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Abstract. The objective of this article is twofold: First, we review the key
results achieved by P. Erdős and his co-authors in the field of non-integer
based expansions. On the other hand, in many places we present possible
generalizations, and colourful, interesting examples; with the purpose of
drawing attention of hopeful new researchers to this very interesting area.

1. Introduction, goals, notations

Non-integer based expansions of real numbers – hearing this title many peo-
ple may think that this research field has been common for centuries. However,
this is not the case; the systematic research on this area began only in the 1950s
(with the mention that there were some ”predecessor” publications).

The ”official” start can be identified with the seminal papers of A. Rényi and
W. Parry ([17], [16]); they introduced the basic concepts used here mostly even
nowadays, as well as have generated the significant development of the whole
area. By now, the examination of Rényi–Parry expansions has turned into a
very extensive field of investigation, having extremely complicated connections.

The logical structure of this article (and the associated research) is based
on the following questions:
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unique expansions.
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• What kind of expansions can be defined?
• How many different expansions can exist?
• What parts (groups of digits) may occur in general and specific expan-

sions?
• Especially, what are the 1-expansions like?
• When do unique expansions exist, and how can the univoque set be char-

acterized?

For the author this is an extended research area, based on a previous
PhD thesis (supervised by I. Kátai). The new theorems and propositions pre-
sented in this paper are straightforward generalizations of the former results of
P. Erdős, V. Komornik, I. Kátai and other researchers. Therefore, we always
present the original result carefully, and in most cases the sketch of the original
proof is given, too.

During the processing we put great emphasis on various colourful examples,
the author’s clear objective is the promotion of this area for the public.1

1.1. Integer bases

Let us consider first the features of the integer-based (number) systems!
(For this summary we used papers [14] and [20].)

Let b ≥ 2 be an integer (base of a number system), then the digits usable
in b-adic expansions are:

(1.1) Ab = {0, 1, . . . , b− 1}.

For arbitrary α (nonnegative) real number there exists – at least one – b-based
(or b-adic) expansion which can be written in the form:

(1.2) α = [α] +
∞∑

i=1

ai

bi
= [α].a1a2 · · · an · · · ,

here ai ∈ Ab, i.e. for the digits we have 0 ≤ ai < b for i ≥ 1.
We note that form (1.2) can be considered as a sequence, and also as a

number, the value of which is determined by the expression. In this paper we
will use both interpretations.

The important properties of such expansions (number of possible expan-
sions, uniqueness, periodicity) – are easy to explore and have been well-known

1Due to the great length, the originally planned paper has been divided into two parts,
therefore, it will remain for part two – among others – the systematic study of unique
expansions, using the Parry condition.
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for quite a long time. The b-adic expansion is unique for almost all α (in
Lebesgue-sense). We have two different expansions if and only if α’s greedy
(regular; see below) expansion is finite (i.e.: for countable many, but not for
all rational numbers); here the infinite form ends with a pure b− 1-tail.

By separating [α], the investigation is restricted to the set of fractions, i.e.
to [0, 1]. With this, however, the main characteristics of the analysed sequences
and numbers (e.g.: number of possible expansions, set of the numbers with a
unique expansion) will not be changed; in fact, the total number-line can be
”filled in” based on the examination on the set of fractions.

There is one difference which is worth emphasising: on the set of fractions
– especially – number 1 has only a unique expansion:

(1.3) 1 =
∞∑

i=1

b− 1
bi

= 0.(b− 1)(b− 1)(b− 1) . . .

1.2. Noninteger bases

Considering now the noninteger bases, the basic concepts can be introduced
very similarly as above, as follows.

Let β > 1 (or q > 1) be a noninteger number (base). The digits usable in
β-(based )expansions are:

(1.4) (Dβ =)Aβ = {0, 1, . . . , [β]}.

In this paper we will use the notations, which were used by the authors
introducing the given concept originally, and which are widely accepted in the
literature: 1/β = Θ, [β] = k.

As it is well-known, an arbitrary α (nonnegative) real number has (at least
one) β-(based )expansion (with ai ∈ Aβ) in the form

(1.5) α = ”separated integral part” +
∞∑

i=1

ai

βi
= [α].a1a2 · · · an · · · .

We can introduce the set of fractions (with ai ∈ Aβ) similarly as above:

(1.6) F =
{

x
∣∣∣x =

∞∑
i=1

ai

βi
=

∞∑
i=1

aiΘi
}

.

Here Fmin = 0 and Fmax = L, where

L = kΘ + kΘ2 + · · · = kΘ
1−Θ

,

with L ≥ 1 (which can be verified by easy calculations).
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For α ∈ [0, L] we can give a fraction-expansion too, in the form

(1.7) α =
∞∑

i=1

ai

βi
= 0.a1a2 · · · an · · · .

Commonly we work on the set F , since we have no difference in substan-
tial properties of the numbers and sequences (uniqueness, number of possible
expansions).

As we mentioned above, expansions (1.5) and (1.7) can be interpreted as a
sequence or as a number, too, the value of which is determined by the expansion.

