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Abstract. The compartmental models of disease propagation give only
the number of the infected individuals but do not give any piece of informa-
tion about the locations of them. One of the remedies can be to transform
the system into an integro-differential equation. We give the known basic
qualitative properties of this system: monotonicity, nonnegativity preser-
vation and the formulation of epidemic waves. Then we construct a finite
difference numerical scheme to the system and give conditions for the dis-
crete equivalents of the qualitative properties of the continuous system.
We give a sufficient condition that guarantees the nonnegativity and the
monotonicity, and a condition that is sufficient to extinguish an epidemic
wave. We demonstrate the results on numerical examples.

1. Introduction

One of the most devastating pandemics of the recorded human history was
the so-called Black Death in the 14th century [2]. The plague, coming from
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Asia with rat fleas, reached Europe in Sicily in October 1347. The disease
waved through Europe in four years and reached northwestern Russia killing
about the 50% of Europe’s total population. Countries with lower level trade
relations with their neighbours were less involved in the disease. The greatest
pandemics of the 20th century (and probably also the most devastating in the
history of the human kind) broke out in the shadow of World War II: the so-
called Spanish Flu. In two years, between 1918 and 1919, more than 30 million
people died worldwide, more than those died in the war. One-quarter of the US
and one-fifth of the world were infected with the influenza. The spread of the
disease followed the path of its human carriers: trade routes, mass movements
of the soldiers, etc. [9].

Albeit nowadays the hygiene and the vaccination protect the richer part of
the human population, pandemics occur these days too. For example, the flu
pandemic in 2009-2010 (the so-called swine flu) killed probably 200,000 people
around the world [10].

As it can be seen from the previously listed cases, it is very important
to understand the mechanism of epidemics and try to prevent their outbreak
and propagation by efficient and affordable means (e.g. hygiene, vaccination).
Mathematical models can be the tools to get deeper insight into the behaviour
of an epidemic [1, 3, 7].

The most common and well-investigated mathematical models are the so-
called compartmental models. In these models the population is divided into
some subpopulations, so-called compartments, and the model describes the
behaviour of the disease between these compartments. The most common
compartments are susceptibles (those who can be infected by the disease),
infectives (those who can infect others) and removed (those who cannot be
infected – for example because of immunity or death) but according to the
complexity of the model other compartments can be also introduced: for those
who are in a latent period, or in incubation or in different state of the illness
(e.g. HIV/AIDS) [4].

The first compartmental model was created by Kermack and McKendrick
in 1927 [8]. The model is generally called also as SIR model and is written in
the form of a system of ordinary differential equations

(1.1)
S′ = −aSI,

I ′ = aSI − bI,

R′ = bI,

where I = I(t), S = S(t) and R = R(t) denote the number of infective, suscep-
tible and removed individuals as a function of time t, respectively. The contact
rate a and recovery coefficient b are positive known numbers. This model has
been improved several times taking into the account also births, deaths, la-
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tent periods, reinfections, incubations etc. [1, 3]. All of these compartmental
models assume that the population is homogeneous, that is they do not handle
the different spatial positions of the individuals. There are several methods to
bring also spatial dependence into the picture. In this paper we will investigate
the qualitative properties of the numerical solutions of one of these models. We
extend our previous results [5, 6] to the more realistic homogeneous Dirichlet
boundary case and give conditions for the numerical epidemic wave formation.

The paper is organized as follows. In section 2, we list the remedies for the
inclusion of the spatial dependence into the model (1.1). We will investigate a
system of integro-differential equations model in detail. We list its basic qual-
itative properties. Then, in section 3, the finite difference numerical solution
of the model is given and sufficient conditions are obtained that guarantee the
qualitative properties for the numerical solution. We close the paper with some
numerical tests.

2. Spatial disease propagation models

The compartmental models in their original form are not able to model the
spatial movements of the disease. They give only, for example, the number
of the infective individuals as a function of time but do not give any piece
of information about their location. The locations of the infectives and the
relations between the neighbouring countries played an important role also in
the historical cases listed in the introduction.

Spatial dependence can be included in several ways into the model. For
example, it is possible to divide the habitat of the population into some geopo-
litical regions and write equation (1.1) for each region separately with different
parameters (so-called meta-population model). This system must be extended
with additional equations that describe the transmission of the disease from
one region to the other [3].

Other possibility is to allow the motion of the individuals in the population
[7]. This is done generally by the inclusion of a diffusion process into the model,
that leads to a system of reaction diffusion equations.

