DIFFERENTIAL POLYNOMIALS AND VALUE-SHARING

Phan Duc Tuan (Ho Chi Minh City, Vietnam)
Nguyen Thanh Quang (Vinh City, Vietnam)

Dedicated to Professor Ha Huy Khoai
on the occasion of his 70-th birthday

Communicated by Bui Minh Phong
(Received November 20, 2015; accepted September 12, 2016)

Abstract. In this paper, we give some theorems on uniqueness problem of differential polynomials of meromorphic functions. Let a, b be non-zero constants and let n, m, l, k be positive integers satisfying $n \geq 3l(k + 1) + 3m + 9$ and $m \geq l(k + 1) + 1$. If $f^n + af'(f^k)^l$ and $g^n + ag'(g^k)^l$ share the value b CM, then f and g are closely related. We also consider the case sharing the value IM.

1. Introduction and main results

Let \mathbb{C} denote the complex plane and $f(z)$ be a non-constant meromorphic function in \mathbb{C}. It is assumed that the reader is familiar with the standard notion used in Nevanlinna value distribution theory such as $T(r, f), m(r, f), N(r, f), \ldots$ (see [9, 24]), and $S(r, f)$ denotes any quantity that satisfies the condition $S(r, f) = o(T(r, f))$ as $r \rightarrow \infty$, outside of a possible exceptional set of finite linear measure.

In 1959, Hayman considered the problem which was motivated by Picard exceptional values and proved the following result in [10].

Theorem A (Hayman’s Theorem). For all $z \in \mathbb{C}$, each complex meromorphic function f satisfying

$$f^n(z) + af'(z) \neq b$$

Key words and phrases: Shared values, differential polynomials, uniqueness of meromorphic functions.
2010 Mathematics Subject Classification: 34A20, 30D35.
is constant if \(n \geq 5 \) and \(a, b \in \mathbb{C}, a \neq 0 \). However, if \(f \) is entire, this holds also for \(n \geq 3 \) and for \(n = 2, b = 0 \).

As a consequence, if \(n \geq 3 \) then \(f^n(z)f'(z) \) assumes all finite values except possibly zero and infinitely often unless \(f \) is a rational function. When \(f \) is an entire function, the remain case is only \(n = 1 \), which was proved later by Cluine in [4]. In 1982, Döringer has shown, Hayman’s theorem remains valid for \(f^n + af^m(f^{(k)}) \) instead of \(f^n(z) + af'(z) \) provided that \(n \geq 3 + (k+1)l + m \) in [5]. These results are related to the value sharing problem of meromorphic functions and their derivatives. Let us first recall some basic definitions.

For \(f \) be a non-constant meromorphic function and \(S \subset \mathbb{C} \cup \{\infty\} \), we define
\[
E_f(S) = \bigcup_{a \in S} \{(z, m) \mid f(z) = a \text{ with multiplicity } m\},
\]
\[
E_f^{-1}(S) = f^{-1}(S) = \bigcup_{a \in S} \{z \mid f(z) = a\}.
\]

Let \(F \) be a non-empty set of meromorphic functions. Two functions \(f \) and \(g \) of \(F \) are said to share \(S \), counting multiplicity (share \(S \) CM), if \(E_f(S) = E_g(S) \). Similarly, two functions \(f \) and \(g \) are said to share \(S \), ignoring multiplicity (share \(S \) IM), if \(E(S) = E_g(S) \).

In 1997, Yang-Hua studied the unicity problem for meromorphic functions and the differential monomials of the form \(u^n u' \), when they share only one value, and obtained the following result in [22].

Theorem B. Let \(f \) and \(g \) be two non-constant meromorphic functions, \(n \geq 11 \) be an integer and \(a \in \mathbb{C} \setminus \{0\} \). If \(f^n f' \) and \(g^n g' \) share the value \(a \) CM, then either \(f = dg \) for some \((n+1)\)-th root of unity \(d \) or \(g(z) = c_1 e^{cz} \) and \(f(z) = c_2 e^{-cz} \) where \(c, c_1 \) and \(c_2 \) are constants and satisfy \((c_1 c_2)^{n+1} c^2 = -a^2\).

