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Abstract. We give all solutions of those multiplicative functions f,g
which satisfy

f(n2—|—m2—|—a+b) =g’ +a)+g(m®>+0b) forall n,meN,
where a, b are non-negative integers with a + b > 0. It is proved that if
g(a+36) +4g(a+25) —gla+9) — g(a+4) —3g(a+ 1) #0,
then
fn)=n and g(m*+a)=m>+a, gm*>+b)=m>+b

for all n,m €N, (n,2(a+0b)) =1

1. Introduction

Let P, N, C be the set of primes, positive integers and complex numbers,
respectively. An arithmetic function f : N — C is said to be multiplicative
if (n,m) = 1 implies that f(nm) = f(n)f(m). Let M denote the class of all
multiplicative functions f with f(1) = 1. For each non-negative integer a let

E,={n*+a|neN}.
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C. Spiro said that £ C N is an additive uniqueness set for M if there is
exactly one element f € M which satisfies

f(n+m)= f(n)+ f(m) forall n,meE.

In 1992, C. Spiro [7] showed that E = P is an additive uniqueness set for
M. In 1997, J.-M. De Koninck, I. Kédtai and B. M. Phong [I] proved that if
f e Mand

fn?+p)=f(*) +f(p) forall ncN, pecP

holds, then f(n) = n for all n € N. Recently, in [6] we improve this result for
two multiplicative functions, namely it is proved that if f, g € M satisfy

flp+m?) =g(p) +g(m?) and g(p®) = g(p)?

for all p € P and m € N, then either
flp+m?) =0, g(p)=—1 and g(m?) =1

for all primes p and m € N or

f(n)=n and g(p) =p, g(m?) =m’

forallp e P, n,m € N.

In the following we say that A, B C N is a pair of additive uniqueness sets
(AU-sets) for M if f € M satisfying

fla+b)= f(a)+ f(b) forall a€ A and b€ B,

implies f(n) = n for all n € N. We are interested in characterizing all non-
negative integers a and b such that A = E, and B = E} are AU-sets. It is
proved in [4] that if a function f € M with f(4)f(9) # 0 and k € N satisfy the

condition
f?+m?+k)=f(n®)+ f(m* +k) forall n,meN,

then f(n) = n for all positive integers n, (n,2k) = 1. K.-H. Indlekofer and
B.M. Phong [2] proved that if £ € N and f € M satisfy f(2)f(5) # 0 and

fRP+m®+k+1)=f(n®+1)+ f(m*+k) forall n,meN,

then f(n) =nfor alln € N, (n,2) = 1.

Our main purpose in this paper is to give the answer for the general case.
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Theorem. Assume that non-negative integers a, b with a + b > 0 and
fy 9 € M satisfy the condition

(1) f(®+mP+a+b)=g(n®+a)+gm®>+b) foral nmeN.
Let

S, =g(n*+a) and A= ﬁlo(s6 + 485 — S3 — Sy — 351).
Then the following assertions are true:
I. Ae{0,1}.
II. If A=1, then
(2) gm*+a) =m?+a, gm* +b) =m? +b for allmeN
and
(3) f(n)=n forall neN, (n,2(a+0b)) =1

III. If A =0, then there is a K € {1,2,3} such that S,+x = S, for all
n € N.

L1, IfK =1, then
(f:g) € {(anQO)a (fl,gl)v (f2a92)}7

where (f;,g;) are given in Table 1:

1 g:(n? + a) gi(n? +b) filn? +m? +a+b) for

0] go(n®+a)=01go(n®>+b)=0] fo(n>+m?*+a+b)=0|VnmeN
1g(n?>+a)=0]gi(n®>+b)=1| fin>+m?>+a+b)=1]Y¥n,meN
2 gon?+a)=11]g(n?>+b)=0| fo(®>+m?>+a+b)=1]Vn,meN

Table 1
ML2. IfK =2, then
(f,9) € {(fs,93), (f1,94), (f5,95), (f6,96) },
where (f;,9:) are defined as
9i(n* + a) = aixa(n) + B, gi(n® +b) = aixa(n) + 7,

fi(n2 +m’+a+ b) = aixa(n) + a;x2(m) + 6;

and xz2(n) is the principal Dirichlet character (modulo 2). The values of
a;, 3,7, 0; are given in Table 2:
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¢ (fiagz) Q; Bi i d; i the case

31(fs,93) | ¢ |1—=c| O |1—¢ ceC (a,b) = (0,0) (mod 2)

41 (fa,94) | ¢ 0 —c| —c | ceC,c#0| (a,b)=(0,1) (mod 2)

51 (fs,95) | ¢ —cC 0 —c | ceC,c#0 || (a,b) =(1,0) (mod 2)