We introduce the complementary sequence: for (εi) = ε1ε2 . . . let (εi) =
= (k − ε1)(k − ε2) · · · = (k)− (εi), where with

∞∑
i=1

εiΘi = x we have
∞∑

i=1

εiΘi = L− x = x.

Based on the foregoing, the Reader might feel the apparatus we built up
will be very likely unnecessary, since the characterization of possible expansions
is relatively easy even in the noninteger-based cases (similarly to the integer-
based cases). In contrast, however, even a short analysis shows that here we
have a surprisingly varied and complex structure, and we face very interesting
number theoretical, topological and ergodic challenges ([15], [20]).

2. Classical results

One of the first scientific papers, which was devoted to the analysis of the
noninteger-based number systems, was published in 1936 ([13]). The author
(A. J. Kempner) raises and examines here a number of interesting problems in
connection with the possible expansions. The greediest (canonical, or simply
greedy) and the laziest (lazy) expansions have already been introduced here,
noting that between the two extreme strategies plenty of other options are
conceivable. E.g.:

(2.1) 2 = 10.01000001 . . .(3/2) (can) = 0.1111 . . .(3/2) (lazy).

It is also possible that the greedy and lazy expansions are the same, then
obviously only this unique expansion can be defined.

Although some of the results of this article may seem a bit anachronistic
today, the paper itself is still an extremely enjoyable and colourful reading
material, written in a thought-provoking and entertaining style.
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The greedy (or canonical, regular) expansion in the form as it is commonly
known and used today, was introduced by A. Rényi, as a special case of f -
expansions, in 1957 ([17]). In his seminal paper he proved, that this expansion
(with fixed noninteger base, for arbitrary real number) is always unique, and
he gave the producing algorithm, too. Here the largest possible digit is taken
in every step (according to the greedy strategy).

With base number β > 1 and digit set (1.4) the following holds.

Theorem ([15], [17]). Given β > 1 base number and x ∈ [0, L], let’s define a
sequence of integers (bi) = (bi(β, x)) by the greedy algorithm: if b1, b2, . . . , bn−1

have already been defined,2 then let bn be the largest integer less than β with

(2.2)
b1

β
+

b2

β2
+ · · ·+ bn

βn
≤ x.

Then (bi) is an expansion of x.

Definition. The expansion (bi) of the theorem is called the greedy (or regular)
expansion of x in base β.

We note that the greedy form is the lexicographically largest expansion.

A. Rényi’s classical example is the G-based system with G = (
√

5 + 1)/2 ≈
≈ 1.618 (G: golden ratio); here G2 = G + 1 and using g = 1/G = G − 1 we
have g + g2 = 1, so, the greedy/regular expansion of 1 on F is 1 = 0.11.

The author recommends the interested Reader to determine the greedy
expansions of 1 and other numbers with this algorithm, in different systems. It
is a very instructive task! Several such examples – among others in the G-based
system, too – can be found in K. G. Hare’s paper [10].

If in expansion (2.2) strict inequality is used instead of the allowing in-
equality, then we get the quasi-greedy (or quasiregular) expansion. Following
from the construction the quasi-greedy form is always infinite (and so it is the
lexicographically largest infinite expansion).

Similarly (to the greedy one), we can interpret and introduce the lazy ex-
pansion in a way, that in every step the smallest possible digit is chosen so,
that the remainder has to be still legally expanded (see examples e.g. in [1]
and [10]).

As it is already clear, in integer-based systems a real number can have
exactly only one or two different expansions. In the noninteger-based cases
the situation is more complicated. However, we can give here some classical
results, which characterize these systems generally.

2We have no assumption for n = 1.
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Proposition (G. A. Edgar, [5]). Let β > 1 be a real base, and D be a finite
(digit) set of real numbers, including 0 (not necessarily in form (1.4)). Then
either some real numbers have no expansions in form (1.5) or some real numbers
have more than one expansion in form (1.5).

Lemma (L. C. Eggan, C. L. Vanden Eynden, [6]). For any noninteger base
β > 1 with digit set (1.4), there exist intervals in which each number has more
than one expansion.

To prove this lemma – based on [6] – for arbitrary base number β let us
consider only the fraction-expansions. Then 0.1 < 0.0k∞, since

(2.3) 0.0k∞
(β) =

k/β2

1− 1/β
>

β − 1
β2 − β

=
1
β

= 0.1(β).

From this it follows that the numbers of the interval [0.1, 0.0k∞] have at least
two different expansions.

3. Expansion-trees in fixed bases

In this chapter we consider the problem of determining all possible expan-
sions of given numbers, in fixed bases.

We refer here to an interesting early paper in this topic (Eggan–Eynden,
1966, [6]). Already in this work we can see several specific examples of such
expansions.

The authors present here (among others) number ξ = 0.(100)∞ in the G-
based system.3 Here

ξ = 0.100100 . . .(G) =
1
G

+
1

G4
+

1
G7

+ · · · =
∞∑

i=0

1
G3i+1

=
g

1− g3
=

G2

G3 − 1
.