As a third possibility, we can make some simplifications as follows: We as-
sume that the speed of the motion of the individuals can be neglected compared
to the speed of the disease and the infection is localized in that sense that a
member of the population can infect only members in its well defined neigh-
bourhood. The last property is brought into the model by integral coefficients
that yields the system of integro-differential equations equipped with suitable
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initial and boundary conditions

(2.1)

S′
t(x, t) = −

⎛⎜⎝ ∫
N(x)

W (|x′ − x|)I(x′, t) dx′

⎞⎟⎠S(x, t),

I ′t(x, t) =

⎛⎜⎝ ∫
N(x)

W (|x′ − x|)I(x′, t) dx′

⎞⎟⎠S(x, t)− bI(x, t),

R′
t(x, t) = bI(x, t),

where now S = S(x, t), I = I(x, t) and R = R(x, t) depend also on the spatial
position and give the densities of the corresponding parts of the population
(see e.g. [7]).

The nonnegative weighting function W is supposed to depend only on the
distance of the points x′ and x, and N(x) denotes a prescribed neighbourhood
of the point x. N(x) represents the neighbourhood of action of the disease.
Only those individuals can be infected from another one located at the point
x who are in this neighbourhood. The intensity of the infection is given by the
weighting function W .

In order to obtain a system of partial differential equations we simplify the
model further. Let us suppose that the spatial dimension of the problem is
one, and that N(x) = [x − δ, x + δ] is a symmetric interval around any fixed
point x. Let us approximate I with its second order spatial Taylor series. In
this way we arrive at the system

(2.2)

S′
t = −S (ϑI + ϕI ′′xx) ,

I ′t = S (ϑI + ϕI ′′xx)− bI,

R′
t = bI,

where

(2.3) ϑ =

δ∫
−δ

W (|u|) du, ϕ =
1
2

δ∫
−δ

u2W (|u|) du

are positive constants that can be computed from the model (namely from
N(x) and W ) directly [7]. We call system (2.2) as spatial SIR system (shorly
sSIR).

It can be an important requirement for the mathematical and numerical
models of any real life phenomenon that the solutions of the models must
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possess some basic qualitative properties of the original process. The basic
qualitative properties of the sSIR system are already known.

Because the birth and death rates are set to be zero in the model, we can
expect the following properties from the density functions.

P1 The size of the population at a given spatial position cannot change in
time. This means that S + I + R must be constant at any given spatial
position.

P2 The number of the susceptibles cannot grow and the number of the re-
covered cannot decrease. That is S is a nonincreasing and R is a nonde-
creasing function of time at any fixed spatial point.

P3 The number of the susceptible, infective and recovered members must be
nonnegative. S, I and R must be always nonnegative if S > 0, I ≥ 0 and
R ≡ 0 are satisfied at the initial time instant.

We showed that under the implicit condition (the condition depends on the
solution itself)

(2.4) ϑI + ϕI ′′xx ≥ 0

properties [P2] and [P3] are true for the solution of problem (2.2). Property
[P1] is true without any restrictions [5, 6].

In [7], the authors show that under certain conditions system sSIR has
wave form solutions. This means, for example, that the function S(x, t) can be
written in the form

S(x, t) = S̃(x− ct),

where S̃ : R → R is the wave profile function that propagates at speed c > 0.
Let us introduce the notations S̃∞ = limξ→∞ S̃(ξ) and S̃−∞ = limξ→−∞ S̃(ξ).
The first value is the density of the susceptibles before the epidemic wave
reaches a given point, and the second one is the density left behind by the
wave. It can be shown that the condition

(2.5) S̃∞ > b/ϑ

(the initial density of the susceptible members must be sufficiently large) is a
necessary condition for the propagation of the disease. In this case S̃−∞ < b/ϑ,
that is the epidemic wave does not leave enough susceptible members back to
be able to sustain a new wave.

In the next section we construct the finite difference solution of (2.2) and
give some sufficient conditions to guarantee the discrete equivalents of the qual-
itative properties.
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3. Finite difference solution of the sSIR model and
its qualitative properties

In [7] system (2.2) was investigated on an infinite domain. In order to con-
struct the finite difference solution of the model we have to prescribe some
boundary conditions. In papers [5, 6] we applied homogeneous Neumann
boundary conditions but now we think that homogeneous Dirichlet boundaries
are more realistic. Homogeneous Neumann condition would mean that there is
no in or outflow on the boundary but in the present case it is not clear what is
the quantity that flows from one place to the other. In contrast, homogeneous
Dirichlet condition can be interpreted as follows. Outside the considered do-
main conditions are incompatible with life, thus the densities must be zero on
the boundaries.

Now we construct the finite difference solution of (2.2) on the spatial in-
terval [0, L] (L > 0) applying homogeneous Dirichlet boundary conditions. We
define a uniform spatial grid ωh = {xk ∈ [0, L] |xk = kh, k = 0, . . . , N + 1,
h = L/(N + 1)} and a time step τ > 0. The functions S, I and R are approx-
imated respectively by the grid functions sn, in and rn at the nth time level
t = nτ . For n = 0, the grid functions are known from certain initial conditions.