6| (fe,96) | ¢ 1 —c|1l—c|ceC,c#0| (a,b)=(1,1) (mod 2)
Table 2

Here we write (a,b) = (z,y) (mod m) if a =x and b =y (mod m).
L3, If K =3, then
(f,9) € {(f7,97), (fs;98), -+, (fi1,911) },
where (f;,g;) are defined as
g9i(n* + a) = ixs(n) + Bi, gi(n® +b) = aixs(n) + v,

fi(’l’L2 + m2 +a+ b) = Oéﬁ(g(ﬂ) + Oéng),(m) + 51

and xs(n) is the principal Dirichlet character (modulo 3). The values of
i, 3,7, 0; are given in Table 3:

[ (fisgi) | i | Bi | vi | 6 in the case

T (frg) |21 |1 ]2 (a,b) = (1,1) (mod 3)

8 | (fssgs) | -2 1 [ 2 | 3 | (ab)=(12),(21) (mod3)

9 | (forg0) | I | =11 0 | -1 (a,b) = (2,3) (mod 3)

10 | (fi0,910) | 1 | O | =1 ] 1 (a,b) = (3,2) (mod 3)

1| (fi,gn) | -2 3]0 3 (a,b) = (3,3) (mod 3)

Table 3
2. Lemmas
We shall use the following results:

Lemma 1. Let a and b be non-negative integers and F,G be arithmetical

functions, for which the condition

(4) F(n*+m?+a+b)=Gn*+a)+G(m?+b)
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is satisfied for all n,m € N. For each j € N let Sj := G(j> +a). Then

(5) Sn+12 = Sn+9 + Sn+8 + Sn+7 - Sn+5 - Sn+4 - Sn+3 + Sn
holds for all n € N and
S7 = 255 - 51,

Sy = 255+ 54 — 254,
Sy =86+255 — S — 51,

(6) B
S0 = Sg+ 355 — S3 — 25,
S11 =86 +455 — 53 — Sy — 254,
S1o = Sg+ 4S5+ Sy — Sy —485;.
Proof. This is Lemma 1 in [5]. ]

Lemma 2. Let a and b be non-negative integers and F,G be arithmetical
functions satisfying the condition (4). Let

1

120
-1

Iy ::?(Sﬁ — 485 + 454 — S5+ 352 — 351),

(Sﬁ + 455 — S3 — Sy — 3S1),

-1
Fg ::?(Sﬁ - 2S5 + 2S3 - 52),

1

| ::Z(SG — 284 — S5+ 52+ 51),
1

F5 I:g(Sﬁ — 55 - 53 - SQ + 251)7

1
I :ZZ(SG — 4855 +2544+ 353 + 5o + Sl),

By :=T'ax2(k) + sxs(k) + Taxa(k —1) +Tsxs(k) + T,

where x2(k) (mod 2), x3(k) (mod 3) are the principal Dirichlet characters and
X4(k) (mod 4), x5(k) (mod 5) are the real, non-principal Dirichlet characters,
i.€e.

x2(0) = 0,x2(1) = 1, x3(0) =0, x3(1) = x3(2) = 1, x4(0) = x4(2) =0,
xa(1) =1, xa(3) = —1, x5(2) = x5(3) = =1, xs5(1) = x5(4) = 1.
Then we have

(7) Sy = Ak*> + By, for all k€ N.
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Proof. From the definition of By, we shall compute the values of By for

k=1,2,---,12. We have

1 1 1

By — ——
! 120°6

30 120

1

41
S5+ —S53+—55+ ESl,

120

1 2 1 31 1
By = ——S5 — — — el —
2 3076 T 155 T 3078 T 3% T gt

3 3 43 3 9
Bz = _%Sﬁ — TOSS + ESg + ZOSQ + ESh

2 8 2 2 2
B = —— —_— — 8- J— —
4 1556 1555+S4+ 1553+ 1552+ 5517

5 1 )
B5 - _ﬂSG + 655 + ﬁSS +

5
So + gsly

7 6 3 3 9
Bs = —Sg — -85 + —S5 + —8y + —5
6= 1076 "5 T g7 T 72 T pn

49 11 49 49 9
B, = — — = = =~
7 12076 T 305 T 0B 02 T
8 2 8 8 2
By = ——S5— —Ss4+ 84+ —8s+—8,— =8
8 1576 g TRt st o2 T 5o

13 7 27 13 41
By = -85 — — e, = =
T T T T R R

1 1 1 5 1
Big==S;— =85 — = = —
10 656 3S5 653+652+2Sh
1 1 1 1 41
Buii= =155~ 35% T 130 T 132 T 30

1 4 6 1 2
Biag = —=5 — = - -89 — =51
12 556 5S5+S4+ 53+552 551

5

Consequently, we obtain from (6) and A = 135(S + 455 — S3 — S2 — 351) that

A

K>+ B, =S, forall 1<k<6,
7?4+ By =285 — S = Sy,
-82+38:255+S4—251258,

- 102 + Big = Sg + 355 — S3 — 251 = Sio,

A
A
A-9% 4+ By = S5+ 2S5 — Sy — S1 = Sy,
A
A

112 4+ Byy = S + 4S5 — S5 — Sy — 28, = Si1,
A~122—|—Blg=S6+4S5+S4—S2—4S1:Slg.