Using identity g + g2 = 1, in the expansion of ξ every part ’100’ can be
rewritten into part ’011’, without changing the result. Since part ’100’ occurs
countably often, therefore, in this way we get finally 2ℵ0 (continuum) of differ-
ent expansions, which can be represented by a complete binary tree. (Other
expansions cannot be constructed, because if we anywhere ”break” the rules
governing the triple blocks, already a number greater or less than ξ is obtained.
E.g. 0.0101∞ = g2 + g4

1−g ≈ 0.7639 < ξ ≈ 0.8090.)
This construction can be easily adapted to other systems, and so many

similar examples can be constructed. Let us consider e.g. the system,4 where
3This example is also presented in paper [1].
4For the bases of some special systems we will introduce private notations.



On some problems of P. Erdős 245

1 = 0.22 (then T = β =
√

3 + 1 and t = Θ =
√

3−1
2 ). Here for number

ξ′ = 0.(100)∞ parts ’100’ can be rewritten into ’022’ in every position (see
Figure 1.); in the nodes the (parts of) digits in the expansions are displayed.
(Similarly as above, we get so all of the possible expansions.)

Figure 1. Expansions of ξ′ = 0.(100)∞ in system with base
√

3 + 1

Our observations can be summarized as follows. Let k ≥ 2 be an integer.
Let us denote the positive solution of the equation kΘ + kΘ2 = 1 by Θ′

k, and
the reciprocal value of this number by β′

k (this is the base of the system, and
the positive solution of the equation −kβ + kβ2 = 1). Thus

Θ′
k =

−k +
√

k2 + 4k

2k
and β′

k =
k +

√
k2 + 4k

2
.

Proposition 3.1. Let us consider the expansions of number ξ = 0.(100)∞ in
the β′

k-based systems. Here parts ’100’ can be rewritten into parts ’0kk’ in every
position. In this way we get finally 2ℵ0 of different expansions, which can be
represented by a full binary tree. Further ξ-expansions cannot be constructed.

In the above-mentioned work ([6]) the authors – briefly – mentioned as
well, that in the G-based system number g has an infinite number of periodic
expansions. Roughly 15 years later, this problem arose again in a somewhat
different approach, and then P. Erdős et al. presented all expansions of 1 in
this system ([7]).5 Their results are as follows.

Proposition ([7], [15]). In the G-based system number 1 has countably many
different expansions (on F).6 One of them is periodic (quasigreedy/quasi-
regular):

1 =
1
G

+
1

G3
+

1
G5

+
1

G7
+ · · · ,

5This was the first such type of ”complete” investigation.
6See Theorem [7]/1. below, too.
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and besides this there exist for all N = 0, 1, 2, . . . the two expansions:

1 =

(
N∑

i=1

1
G2i−1

)
+

1
G2N+1

+
1

G2N+2
and 1 =

(
N∑

i=1

1
G2i−1

)
+

( ∞∑
i=2N+2

1
Gi

)
.

In the original proof ([7]) the authors worked so, that they took the usable
digits one after an other in the expansion: If ε1 = 0, then the only way to
continue is 1 = g2 + g3 + g4 + . . . . If ε1 = ε2 = 1, then also obligatorily only
the expansion 1 = g + g2 is possible. The analysis can be continued similarly.

It is very intuitive, if according to the statement, we list the individual
expansions:

Expansion of 1 Category, remark
g + g3 + g5 + g7 + . . . 0.(10)∞ quasiregular
g + g2 0.11 N = 0, case a); greedy
g2 + g3 + g4 + . . . 0.01∞ N = 0, case b); lazy
g + g3 + g4 0.1011 N = 1, case a)
g + g4 + g5 + g6 + . . . 0.1001∞ N = 1, case b)
g + g3 + g5 + g6 0.101011 N = 2, case a)
g + g3 + g6 + g7 + g8 + . . . 0.101001∞ N = 2, case b)
· · · · · · · · ·

It is easy to observe that starting from the greedy form – always replacing
the last 1-digit appropriately, using the greedy relation – arise all of the cases
type-a) (these are the ”greedy-clones”); and similarly, with the lazy relation,
all of the cases type-b) (the ”lazy-clones”).

This observation may be used to construct all expansions of 1 in other –
easy-to-describe – systems, too.

Let k ≥ 2 be an integer. Let us denote the positive solution of kΘ+Θ2 = 1
by Θk; and the reciprocal value of this number by βk (this is the base of the
system, and it is the positive solution of the equation −kβ + β2 = 1).7 Thus

Θk =
−k +

√
k2 + 4

2
and βk =

k +
√

k2 + 4
2

= k + Θk.

Hence, in these systems the greedy expansion of 1 (on F) is 1 = 0.k1, and
the lazy form is 1 = 0.(k − 1)k∞ (the verification of the latter is left to the
Reader). E. g. in the case k = 2 we have S = β2 =

√
2 + 1, s = Θ2 =

√
2− 1,

the greedy expansion of 1 is 1 = 0.21, and the lazy form is 1 = 0.12∞.

Proposition 3.2. In systems with base βk number 1 has the following expan-
sions:

7These βk-s separate the small and big cases, when determining the univoque numbers
[11].
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(i) 1 = 0.k1 (regular/greedy)
(ii) 1 = 0.(k − 1)k∞ (lazy)
(iii) 1 = 0.(k0)∞ (quasiregular)
(iv) 1 = 0.(k0)ik1 (”greedy-clones”)
(v) 1 = 0.(k0)i(k − 1)k∞ (”lazy-clones”).