Since then, several authors study the uniqueness of meromorphic functions by considering differential polynomials like \((u^n)^{(k)}\), \(u^n (u-1) u'\), \(u^n (u-1)^2 u'\), ... (see [6, 7, 15, 16, 17, 18]).

In 2011, Grahl-Nevo studied the unicity problem for meromorphic functions and the differential polynomial of the form \(u^n + au^{(k)} \) and obtained the following theorems in [8].

Theorem C. Let \(f \) and \(g \) be non-constant meromorphic functions on \(\mathbb{C}, a, b \in \mathbb{C} \setminus \{0\} \) and let \(n \) and \(k \) be positive integers satisfying \(n \geq 5k + 17 \). Assume that the functions
\[
\psi_f := f^n + af^{(k)} \text{ and } \psi_g := g^n + ag^{(k)}
\]
Differential polynomials and value-sharing

share the value b CM. Then

\[(1.2) \quad \frac{\psi_f - b}{\psi_g - b} = \frac{f^n}{g^n} = \frac{af^{(k)} - b}{ag^{(k)} - b}\]

or

\[(1.3) \quad \frac{\psi_f - b}{\psi_g - b} = \frac{f^n}{ag^{(k)} - b} = \frac{af^{(k)} - b}{g^n}\]

or

\[(1.4) \quad f = g, f^{(k)} = g^{(k)} \equiv b/a.\]

Theorem D. Let f and g be two non-constant entire functions on \(\mathbb{C} \), \(a, b \in \mathbb{C} \setminus \{0\} \) and let \(n, k \) be positive integers satisfying \(n \geq 11 \) and \(n \geq k + 2 \). Assume that the functions \(\psi_f \) and \(\psi_g \) defined as in (1.1) share the value b CM. Then (1.2) or (1.4) holds.

In 2014, Zhang-Yang added an assumption that "the b-point of \(\psi_f \) are not the zeros of \(f \) and \(g \)” and proved the following theorems in [27].

Theorem E. Let f and g be two non-constant meromorphic functions on \(\mathbb{C} \), \(a, b \in \mathbb{C} \setminus \{0\} \) and let \(n, k \) be positive integers satisfying \(n \geq 3k + 12 \). Assume that \(\psi_f \) and \(\psi_g \) defined as in (1.1) share the value b CM and the b-point of \(\psi_f \) are not the zeros of \(f \) and \(g \). Then (1.2) or (1.3) holds.

Theorem F. Let f and g be two non-constant entire functions on \(\mathbb{C} \), \(a, b \in \mathbb{C} \setminus \{0\} \) and let \(n, k \) be positive integers satisfying \(n \geq 8 \). Assume that \(\psi_f \) and \(\psi_g \) defined as in (1.1) share the value b CM and the b-point of \(\psi_f \) are not the zeros of \(f \) and \(g \). Then (1.2) holds.

In this paper, we study the unicity problem for \(f^n + af^m(f^{(k)})^l \), where \(n, m, k, l \geq 1 \), which is related to this kind of differential polynomial. Namely, we prove the following theorems.

Theorem 1.1. Let f and g be non-constant meromorphic functions on \(\mathbb{C} \), \(a, b \in \mathbb{C} \setminus \{0\} \) and let \(n, m, k, l \) be positive integers satisfying \(n \geq 3(l(k+1)+3m+9) \) and \(m \geq l(k+1)+1 \). Assume that the functions \(\phi_f := f^n + af^m(f^{(k)})^l \) and \(\phi_g := g^n + ag^m(g^{(k)})^l \) share the value b CM. Then

\[(1.5) \quad \frac{\phi_f - b}{\phi_g - b} = \frac{f^n}{g^n} = \frac{af^m(f^{(k)})^l - b}{ag^m(g^{(k)})^l - b}\]