Therefore, we proved that (7) holds for 1 < k < 12.

Assume that Ak% + By, = S, holds for n < k < n + 11, where n > 1. Then

we deduce from (5) that
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Sn+12 = Snto + Snts + Snt7 — Snts — Snya — Snt3z + Sn =
:A[(n+9)2+(n+8)2+(n+7)2 —(n+5)?% - (n+4)* - (n+3)2+n2]+

+ [Bn+9 + Bn+8 + Bn+7 - Bn+5 - Bn+4 - Bn+3 + Bn -
= A(?’l + 12)2 + Bn+127

which proves that (7) holds for n 4+ 12 and so it is true for all n. In the last
relation we have used

Bn+9 + Bn+8 + Bn+7 - Bn+5 - Bn+4 - Bn+3 + Bn =

n+9 n+6
=To Y e - Y xalk) + )|+
k=n-+6 k=n+3
- n+9 n+5
5] D0 k) = D0 (k) + xa(m)]+
T k=n+7 k=n+3
- n+9 n+6
0] Y k-1 = Y xalk - D+l —1)]+
" k=n+6 k=n-+3
_ n+10 n+6
+T5[ D x5t = Y ws(k) — xs(n+10) + x5 +2) + xa(n)| +T =
" k=n+6 k=n-+2

= FQXQ(H) —+ F3X3(n) + F4X4(n — 1) + F5X5(7’L + 2) + F =
= Lax2(n +12) + Iaxa(n + 12) + Laxa(n + 11) + Tsxs(n + 12) + T' = Byyaa.

Lemma 2 is proved. |
3. Proof of the parts (I) and (II) of Theorem

Proof of (I). Assume that non-negative integers a, b with a +b > 0 and
f, g € M satisfy the condition (1). For each £ € N, let

Ii'={neN | 2n+1,40+1)=1}.
It is easy to show that
2
[n2+a} {(n+1)2+a} = [n(n+1)+a} +a

and
(n*+a,(n+1)2+a)=1 forall ncl,.
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Now we apply Lemma 2 with F' = f and G = g. Then for n € I,, we have

g(n*+a)g(n+1)%+a) =g|(n*+a)((n+1)%+ a)} =g Kn(n +1)+ a)2 + a} ,
which proves
(8) SnSnt1 = Spnit)4a forall nel,,
therefore we get from (7) that
(9)  (An?+ Bo)(A(n + 1)* + Buy1) = A[n(n + 1) + a* + Bunit)ta
holds for all n € I,. By the definition of By, we have
Byigo = By forall keN,

consequently
‘Bk| S L := max (|Bl|, ey |B60|)

Thus, (9) implies

(4+ %) (4+ %) = A1+ n(na+ 1)]2+ in(:i);)z’

which with n — oo gives
A?=Ajie. Ae{0,1}.

Proof of (IT). A = 1. We obtain from (9) that

(Bn + Bpy1 — 2a)n* +2(By, — a)n + By, + By By1 — Bung1y+a — a° =0,
holds for all n € I,. For each n € I; and m € N let

N(n,m) :=60(4a + 1)m + n.

Since N(n,m) € I, and By, m) = Bn, we infer from the above relation that
(Bn+Bn+1—2a)N(n,m)*+2(B,—a)N (n,m)+By,+B,Bni1—Byni1)ta—a” =0
is satisfied for all n € I,, m € N, which implies that

B,=a forall ne€l,.

Let

J:={jeN]|(2j+1,60)=1}={3,5,6,8,9,11,14,---}.
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For each j € J let
n; :=60z; +j (z; €N)

such that
an+1:120xj+(2j—|—1) € P and 2nj+1>4a—|—1.

Thus, n; € I,, and so By, = a for all j € J. Since the sequence {Bj}72, is a
periodic (modulo 60), therefore

Bj = BGOmj+j = an =aqa for all j e

Consequently
(Bs =) 7%56*%S5+%S3+%52+%Sl =a,
(Bs =) —%Sa+%55+%53+%52+251 =a,
(Bg =) 11056_ 2554-%534-%524-1%51 =a,
(Bs=) —5=59 — &5+ S1+ 53+ %% — 251 =a,
(B11 =) —117056—%55+ﬁ1053+ﬁ52+%51 =a
(A :) %2()56+3*1()S5717§()537ﬁ1()5v27$51 =1.

The solutions of this system are:
Sy =1+4a,8 =2%+a,58 =32 =0a,5, =4°4a,55 = 5°4a and S = 62+a.
These relations with the next lemma prove (II) of our theorem. ]

Lemma 3. (Theorem 1, [B]) Assume that non-negative integers a, b with
a+b>0and f, g € M satisfy the condition (1). If either

g(i®+a)=i+a or g(i*+b)=4"+b for i,j=1,2,....6

then
gm*+a) =m?+a, gm* +b) =m? +b for allmeN

and
f(n)=n foral neN, (n,2(a+0b)) =1

The proof of (II) is completed. ]
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4. Proof of the part (III): A = 0.