There are no other 1-expansions in these systems.

Proof. Suppose we have found a new 1-expansion, which does not belong to
our list. Then – taking into account the facts mentioned above – this must be
in the form 0.(k0)id . . . (separating every k0 part, for i ≥ 1). In case d = k− 1
the production would be a ”lazy-clone” (the sequence would have been legally
continued only in this way); case d ≤ k − 2 cannot be fulfilled either, because
in this case the produced number would be less than 1; thus d = k.

The expansion cannot end here, since 0.(k0)ik 	= 1; let e be the digit fol-
lowing d. For e = 1 we would have a ”greedy-clone”; cases e = 2, . . . , k are not
possible either (we would get so a number greater than 1); so e = 0. But now
we have a contradiction with the fact that all parts k0 were separated. �

In Figure 2. we show these expansions in the S =
√

2 + 1-based system.

Figure 2. Expansions of 1 in the
√

2 + 1-based system

Now we are in the position that we are able to determine the expansions of
several specific numbers. It is an obvious idea to extend the results obtained
so far in the following manner.
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Let η ≤ L. If η’s known greedy expansion – on the set of fractions – is
η = 0.η1η2 . . .(β), then 0.0η1η2 . . .(β) will be clearly the expansion of ηΘ. This
is similarly true for any other expansions η = 0.η′

1η
′
2 . . .(β) (if there exist more

than one). It remains a question, however, that whether by inserting a digit 0
we really receive all expansions of ηΘ.

As it is well-known, if a number have two different expansions, these can
differ in the first different position by exactly one. (Based on [6] for this the
following short proof can be given. In such cases we have clearly k ≥ 2 and
0.2 ≤ 0.0k∞. This is the same as 2Θ ≤ kΘ2

1−Θ or 2(1−Θ) ≤ kΘ. But this yields
1 = 2(1− 1/2) < 2(1−Θ) ≤ kΘ = [β]Θ < 1, which is a contradiction.)

So, if we can find for ηΘ such an expansion in which the first fraction-digit
differs from 0, then this digit must be only 1. Such an expansion can really
exist in the cases when η1 = k, since 0.1 < 0.0k∞ holds. Moreover, based on
(2.3), it is also clear that 0.0(k − 1)∞ < 0.1, so if η1 = k − 1, then we surely
cannot find another such expansion.

However, if we expand η originally not on the set of fractions, we get the
expansions of type η = 1.η′′

1η′′
2η′′

3 . . .(β) already at the beginning of the proce-
dure; e.g. following the greedy algorithm. So, all these forms will occur among
the expansions of ηΘ, by shifting the digits to the right.

To sum up, we have proved the following statement:

Proposition 3.3. We fix a base β > 1. Let us assume that in this system
all possible expansions of a number η ∈ (0, L) are given (not only on the set
of fractions). Then we can construct all possible expansions of numbers Θiη
(i ≥ 1) too, by shifting the digits appropriately to the right, and supplementing
the (beginning of the) sequences expanding η by a necessary number of zero
digits.

A completely similar result can be formulated in relation to numbers of
form kΘ + · · ·+ kΘi + Θiη. Besides these, we can make similar constructions
working with numbers c1Θ + · · ·+ ciΘi + Θiη, where cj ∈ {1, 2, . . . , k − 1}.8

4. Expansions of 1

Up to this point we have presented how to give the expansion tree – by a
formula or in a graphic way – in a case of a fixed base, for specific numbers or
for groups of numbers.

Our objective is now to solve a more general problem; namely, let us give
the number of possible expansions for a specific number x, concerning all (or
as many as possible) β-bases! (First we work with bases β ∈ (1, 2).)

8The base idea can be seen e.g. in paper [11].
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Like many other similar problems, this question arose first specially in re-
lation to number 1. Going back into the 1980s, the mathematicians working
in this field believed at that time generally that considering number 1, it was
possible to give infinitely many different expansions (1.7), for all bases β in
(1, 2), i.e. in expansion

(4.1) 1 =
ε1

β
+

ε2

β2
+

ε3

β3
+ · · ·

can always appear infinitely many different sequences of digits εi ∈ {0, 1}.
That’s why it was surprising, when in 1991 P. Erdős and others proved that

for a continuum of bases in 1 < β < 2 only one such expansion exists (and
moreover, in many cases, the number of possible expansions is countable).
Their result (of that time) is as follows:

Theorem ([7]/1). a) For every base number 1 < β < G there exist 2ℵ0

(continuum) different expansions for 1 in form (4.1);
b) We can find (at least) countably many bases G ≤ β < 2, for which there

exist countably many different expansions for number 1 in form (4.1);
c) There exist 2ℵ0 (continuum) base numbers G < β < 2, for which the

expansion of 1 is unique in form (4.1).

The original idea of the proof of case a) is the following ([7] and ([15]).
Since for base G we have 1 = g+g2, thus gn = gn+1+gn+2. Using this gn =

= 2gn+2+gn+3 = gn+2+2gn+3+gn+4, . . . so finally gn = gn+2+gn+3+gn+4+
+ . . . holds (for all indices n). If 1 < β < G, then 1 < Θ + Θ2, and so we have
Θn < Θn+2 + Θn+3 + . . . , which implies that we can find an index m with

Θn < Θn+2 + Θn+3 + · · ·+ Θn+m.