Let us consider the explicit Euler discretization scheme

(3.1)

sn+1
k − sn

k

τ
= −sn

k

(
ϑink + ϕ

ink−1 − 2ink + ink+1

h2

)
,

in+1
k − ink

τ
= sn

k

(
ϑink + ϕ

ink−1 − 2ink + ink+1

h2

)
− bink ,

rn+1
k − rn

k

τ
= bink ,

for the indices k = 1, . . . , N , where we define the values with the spatial indices
0 and N + 1 to be zero (homogeneous Dirichlet boundary).

System (3.1) can be rewritten is a more compact form when we consider
the grid functions sn, in and rn as column vectors, we define the product of
two column vectors and the some of a real number and a vector elementwise
and we introduce the matrix notation Q = tridiag(1,−2, 1) ∈ RN×N :

(3.2)

sn+1 = sn − τsnpn,

in+1 = (1− τb)in + τsnpn,

rn+1 = rn + τbin,
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where

(3.3) pn = ϑin +
ϕ

h2
Qin.

The discrete versions of the qualitative properties [P1]–[P3] can be easily
formulated for the numerical solution simply changing the functions S, I and R
to the mesh functions sn, in and rn. Because it is not confusing, we will denote
the discrete properties also by [P1]–[P3].

The next theorem provides a sufficient condition that guarantees the prop-
erties [P1]–[P3]. A numerical scheme that satisfies the properties [P1]–[P3] is
called qualitatively adequate scheme.

Theorem 3.1. Let us suppose that at the initial state s0 ≥ 0, i0 ≥ 0, r0 ≥ 0,
and p0 ≥ 0, moreover assume that

(3.4) τ ≤ min
{

1
b + 2ϕM/h2

,
1

M(ϑ + 2ϕ/h2)

}
,

where M = max(s0 + i0 + r0). Then the finite difference scheme (3.2) with pn

given in (3.3) satisfies the qualitative properties [P1]–[P3].

Proof. Property [P1] is satisfied automatically. We note that this implies
that, provided that the statement of the theorem is true, the maximum norms
of the vectors sn, in and rn are bounden by M . That is the numerical scheme
is stable. In order to verify [P2]-[P3], it is enough to show that under the
condition (3.4) the implication

s0 ≥ 0, i0 ≥ 0, r0 ≥ 0, p0 ≥ 0 ⇒ s1 ≥ 0, i1 ≥ 0, r1 ≥ 0, p1 ≥ 0

is true. Then the statement follows by induction.

The vector r1 is trivially nonnegative. From the condition (3.4), the relation
τb ≤ 1 follows. Thus i1 ≥ 0. Based on condition (3.4) and the estimate
0 ≤ i0 ≤ M we have

(3.5) τp0 = τ
(
ϑi0 +

ϕ

h2
Qi0
)
≤ τ

(
ϑi0 +

ϕ

h2
2M
)
≤ τM

(
ϑ +

2ϕ

h2

)
≤ 1.

This means that s1 is also nonnegative. Thus the state vectors are nonnegative
at the first time level. From this fact and from the equality s0 + i0 + r0 =
s1 + i1 + r1 we can state that 0 ≤ s1 ≤ M .
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Now we show that p1 ≥ 0. Let us consider the relation

(3.6)

p1 = ϑi1 +
ϕ

h2
Qi1 =

= ϑ(τs0p0 + (1− bτ)i0) +
ϕ

h2
Q(τs0p0 + (1− bτ)i0) =

= (1− bτ)
(
ϑi0 +

ϕ

h2
Qi0
)

︸ ︷︷ ︸
p0

+τϑs0p0 + τ
ϕ

h2
Q(s0p0) =

= (1− bτ + τϑs0)p0 + τ
ϕ

h2
Q(s0p0).

Due to the nonnegativity of the vector s0p0 we have Q(s0p0) ≥ −2s0p0.
Hence, based on (3.6),

p1 ≥ (1− bτ + τϑs0 − 2τ
ϕ

h2
s0)p0 = (1− τ(b− ϑs0 +

2ϕ

h2
s0))p0.

The nonnegativity of p1 can be guaranteed by the condition

τ

(
b− ϑs0 +

2ϕ

h2
s0

)
≤ 1,

which follows from the first term of the right hand side of the assumption (3.4).
This completes the proof. �

Now we consider the question of the propagation of a numerical epidemic
wave. We proof a necessary condition.