From (7) we have

S, =g(n?*+a)=DB, forall neN.

Since 1
A= m(56+455 —S3— .59 *351) =0,
we have
S¢ = —4S55 + S3+ Sy + 357,

consequently

1

S, = 5(255 — Sy — SQ)XQ(TL) + (255 —S3 — S1)X3(n)+

1
(10) + 5(—255 — Sy + 82 +251)xa(n — 1) + (=55 + S1)xs(n)+

1

+ 5(—455 + S4+ 253 + So + 251).

It is obvious that S, 160 = 5, for all n € N.

Lemma 4. Let a and b be non-negative integers and f,qg € M satisfying the
condition (1). Assume that K € N such that

Sntrx =Sn forall neN.

Let
J(K):={jeN|(2j+1,K,404+1) =1},
LK) = {(u,v) | u,v €N, 2u+1,K,4(v* +a+b)+1) =1}
and
D:=gb+1)—gla+1).
Then
(11) SiSj41 = Sj(j+1)+a for all j € Jo(K),

(12) (Sj+ D)(Sj+1+ D) = Sjj41+o + D forall j € Jy(K),
and
(13) (Su + Sy + D) (Su+1 +5, + D) = Su(u+1)+v2+a+b +S,+D

for all (u,v) € L(K).
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Proof of Lemma 4. First we prove (11). For each j € J,(K) we have
(2j+1,K,4a+ 1) = 1, consequently there is a z; € N such that

(2Kz; + (27 +1),4a+1) =1

Let nj := Kz; + j. Then (2n; +1,4a + 1) = 1 and so n; € I,. From (8) we
have
Snj Snj-‘rl = Sn]-(n]-+1)+a7

which with n; = j (mod K) proves (11).
Now we prove (12) and (13). First we deduce from (1) that
f(n? +m? +a+0b) = g(n*+a) + g(m? +b) = g(n® +b) + g(m* + a),
consequently
g +b) —gn®+a)=gm*>+b) —gm?>+a)=gb+1)—gla+1):=D
for all n,m € N. Then

(14) g(n?>+b)=9,+D forall neN,
fm>+m?+a+b)=8,+8S,+D forall n,meN.

For each j € J,(K) we have
2/ +1,K,4b+1) =1 and (2Kz; + (2j +1),4b+1) =1

for some z; € N. As we seen above, for n; := Kx;+j, we have (2n;+1,4b+1) =
=1 and
(n§+b,(nj +1)2+b) = (2n; +1,4b+1) = 1.

Since g € M, we obtain

9(n? +)g((n; + 12 +) = g (n2+0) ((n; + 12 +0)] = g (s s +1) +8) 1],

which with (14) and the fact n; = j (mod K') proves (12).

Now we prove (13). For each pair (u,v) € L(K), there is a z,, € N such
that (2Kz, +2u+1,4(v? +a+b) +1) = 1. Let n, = Kx,, + u. Then

(2 +v2+a+b,(n,+1)*+0v* +a+b)=
=2+ +a+b2n,+1)=2n, +1,400* +a+b)+1) =
= 2Kz, +2u+1,4(0* +a+b) +1)=1
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and so f € M implies
f(ni—kvz+a+b>f((nu+1)2+vz+a+b) =
= f((n§+v2+a+b)((nu+1)2+v2 +a+b)) =
:f{(nu(nu+1)+v2+a+b)2+v2+a+b]

This with (14) shows that
(Snu + 8, + D) (snuﬂ + 8, + D) = Sy (mut 1) bash + Sy + D,
and so (13) is proved because the condition 1, = u (mod K) implies
Sn, =Sy and Sy (n,+1) 402 ratb = Su(ut1)+v2tath

Lemma 4 is proved. |

Lemma 5. Let a and b be non-negative integers and f,qg € M satisfying the
condition (1). Let S, = g(n* +a). If Spy1 = Sy for alln € N, then

(15) (f,9) € {(fo,90), (f1,91), (f2, 92)},
where (fo,90), (f1,91), (f2,g2) are given in Table 1.
Proof. By our assumption, we have S,, = s for all n € N.
Let n € N such that
@n+14da+1)=2n+1,4b+1) = 2n+ L4(a+b+1)+1)=1.
Then we have

> +a,(n+1)%+a)=1,n*>+b,(n+1)>+b) =1

and
n*+a+b+1,(n+1) +a+b+1)=1,
consequently
Snsn+1 = Sn(n+1)+av
(S'n, + D)(STL+1 + D) = Sn(n+1)+a +D
and

(Sn 4+ 81+ D)(Sny1 + S1+ D) = Syns1)tatbr + 51+ D.
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Since
g(n*+a)=s, gtm*+D)=s5+D

and
f(n?+m?+a+b)=2s+D forall n,meN,

we get from the above relations that
s?=5 (s+D)?=s+D and (2s+D)*=2s+D.
It is clear to see that all solutions of this system are:
(s, D) € {(0,0),(0,1), (1, =1)}.