Let us constitute an index sequence {nj}, for which nj+1 − nj > m. Then
sequence {Θn | n 	= nj} = {λi} satisfies the following two conditions:

λ1 > λ2 > . . . , and λn < λn+1 + λn+2 + . . . .

Thus, sub-sums of
∑∞

n=1 λn run through the interval [0,
∑∞

1 λn]. If we choose
n1 large enough, then

∑∞
n=1 λn > 1 >

∑∞
j=1 Θnj will hold.

From this it follows that for arbitrary sub-sum
∑∞

j=1 εjΘnj (εj = 0 or 1)
we can find a sequence {δn} 0− 1, for which

∞∑
j=1

εjΘnj +
∞∑

n=1

δnλn = 1,

and so the desired 2ℵ0 different expansions are constructed.
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Vividly described, the point here is, that if 1 < β < G, then the expansion
tree becomes more arborescent than that is in the G-based system, namely
a binary sub-tree can be identified in it. This ensures the existence of the
continuum different expansions.

Analysing special systems, similar behaviour can be seen in cases k < β <
< βk, too.

Sub-case β = G from part b) is already presented above. For cases β > G
let us consider the following clever argument ([7]). Fix a base β, for which
1 = Θ+Θ2 + · · ·+Θm holds, with an index m ≥ 3 (for every m we get different
bases). Similarly as in part a), then

(4.2) Θn > Θn+2 + Θn+3 + Θn+4 + . . . ,

i.e. two consecutive zero digits are not allowed. Therefore, however, for 1-
expansions we have only the following possibilities:

1 = Θ + Θ2 + · · ·+ Θm,

1 = Θ + · · ·+ Θm−1 + Θm+1 + Θm+2 + · · ·+ Θ2m,

1 = Θ + · · ·+ Θm−1 + Θm+1 + · · ·+ Θ2m−1 + Θ2m+1 + Θ2m+2 + · · ·+ Θ3m,
...

1 =
∑

n≥1;m�n

Θn.

To prove that really no other expansions can exist, let us consider the case
when we choose a digit 0 into position m− 1. But then using (4.2)

Θ + Θ2 + · · ·+ Θm−2 + Θm + Θm+1 + Θm+2 + · · · < 1 = Θ + Θ2 + · · ·+ Θm.

If we have written digits 1 in the first m − 1 positions already, and digit 0 in
the m-th position, then in the following we have to choose εm+1 = εm+2 =
= · · · = ε2m−1 = 1, since with ε2m−1 = 0 using (4.2) it follows

Θ + · · ·+ Θm−1 + Θm+1 + · · ·+ Θ2m−2 + Θ2m + Θ2m+1 + Θ2m+2 + · · · <
< Θ + · · ·+ Θm−1 + Θm+1 + Θm+2 + · · ·+ Θ2m = 1.

The analysis can be continued similarly. By this, the existence of the count-
ably many expansions is proved.

Generalization for k = 2: Case S has already been treated above.

Let now base β be fixed so, that 1 = 2Θ+Θ2 + · · ·+Θm holds, for an index
m ≥ 3. Then we have

(4.3) Θn > Θn+1 + 2Θn+2 + 2Θn+3 + 2Θn+4 + . . . .
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For the 1-expansions now we have the following possibilities:

1 = 2Θ + Θ2 + · · ·+ Θm,

1 = 2Θ + Θ2 + · · ·+ Θm−1 + 2Θm+1 + Θm+2 + · · ·+ Θ2m,

1 = 2Θ + Θ2 + · · ·+ Θm−1 + 2Θm+1 + Θm+2 + · · ·+
+ Θ2m−1 + 2Θ2m+1 + Θ2m+2 + · · ·+ Θ3m, · · · .

With the same argument as above, we can conclude that no other expansions
exist. Namely, let us decrement the last ”stable” digit 1, then by (4.3) we have

2Θ + Θ2 + · · ·+ Θm−2 + 2Θm + 2Θm+1 + 2Θm+2 + · · · <

< 2Θ + Θ2 + · · ·+ Θm−2 + Θm−1 + Θm = 1

If in the first m− 1 positions we have already written digits 2, 1, . . . , 1, and in
the m-th position digit 0, then in the following we have to choose εm+1 = 2,
εm+2 = · · · = ε2m−1 = 1, since with ε2m−1 = 0 by (4.3) we have

2Θ+Θ2 + · · ·+Θm−1 +2Θm+1 +Θm+2 + · · ·+Θ2m−2 +2Θ2m +2Θ2m+1 + · · · <

< 2Θ + Θ2 + · · ·+ Θm−1 + 2Θm+1 + Θm+2 + · · ·+ Θ2m−2 + Θ2m−1 + Θ2m = 1.

