9.3. If f ∈ W (L1, �∞)(R2), then

lim
T→∞

σθ
T f(x, y) = f(x, y)

for all modified strong 1-Lebesgue points of f .

Using the theorems of this section, we have given simple proofs for the
classical strong summability results in [36].
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10. Triangular summability

Finally, in the last generalization let q = 1. Then the triangular θ-means
are defined by

σθ
T f(x, y) :=

1
2π

∫
R2

θ

(
|u|+ |v|

T

)
f̂(u, v)eı(xu+yv) du dv.

The convergence results are similar to those for cubic summability and are
proved in [32].

Theorem 10.1. If 1 < p < ∞ and f ∈ W (Lp, �∞)(R2), then

lim
T→∞

σθ
T f(x, y) = f(x, y)

for all modified p-Lebesgue points of f .

Theorem 10.2. If f ∈ W (L1, �∞)(R2), then

lim
T→∞

σθ
T f(x, y) = f(x, y)

for all modified strong 1-Lebesgue points of f .
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