Thus, (15) is true and Lemma 5 is proved. |

In the following we say that the sequence {S,}22, is trivial, if there is a
number s such that S,, = s for all n € N.

Lemma 6. Let a and b be non-negative integers and f,g € M satisfying the
condition (1). Let S, = g(n* +a). If Spia = S, and {S,}°, is not trivial,
then Syio = Sy, is satisfied for alln € N and

(f,9) € {(f3,93), (fa,94), (f5,95), (f6,96)},

where (f3,93), (f1,94), (f5,95): (f6,96) are given in Table 2.

Proof. From our assumption and Lemma 4, we have K = 4 and (11)—-(13)
hold for all j,u,v € N. Thus, we obtain from (11) and (12) that

So(S3 — S1) = 5253 — 5152 = Sga2 — Sat2 =0,
S4(S3 —S1) = 5354 — 5455 =5, —5,=0
and
(Se + D)(S5 — S1) = [(S2 + D)(S3 + D) — D] — [(S1 + D)(S2 + D) — D] =
= Spr2 — Spy2 = 0.
We shall prove that
(16) Sy=5, and Sy =Ss.

Assume that S3 # S1. Then the above relations imply that Sy = S, = 0 and
D = 0. By applying (13) with (u,v) = (3,1),(3,3),(4,1) and (u,v) = (4,3),

we have

Satbtz = (S3+ 51+ D)(S4 + 51+ D) — (S1+ D) := 1,
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Sat+br2 = (93 + 93+ D)(Ss + S5 + D) — (S3 + D) = a2,
Sa+b+2 = (54 + S1 + D)(251 + D) — (51 + D) =23

and
Satbre = (54 + S3 + D)(Sl + S35+ D)—(S5+ D) = 24.

Consequently
(S3—51)(S1+2S3+S4+2D—1)=x1 —x2 =0,

(S3—51)(S1+S14+D)=x1 —23 =0,

and
(ngsl)(51+53+D71) =x4—x1 =0.

SinceSg;éSl, SQZS4ZD=O, wehave253—1:0,51 20,53—1207
which are impossible. Thus, the first assertion of (16) is proved.

Assume that S5 = S;. Now we apply (13) with (u,v) = (1,2),(1,4),(3,2)
and (u,v) = (3,4) to get

Sa+b2 = (51 + 82+ D)(252 + D) — (S2 + D),
Sa+b+2 = (51 + Sy + D)(SQ + 5S4 + D) - (54 + D),

Sa+b = <S3 + Sy + D)(S4 + Sy + D) - (52 + D)

and
Satb = (S3+ 84+ D)(284 + D) — (S4 + D).

The first two relations imply that
(Sy —S4)(Ss +2S2+ S +2D —1) =0
and the last two equations give
(S2 —84)(284+ S22+ S1+2D—1) =0.
Since
(Sg—S54)(284+S24S1+2D —1)—(So—S4)(S4+2S2+51+2D—1) = (So—54)?,
we have S4 = Sy. Thus, (16) is proved.

In the following we may assume that (16) is true. Then the sequence
{Sp}52, satisfies the condition S, 12 = S, for all n € N and we infer from
(10) that

Sp = (=52 + S1)x2(n) + 52 € {S1, S2},
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where S7 # Sa, because the sequence {5, }22; is not trivial. We obtain from
(11)-(13) that
Sq = 5159,8, = (Sl + D)(SQ + D) —D

and
Sotp = (S14+S52+D)(2524D)—So—D, Seip11 = (S14+S2+D) (2514 D)—S1—D.
The solutions of S,, are given in the parities of a and b.

(Ia) If (a,b) = (0.0) (mod 2), then (f,g) = (fs,95)-

In this case, (Sa, Sb, Satbs Satb+1) = (52,52, 52,51) and so

Sa:SISQ :SQ
Sb:(Sl+D)(SQ+D)*D =55
Satb = (S1+ 82+ D)(2S2+D) - S, —D =5,

Sotbr1 = (S1+ S+ D)(251+D)—-S;—D =85;.
This is equivalent to

(81— 1) —0
(Ss+ D)(S1+D—1) -

(252+D)(51+52+D—1) =0
(25, + D)(Sy + Sa+ D —1) =0,

and the last two equations with the condition S; # So imply that S; + So +
D—-1=0. If S =0, then D(D—1) =0 and S; + D — 1 = 0, which imply
that DS; = 0. But S; # S2 = 0, we have D = 0 and Sy = =D +1 = 1.
Thus we proved that So = 0 implies (51,52, D) = (1,0,0). If Sy # 0, then
Sy =1land So+ D = 0. Thus, g(n>+a) = S, = cx2(n) + (1 —¢) = g3(n? +a),
g(n? +b) = S, + D = cxa2(n) = g3(n? +b). The case (Ia) is proved.