Continuing similarly, the existence of the countably many expansions derives.
More generally, by building cases k ≥ 3 in, the following assertion results:

Theorem 4.1. We can find (at least) countably many bases βk ≤ β < k+1 for
which countably many different expansions exist in form (4.1) for number 1.
For a fixed m, these expansions are as follows:

1 = kΘ + Θ2 + · · ·+ Θm,

1 = kΘ + Θ2 + · · ·+ Θm−1 + kΘm+1 + Θm+2 + · · ·+ Θ2m,

1 = kΘ + Θ2 + · · ·+ Θm−1 + kΘm+1 + Θm+2 + · · ·+
+ Θ2m−1 + kΘ2m+1 + Θ2m+2 + · · ·+ Θ3m, · · · .

Proof. This can be carried out very similarly, as it was presented above, by
using inequality

(4.4) Θn > (k − 1)Θn+1 + kΘn+2 + kΘn+3 + kΘn+4 + . . . . �

To the proof of case c): We will revert to this topic in the planned next
part of this article, when the unique expansions will be handled in more detail.
Here we just mention that the interesting paper [12] deals with this subject,
too.

P. Erdős and I. Joó – just shortly after describing results in [7] – also showed
that the number of different 1-expansions (for arbitrary many bases) may even
be a fixed positive integer ([8], 1992)!
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Theorem ([8]). For every integer n ≥ 1 we can find 2ℵ0 (continuum) base
numbers β in (1, 2), for which in these systems number 1 has exactly n different
expansions in form (4.1).

The authors gave the production of the base numbers β and that of the
corresponding expansions, too. For a fixed positive integer n let

(4.5) 1 =
∞∑

i=1

εiΘi = 0.19(091)n−1(0a001)∞,

here a can be chosen freely to 0 and 1 in each cycle. Then in (4.5), single
digits 1 at the end of the middle block can be exchanged into the full digit-
sequence (εi) in (4.5) (starting with a sub-block containing only pure 1-digits);
and totally n− 1 pieces of different substitutions can be carried out.

As an example, for n = 2 in cases a = 0 or a = 1 the substitution carries
out as follows:

block 1. block 2. ”mixed” part repeating part
111111111/ 0000000001 0a0010a (0010a)∞

+ 1111111110 0000000 (010a0)∞

111111110 1111111111 0a0010a (011aa)∞

An extra substitution cannot be performed, hence there are exactly two
different expansions.

The original proof of the theorem was presented in three steps ([8]).
a) If in an expansion (4.5) there is a digit 1 (m-th position), and in the

subsequent eight positions somewhere we have at least one digit 1, then εm

cannot be changed into 0 (without changing the preceding digits), because

(4.6) 0.ε1ε2 . . . εm−101∞ < 1.

To prove this, let us fix εm = 0, and from the m + 1-th position let us add
the shifted digit-sequence (εi) to the original one. Then, in each of the next
eight positions there will be surely at least one digit 1, but at least one place
we will have two 1-s. Here we replace again, by adding the shifted sequence.
Going on similarly, finally all digits 0 will be eliminated, and in all positions
n ≥ m + 1, we will have at least one digit 1, but in several places even more
(at most n). This expansion-sequence gives exactly 1, so (4.6) really holds.

b) If in expansion (4.5) there is a digit 0 (m-th position), and in the subse-
quent eight positions somewhere we have at least one digit 0, then we cannot
change εm into 1 (without changing the preceding digits), because

(4.7) 0.ε1ε2 . . . εm−110∞ > 1.
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Let be εm = 1, and from the m + 1-th position let us add the shifted
sequence (εi) to the original one, but with opposite sign. Then, somewhere in
the next eight positions – at least in one place – digit −1 will not be neutralized
by an original 1, so it remains −1; moreover, in position m + 9 we will have
a digit ≤ 0. Let us eliminate digits −1-s from positions ≤ m + 8, by adding
the appropriately shifted sequence again, with opposite sign. So, in position
m + 9 we will get a digit ≤ −1. Going on similarly, finally in all positions
≥ m + 1 here will be digits ≤ 0, but in several places even < 0-s will appear.
This expansion-sequence gives exactly 1, so (4.7) holds.

c) Let us find now in expansion (4.5) the first digit, which can be changed.
According to point b), this can be only a 1, and from point a) it follows that it
must be included in those n− 1 digits, which are followed by 9 pieces of digits
0. Let us consider the m-th such digit, which is ε10m−1. Let us introduce the
concept of m-th expansion, for the one in which we leave ε10m−1, and instead of
it we write in the appropriately shifted version of (4.5) (starting from position
10m); getting so an additional 1-expansion. Then the m-th expansion is unique
by fixing the first 10m−1 digits of it, and we have no other 1-expansions besides
(4.5) and the m-th expansions.

The original idea of the theorem can be adapted to the systems, where k = 2.
Let us define β with the equation

(4.8) 1 =
∞∑

i=1

εiΘi = 0.29(091)n−1(0a001)∞

(the role of a is the same, as above). Then e.g. for n = 2 the following substi-
tution can be carried out:

block 1. block 2. ”mixed” part repeating part
222222222/ 0000000001 0a0010a (0010a)∞

+ 2222222220 0000000 (010a0)∞

222222221 2222222221 0a0010a (011aa)∞

It is not hard to prove that other expansions do not exist.