Theorem 3.2. Let us suppose that the qualitatively adequate numerical solu-
tion of (2.2) describes a numerical wave of speed c for the infectious individuals.
If this wave has a strictly concave, monotonically decreasing part in the direc-
tion of the moving and τ < h/c then the density of the susceptibles must be
greater than b/ϑ on that part of the wave profile (compare with (2.5)).

Proof. Let us suppose that the wave front moves to the positive direc-
tion and the monotonically decreasing concave part of this front is the vector
[ink−1, i

n
k , ink+1]. Thus we have ink−1 ≥ ink ≥ ink+1 and ink−1 + ink+1 < 2ink . In view

of the upper bound τ < h/c and the direction of the moving of the wave the
relation in+1

k ≥ ink must be true.
Let us suppose indirect that sn

k ≤ b/ϑ. After rearranging the second equa-
tion in (3.2) we have

in+1
k − ink

τ
= (sn

kϑ− b)ink + sn
k

ϕ

h2
(Qin)k.
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Here the first term on the right hand side is non-positive due to the indirect
assumption. At the same time the second term is negative because of the
strict concavity. Thus in+1

k < ink , which is a contradiction. This completes the
proof. �

A direct consequence of the theorem is as follows. If an epidemic wave
with the properties given in the statement of the theorem reaches a region with
not enough individuals (density is less than b/ϑ) then the wave amplitude will
decrease, and – when the shape of the wave does not change then – the wave
passes.

4. Numerical examples

Now we verify the results of the previous section numerically. We have
seen that if we choose the mesh appropriately then the numerical solution will
possess the properties [P1]-[P3], and epidemic waves can occur for sufficiently
large susceptible density.

We set L = 1, δ = 0.01 and b = 0.03. The weighting function is defined
to be W (|u|) = 1− |u|/δ for |u| ∈ [0, δ] and zero otherwise, which is the usual
tent function on the interval [−δ, δ]. This function models the situation that an
infectious individual infects stronger if he is located closer. With this choice,
formulas in (2.3) give ϑ = δ and ϕ = δ3/12. The spatial step size is set to
h = 1/60 (N = 59). We use the initial conditions seen in Figure 1. The
infectives are located in the middle third part of the interval. The number
of susceptibles tends to zero in the directions of the interval ends. With this
initial conditions we have M = 17.

Figure 1. The initial conditions on the interval [0, 1].
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The upper bound (3.4) for the time step is τ ≤ 5.5494. First we choose τ =
15, thus above the bound that guarantees the qualitative properties [P1]-[P3].
On the left panel of Figure 2 the density functions can be seen at the second
time level (t = 30). The figure shows a qualitatively incorrect solution, namely
the density function of the susceptibles has also negative values. Contrary,
choosing the time step to be τ = 5, thus below the bound (3.4), we will get
a qualitatively correct solution (right panel of Figure 2). This supports the
theoretical results of the previous section.

Figure 2. Left panel: The density functions at t = 30 in the case when the
time step (τ = 15) is chosen above the bound given by the sufficient condition.
Right panel: The density functions at t = 30 in the case when the time step
(τ = 5) is chosen according to the bound of the sufficient condition.

Let us turn to the investigation of epidemic waves. The necessary condition
s > b/ϑ = 3 of Theorem 3.2 is satisfied in the middle region of the interval.
Thus we may expect the appearance of epidemic waves. In the middle of the
interval there are enough susceptibles to sustain the wave. Albeit, the condition
is only necessary, in our numerical test the wave does appear. On the left panel
of Figure 3 the density functions at time instant t = 260 can be seen. The peak
of the infectives on the left hand side moves to the left and the right peak to
the right.

When we follow the propagation of the waves, we can observe that the waves
die out approximately at the points x = 0.1 and x = 0.9, thus susceptibles
outside the interval [0.1, 0.9] are not infected by the disease. This phenomenon
can be explained by Theorem 3.2 that says that the regions where the density
of susceptibles is not greater than b/ϑ = 3 are not able to conduct epidemic
waves. By means of this observation we may be able to obtain an immunization
strategy. We can give that how many individuals must be immunized before
the epidemic wave reaches a given region and we can stop the propagation of
the disease.
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Figure 3. Left panel: The case of an epidemic wave. Right panel: The epidemic
waves die out when the number of susceptibles is not enough to sustain the
wave.

5. Summary, future work

In this paper we formulated a system of partial differential equations model
of the one-dimensional spatial disease propagation. After discretizing the sys-
tem by the finite difference method, we gave two sufficient conditions to guar-
antee the characteristic qualitative properties of the model. We obtained that if
the time-step is sufficiently small then the qualitative properties are satisfied.
Moreover, we showed that if the number of susceptibles is sufficiently small
then the epidemic waves are not able to move. We demonstrated our results
by numerical tests. Our future plan is to extend the result of this paper to the
more realistic two-dimensional case.
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