(Ib) ]f (aab) = (0’ 1) (mOd 2)) then (f7 g) = (f4ag4)'

Assume that (a,b) = (0,1) (mod 2).
Then (S, Sp, Satbs Satv+1) = (S2,51,51,52) and we have the system of
equations
Sa2(S1—1) =0
(S1+D)(Se+D—-1) =0
(25 +D—-1)(S1+S:+D) =
(2S1+D71)(51+SQ+D) =0.
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Similarly as above, the last two equations imply S1 + Se + D = 0. If Sy # 0,
then S1 =1, (14+D)(Se+D—1) =0, 14+ S+ D = 0, and from this we obtain

—2(D+1)=(1+4+D)(Se+D+1)—-2(D+1)=1+D)(Sy+D—-1)=0.
This implies D = —1 and S; = 1+S55,—1 = S1+ 52+ D = 0, which is impossible.
Thus we proved that S = 0, consequently S; + D = 0 and (S1,S52,D) =

(¢,0,—c), where ¢ # 0. Thus, (S, D) = (cx2(n), —c) and the assertion (Ib) is
proved.

(IC) If (a7b) = (1’0) (mOd 2)} then (fv g) = (f5a95)'

In this case we have (Sq, Sp, Satb, Satbv+1) = (S1,952,51,52), and similarly
we get

51(52—1) =0
(S1+D-1)(Sa+D) =0
S1+Sy+ D =0.

It is obvious that if S; = 0, then So + D = 0. Thus (f,g) = (fs,95) and (Ic)
is true. If S; # 0, then Sy =1, and (S1+D—-1)(14+D)=0,514+1+D =0
imply D = —1, S; = 0. This is impossible.

(Id) If (a” b) = (17 1) (mOd 2)7 then (fvg) = (vagG)'

Assume that (a,b) = (1,1) (mod 2).

Then (Sq, Sp, Satb, Satv+1) = (S1,51,S2,51) and the system of equations
is the following:

S1(S2 — 1) =0
(S1+D)(Se+D—-1) =0
S1+Sy+D -1 =0.

Similarly as in the case (Ia), if S; = 0, then D =0 and Sy = 1. If S; # 0, then
Sy =1and S; + D = 0. Consequently S,, = (S1 — 1)x2(n) + 1, g(n® +b) =
= (51 — 1)x2(n) +1—5; and so (Id) holds for ¢ = 51 — 1 # 0.

The proof of Lemma 6 is completed. |

Lemma 7. Let a and b be non-negative integers and f,qg € M satisfying the
condition (1). Let S, = g(n® 4+ a). If Spys = S, and {S,}2°, is not trivial,
then

(fa g) € {(f7ag7)a Tty (fllagll)}7
where (f7,97),++ , (f11,911) are given in Table 3.
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Proof. Assume that S,135 = S5,. Then K = 3 and it is obvious that 2,3 €
€ J.(3), 2,3 € Jy(3). We prove that

(17) Sy = 51.
Assume that Sy # S1. Then we infer from (11) that
S3(S2 — S1) = 5255 — 535, =5, —5,=0
and
(S5+D)(S2—S51) = [(S2+D)(S5+D)—D]—[(S5+D)(S4+D)—D] = Sp—S, = 0,

which imply S3 =0, D = 0.

On the other hand, we have (2,1),(3,1),(2,2),(3,2) € £(3) and so we get
from (13) that

Satbr1 = (SQ + S + D)(S3 + 51+ D) -5 —D,

Satbr1 = (S3+S1+D)(S1+S1+D)—- 51— D,
Sa+b+1 = (252 + D)(Sg + Sy + D) — Sy —D

and
Satb+1 = (S3+S2+ D)(S1+S2 +D) —So— D

The first and second relations imply that
S1(S2 — S1) = (S3+ 51+ D)(S2 — S1) = Satv+1 — Satv+1 =0
and so
S1=0,S4p+1=(S3+S1+D)(S1+S1+D)—S, —D=0.
This with the third relation gives Sy = %, because
0= Sgtp+1 = (282 + D)(S3+ S2+ D) — Sy — D = 55(25, — 1).

Then the last relation implies

Satbt1 = (S3+ S2+D)(S1+S2+D)— S, —D =

1_
2 4

|

which is contradicted by the fact that S,yp+1 = 0. Therefore, (17) is proved.

Since {S,}52, is not trivial sequence, we assume that S3 # S;. Then we
have
Sp = (51— S3)x3(n) +S3 forall neN,
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where x3(n) is the principal Dirichlet character (mod 3).
One can check by using (11)-(12) that

(18) S, = 85153, S, = (Sl + D)(Sg + D) - D,

furthermore by applying (14) with (u,v) = (2,3), (2,1), we have

(19) Satp = (S1+ 55 + D)(QS;), + D) - S3—D
and
(20) Sa+b+1 = (251 + D)(Sg + Sl + D) - Sl —D.

o First we consider the case when a +b = 0 (mod 3). It is obvious that
(1,2) € L(3), and so

(21) Sarp = (281 + D)* — S, — D.
This with (19) leads to (S1 — S3)(255 +4S51 +3D — 1) =0, and so
(22) 2S5+ 48, +3D —1=0.
On other hand, a + b= 0 (mod 3) gives
Surt — S5 = (255 + D)(Sy + S5+ D —1) =0

and
Sa+b+1 -5 = (251 + D)(Sl +S3+D — 1) =0.