Now we formulate this result even generally. For simplicity, let us remain
only by cases n = 2.

Theorem 4.2. For all integers k ≥ 2 we can find 2ℵ0 base numbers β in
(k, k+1) so, that in the systems number 1 has exactly two different expansions.
The expansions are given by (4.9). Here

(4.9) 1 =
∞∑

i=1

εiΘi = 0.k9091(0a001)∞,

where the role of a is the same, as it was above.



254 G. Kallós

Proof. Analogously to the original theorem, following points a), b) and c)
above.

a) If in an expansion (4.9) there is a digit d (m-th position; here 1 ≤ d ≤ k,
but we need only cases d = 1 and d = k), and in the subsequent eight positions
somewhere we have at least one digit d, then εm cannot be changed into d− 1
(without changing the preceding digits), because

(4.10) 0.ε1ε2 . . . εm−1(d− 1)k∞ < 1.

Let εm = d− 1, and from the m+1-th position let us add the shifted digit-
sequence (εi) to the original one. Then, in each of the next eight positions
there will be at least a k-value digit, but at least in one place we will have a
digit k + d. Here we replace again, and add the shifted sequence. Going on
similarly, finally in all positions with indices n ≥ m + 1, we will have at least a
k-value digit, but in several places even greater value appear (at most n ·k−1).
This sequence generates exactly 1, so (4.10) really holds.

b) If in an expansion (4.9) there is a digit 0 (m-th position), and in the
subsequent eight positions somewhere we have at least one digit 0, then we
cannot change εm into 1 (without changing the preceding digits), because

(4.11) 0.ε1ε2 . . . εm−110∞ > 1.

Let be εm = 1, and from the m+1-th position let us add the shifted sequence
(εi) to the original one, but with opposite sign. Then in the following eight
positions −k-value and −k+1-value digits will appear, respectively. Continuing
the elimination results, that in every position ≥ m + 1 there is a digit ≤ 0, but
in several positions digits even < 0. This expansion-sequence gives exactly 1,
so (4.11) really holds.

c) Let us find now in expansion (4.5) the first digit, which can be changed.
According to points a) and b), this can be only a k, and from a) it follows that
this must be only that, which is followed by nine digits 0 (so, this digit is in
position 9). Based on the facts mentioned above, this digit can be decreased
by 1, and after it (starting from position 10) we can write in the appropriately
shifted version of (4.9); thereby getting an additional 1-expansion.

This clearly can be carried out; if, however, the first 9 digits are fixed, then
the expansion is already uniquely determined, so we cannot write down a new
expansion (additionally to the two already existing). �

We note that base numbers determined by expansion (4.9) are all close to
k + 1 (roughly by 1-2 thousandth below it).
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5. Number of expansions – general

After the investigation of 1-expansions now our next objective is – for in-
tervals of base numbers – to characterize comprehensively (or possibly: even
to give) the number of expansions of elements in [0, L].

Let us look into the Eggan-Eynden paper again ([6], 1966)! As we will see,
the following important result can be considered as a ”first arrival”, leading up
to the forthcoming far-reaching investigations.9

Theorem ([6]/2). a) For bases β > G there exist infinitely many numbers,
which have only one β-based expansion.

b) For bases G ≥ β(> 1) every positive number has infinitely many different
β-based expansions.

The original proof of the authors is a constructive one, in fact they produce
infinitely many proper numbers/forms ([6]).

a1) Let first be G < β < 2. Then number ξ1 = 0.(01)∞ has only one expan-
sion. Let us assume the contrary, that another expansion exists, and this can
be written in form ξ1 = 0.a1a2a3 . . . . Then from ξ1 < 0.1 we have a1 = a2 = 0.
Using this ξ1 = 0.(01)∞ = 0.00a3 · · · ≤ 0.001∞. Let us subtract 0.00(01)∞

from both sides, this results 0.01 ≤ 0.0(01)∞. However, by multiplying β, from
this derives ξ1 ≥ 0.1, which is a contradiction.

a2) If β > 2, then number ξ2 = 0.1∞ has only one expansion, too. Let us
suppose the contrary, that another expansion exists, in form ξ2 = 0.a1a2a3 . . . .
We may assume that a1 	= 1. If a1 = 0, then 0.0k∞ > 0.1∞, so 0.0(k−1)∞ > 0.1
must hold; whilst if a1 = 2, then 0.1∞ > 0.2, so 0.01∞ > 0.1 is necessary. But

0.01∞ ≤ 0.0(k − 1)∞ =
(k − 1)/β2

1− 1/β
=

k − 1
β2 − β

<
β − 1
β2 − β

=
1
β

= 0.1(β),

i.e. we have surely a1 = 1.
The original proof in parts a1) and a2) ends with the conclusion that forms

β−iξ1 and β−iξ2 are even unique (∀i ≥ 1).

b) Then β ≤ G, so k = 1. To the examined number ξ let us consider ξ,
where ξ = L − ξ = 0.11 · · · − ξ. Their expansions are complements of each
other, so these two numbers have the same number of expansions.

The authors distinguish in this section three cases as follows.

b1) All expansions of number ξ1 are eventually constant (1 or 0).