These imply that
(23) S1+S3+D—-1=0.
One can check from (22) and (23) that
S3=8S51+2 and D=-25;—1.

Since a + b =0 (mod 3), there are three possibilities:
(1) (a,b) =(1,2) (mod 3),
(ii) (a,b) =(2,1) (mod 3),
(iii) (a,b) = (3,3) (mod 3).
In the case (i), we have 1 € J,(3), S, = S1 and S, = S1, consequently

31(53*1)251(51+1):0 and 55751*225152*5'3:5@4_2*53:0.

These imply that Sy = —1,and so S3=514+2=1, D= -25; —1=1. Thus
(51,83,d) = (=1,1,1)} and (f,9) € {(fs,9s)}-
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In the case (ii), we also have 1 € Jy(3), S, = S1, S, = S1, and so it follows
that (f,9) € {(fs,98)}-

In the case (iii), we have 1 € J,, consequently S, = S1S3 = S3 and
S% = Sa+2 = S1. It is obvious from S3 7'5 Sl and 5153 = Sg that Sl 7é
0. Therefore, S? = S; implies that S; = 1, and so S3 = S +2 = 3,
D = —25; — 1 = —3. This shows that g(n? +a) = S, = —2x3(n) +3 =
= g11(n* + a), g(n® +b) = —2x3(n) = g1 (n? +b).

o Now we consider the case when a+b =1 (mod 3). We have (1,v) € L(3)
for all v € N, therefore (21) and (22) are true, furthermore (1,3) € £(3) with
(13) gives

(24) Saibio = (S1+ 83+ D)* — S3 — D.
Thus, we have
Satp—5S1 = (S2+S51+D)(2534+D)—S3—S51—D = (255+D—1)(S1+S53+D) = 0,
Saip—S1=(281 + D) —28; — D = (25, + D)(2S; + D — 1) =0,
Satpt1 —S1 =281+ D)(S1+S5+D—-1)=0

and
Sa+b+2 — S3 = (Sl + S5+ D)2 — 283 —-D =0.

It is clear to see from the second and third relation that S; =
have

—%, and so we

(2S5 + D —1)(2S3+ D) =0 and (2S5 + D)(2S5 + D —4) = 0.
Since S3 # S = —%, we have 255 + D # 0. Consequently
2534+ D —-1=0 and 253+D—4=0,
which are impossible.

o Finally we consider the case when a +b =2 (mod 3). Then we have
Sa+p—51 = (S1+53+D)(253+D)—S3—D—S; = (255+D—1)(51+S535+D) =0
and
Satbr1—93 = (2814D)(S3+S1+D)—S3—S1—D = (25:+D—1)(S1+S3+D) = 0,

which show that S; + S3 + D = 0.
Since a + b = 2 (mod 3), there are three possibilities:
(iv) (a,b) = (1,1) (mod 3),
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(v) (a,b) =(2,3) (mod 3),

(vi) (a,b) = (3,2) (mod 3).

In the case (iv), we have S, = S1, S, = S1. It is clear to see that if S; =0,
then S3+ D = 0 and D = 0, consequently S3 = 0, which is impossible. If
S1 # 0, then S5 = 1, which implies that S; + 1+ D =0 and (S; + D)D = 0.
Thus, -D = (S1+1+D)D-D=(S1+D)D=0and Sy =-D—-1=-1.
Hence we have (f,g) = (f7, g7).

In the case (v), we have S, = 5153 = S1, S, = S3 and if S; # 0, then
5153 = 57 implies S3 =1 and S; + D + 1 = 0. We infer from the fact

0=25S,— 953 Z(S1+D)(53+D)—D—S32(51+D—1)(53+D)=
(S1+ D+ 1)(Ss + D) — 2(Ss + D) = —2(S5 + D)

that D = —S3 = —1, which is contradicted by the fact that S; = —(S3+D) = 0.

Thus, S;1 = 0 and S5 = —D,D # 0. Since 1 € Jy(3), we infer from (12)
that

(Sl +D)2 - D= Sb+2 =51, (Sl —l—D)(Sl + D — 1) =0,

which with D # 0 implies that D = 1. Then (S1,S53,D) = (0,—1,1) and
(f,9) = (fo,99)-

In the case (vi), we have 1 € J,,S, = S153 = S3, Sy = S1 and S? = S, 5 =
= S;. Then S;S3 = S3 and S; # S imply S; # 0. Then S? = S; implies
S1 =1, and so S3 + D = —S; = —1. Finally, we infer from

0=5,—-51 = (SlJrD)(SngD)*D*Sl = (SngDfl)(SlJrD) = ,2(51+D)

that D = —S; = —1 and S3 = —S; — D = 0. Thus, we have (51,53, D) =
= (1707 _1) and (f7g) = (flO?QlO)'
Lemma 7 is proved. |

Proof of (III).