9Their investigation was carried out on the whole number line, not in [0, L], but – as we
have already mentioned – this does not influence the point.
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Let us assume that ξ1 = 0.a1a2 . . . au1. Then based on lemma presented in
Section 2, we can write ξ1 = 0.a1a2 . . . au0b1b2 . . . , too; here the bi-s are not all
zero. So, for ξ1 we have found an expansion, where the index of the constant
part is greater than before. Repeating this procedure, the constant part can
be pushed out arbitrarily far away.

When the expansion of ξ1 ends with 1∞, then we work similarly with ξ1.

b2) Number ξ2 has an expansion, in which parts 100 or 011 appear infinitely
many times.

Let us assume, that in the expansion part 100 appears infinitely many
times (in the opposite case we work with ξ2, in the same manner); and ξ2 =
0.a1a2 . . . au100au+4 . . . . From β ≤ G it follows 0.011 ≥ 0.100, so we can write
even ξ2 = 0.a1a2 . . . au0b1b2 . . . (for some bi-s). This change can be carried out
in infinitely many places, and by this we always get new expansions.

b3) Number ξ3 has an expansion, which ends with (01)∞.
From β ≤ G it follows 0.1 ≤ 0.(01)∞. Thus, 0.(01)∞ = 0.1b2b3 . . . , for some

bi-s. In the expansion of ξ3 this change can be carried out in infinitely many
places, and by this we always get new expansions.

To the points we add the following comments.

a1) In the topic of numbers with unique expansions – cases β ∈ (G, 2) –
the first exhaustive, revealing investigation was carried out by Z. Daróczy and
I. Kátai ([3] and [4]; 1993 and 1995). They called the numbers with unique
expansions (and the sequences representing them) univoque. In paper [3] they
proved that if β ∈ (G, q(2)) (here base q(2) is determined by 1 = 0.1101, q(2) ≈
≈ 1.7549), then for each base the following univoque elements can be found:
number ξ1 = 0.(01)∞ above and its variants 0.0 . . . 0(01)∞ and 0.1 . . . 1(01)∞,
respectively. (This is a so-called stable segment.)

a2) The extension of the investigation of univoque numbers for cases β > 2
was started a few years later (I. Kátai and G. Kallós). Results formulated in
paper [11] also prove that if β ∈ (2, S), then only number ξ2 = 0.1∞ presented
above and its variants 0.0 . . . 01∞ and 0.2 . . . 21∞ are univoque. If β ∈ (S, q′(2))
(here base q′(2) is determined by 1 = 0.2102), then already ξ2 = 0.(02)∞ can
be an appropriate ”raw material” and so on.

The result of point b) was improved significantly in 1990 (P. Erdős, I. Joó
and V. Komornik, [9]). Based on their former result on 1-expansions (Theorem
[7]/1; above), the authors developed here the investigation to the whole interval
[0, L] in cases 1 < β < G. With this we can say that the analysis is now – from
such a point of view – complete for the given bases:

Theorem ([9]/3). If 1 < β < G and 0 < x < L, then number x has 2ℵ0

(continuum) different expansions.
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Here – besides the original proof ([9]) – it is worth seeing the elegant,
modified new version, presented by V. Komornik in 2011 ([15]).

The result of this theorem cannot be transformed automatically to cases
either β > G or β > 2, since here we can always find numbers with only
one expansion, too. However, besides this it is true, that the existence of the
continuum many expansions fails only in ”relatively few” cases. For bases β < 2
the proof was given by N. Sidorov, in 2003:

Theorem ([18]/1). For arbitrary fixed bases β ∈ (1, 2) – so essentially: for
bases β ∈ [G, 2) – almost every number x ∈ [0, L] has continuum many different
β-based expansions.

The same result was proven a few years later generally – with an ergodic
approach – for arbitrary β > 1; including even the cases β > 2 (K. Dajani,
M. de Vries, 2007, [2]).

N. Sidorov gave even a complete classification for base numbers β ∈ (1, 2)
following that how many such elements can be found in [0, L], which have no
uncountably many different expansions.

Theorem ([19]/3.6). The set of such x-s in [0, L] which have less than con-
tinuum different expansions...

• ... consist of only the endpoints 0 and L, when β < G;
• ... is countably infinite – the subset of Q(β) –, if G ≤ β < β∗;
• ... is uncountable, with Hausdorff dimension 0, when β = β∗;
• ... is uncountable, with Hausdorff dimension > 0, but < 1, if β∗ < β < 2.

Here number β∗ is the so-called Komornik–Loreti-constant, with β∗ ≈
1.7872 ([15]).

In Figure 3. we present the intervals corresponding to the points of the
theorem, with appropriate colouring (only 0 and L – dotted blue; countably
infinite – dashed red; continuum with Hausdorff dimension 0 – lime big dot;
continuum with Hausdorff dimension 0 < DH < 1 – brown). On the x-axis we
can see bases β, the inner separating points are G and β∗, respectively.

Figure 3. Numbers in [0, L] with less than continuum distinct expansions
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[7] Erdős, P., M. Horváth and I. Joó, On the uniqueness of the expansions
1 =

∑
q−ni , Acta. Math. Hungar., 58 (1991), 333–342.
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