Assume that the non-negative integers a and b and f,g € M satisfy the
condition (1), furthermore A = 0 and (10) hold. Let S, = g(n® + a),D =
gb+1)—gla+1).

First we note from (10) that K = 60 and S1; = 51,512 = Sy + S5 — 5.
Since 3,11 € J,(60), we infer from (11) that

(S4 - Sl)(SS - Sl) = S3S4 - 511512 = Sa+12 - Sa+12 =0.

There are two possibilities: (I) S4 # S1,S3 =51 and (II) Sy = 5;.



Additive uniqueness sets for a pair of multiplicative functions

219

Case I: S4 75 Sl,Sg = Sl.
We shall prove that S5 = S;.
One can check from (10) that

Sg = 285 + 54 — 251,89 = =255 + 351, 523 = 255 — 51

and
Sy = =285 + 54 + 254,

which with (11) imply
4(Sy — 51)(S5 — S1) = 523524 — 5859 = Sat12 — Sat12 =0,
because

S23524 — S8S9 = (2S5 — S1)(—2855 + Sy +251)—
- (255 + 84 — 251)(—255 + 351) = 4(54 — Sl)(S5 — Sl)

Thus, we proved that S5 = 5.

Since S5 = S3 = 51, the sequence {5, }°2 ; has the form {S;, Sa, S1, S4, - -

and so K = 4. Consequently, all solutions are given in Lemma 6.

Case II: S, = 5;.
We deduce from (10) that K = 60, furthermore

Sg =255 —S1, Sg=—-255+53+251, Si90=-55+ 52+ 51

and
514:—2S5+52+2S17 515:_S5+S3_Sl'

Since 3,8,9,14 € J,(60), we infer from (11) that
2(S5 — 51)(255 — S5 — S1) = 5354 — SS9 = Sat12 — Sat12 =0

and

(S5 — S1)(S3 — S2) = S9S10 — 514515 = Sat30 — Say30 = 0.
Case (IL.a): Sy =51, S5 # 95;.

In this case the above relations imply

53252 and 55: 53;—51
and so we get from (10) that
_(S1— 5> S1+ 5
(25) Sp = ( 5 )X5(n) + (T) for all neN.
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If So = S then S, = S; for all n € N. Hence by Lemma 5 we get all solutions

of (f,9)-
Assume now that Sy # 5. Since (u,v) € L(5) for (u,v) € {(1,2),(4,1),(2,5)},
an application of (13) for these pairs, we have

Satb+1 = (S1+ 82+ D)(252 + D) — (S2 + D) := y,

Satb+1 = (S4+ 51+ D)(Ss +S1+D) — (S1+ D) =
= (231 + D)(Sl + 55 + D) — (Sl + D) = Y2,

and
Satbt1 = (SQ+S5+D)(83+S5+D)—(Ss+D) = (SQ+S5+D)2—(S5+D) = ys,

which imply

1
Yy — Y2 = 5(52 — Sl)(4SQ + 651 +5D — 2) =0

and )

y1—ys = (52 = 51)(S2 = 51 +2) = 0.
These imply S1 =1 — £ and S5 := —1 — £ consequently we get from (25)
that

D
Sp = xs(n) — 5 for all n e N.
It is obvious that (5,5) € £(5), we get from (13) that

Satb = (S5 + S5+ D)(S¢+ S5+ D) — (S5 + D) =

D

=(2S5+D)(S1+S5+D)— (S5 +D) = 5

consequently 5|a + b. Thus,we have (5,4(a +b+2-3+2%) +1) = (5,41) =1
and (2,2) € £(5). An application of (13) with (u,v) = (2,2) implies

Suip = (Sz+Sa+D)(S3+S2+D)— (Sz+ D) = (-2)(-2)-(-14%) - 5-%

This is impossible.

Case (II.b): S5 = S4 = Sl
The sequence {S,}52; has the form {S7,S5s,53,51, -}, and so K = 12.
We have

(S2 — S1)(S3 — S1) = S9S10 — S556 = Sat6 — Sate =0,
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and so there are two possibilities:
@) (1) SQ = Sl and o (ll) Sg = Sl.

In the case (i), we have
Sp = (S1 — S3)x3(n) + S5 forall neN,

where x3(n) is the principal Dirichlet character (mod 3). Thus, Sp4+3 = Sp
for all n € N, consequently Lemma 7 gives all solutions of (f, g).

Now assume that (ii) is true. Then the sequence {S,}>2; has the form
{51, 852,51,51, -}, and so K = 4. Lemma 6 gives all solutions of (f, g).

The proof of (III) is completed and the theorem is proved. [ ]
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