or

\[(1.6) \quad \frac{\phi_f - b}{\phi_g - b} = \frac{f^n}{ag^m(g^{(k)})^l - b} = \frac{af^m(f^{(k)})^l - b}{g^n}.\]
Theorem 1.2. Let \(\phi_f \) and \(\phi_g \) be given as in Theorem 1.1, where \(f \) and \(g \) be non-constant entire functions. Assume that \(\phi_f \) and \(\phi_g \) share the value \(b \) CM. If \(n \geq 3l + 3m + 5 \) and \(m \geq l + 3 \), then (1.5) holds.

Theorem 1.3. Let \(\phi_f \) and \(\phi_g \) be given as in Theorem 1.1. Assume that \(\phi_f \) and \(\phi_g \) share the value \(b \) IM. If \(n \geq 6l(k+1) + 6m + 15 \) and \(m \geq l(k+1) + 1 \), then (1.5) or (1.6) holds.

Theorem 1.4. Let \(\phi_f \) and \(\phi_g \) be given as in Theorem 1.1, where \(f \) and \(g \) be non-constant entire functions. Assume that \(\phi_f \) and \(\phi_g \) share the value \(b \) IM. If \(n \geq 6l + 6m + 8 \) and \(m \geq l + 4 \), then (1.5) holds.

2. Some basic lemmas

Let us recall a few classical lemmas.

Lemma 2.1. [9] Let \(f, g \) be non-constant meromorphic functions on \(\mathbb{C} \), \(a \in \mathbb{C} \). Then

\[
T(r, f + g) \leq T(r, f) + T(r, g) + O(1),
\]

\[
T(r, fg) \leq T(r, f) + T(r, g) + O(1),
\]

\[
T(r, f - a) = T(r, f) + O(1),
\]

\[
T(r, \frac{1}{f}) = T(r, f) + O(1).
\]

Lemma 2.2. [9] Let \(f \) be a non-constant meromorphic function on \(\mathbb{C} \) and let \(P(z) \in \mathbb{C}[x] \) be a polynomial of degree \(q \). Then

\[
T(r, P(z)) = qT(r, f) + O(1).
\]

Lemma 2.3. [9] Let \(f \) be a non-constant meromorphic function on \(\mathbb{C} \). Then for any positive integer \(k \), we have

\[
T(r, f^{(k)}) \leq T(r, f) + kN(r, f) + S(r, f) \leq (k + 1)T(r, f) + S(r, f).
\]

Moreover, if \(f \) be a non-constant entire function, then

\[
T(r, f^{(k)}) \leq T(r, f) + S(r, f).
\]

Lemma 2.4 (Lemma of Logarithmic Derivative). [9] Let \(f \) be a non-constant meromorphic function on \(\mathbb{C} \). Then for any positive integer \(k \), we have

\[
m(r, \frac{f^{(k)}}{f}) = S(r, f).
\]
Lemma 2.5 (First Main Theorem). [9] Let \(f \) be a non-constant meromorphic function on \(\mathbb{C} \). Then for \(a \in \mathbb{C} \), we have

\[
T(r, \frac{1}{f - a}) = T(r, f) + O(1).
\]

Lemma 2.6 (Second Main Theorem). [9] Let \(a_1, \ldots, a_n \in \mathbb{C} \) with \(n \geq 2, n \in \mathbb{N} \), and let \(f \) be a non-constant meromorphic function on \(\mathbb{C} \). Then for \(r > 0 \), we have

\[
(n - 1)T(r, f) \leq N(r, f) + \sum_{i=1}^{n} N(r, \frac{1}{f - a_i}) + S(r, f).
\]

Suppose that \(f_1, \ldots, f_l \) be meromorphic functions on \(\mathbb{C} \). Let \(n_{ij} (0 \leq i \leq l, 1 \leq j \leq k_i) \) be non-negative integers. We denote by

\[
M[f_1, \ldots, f_l] = f_1^{a_{11}}(f'_1)^{n_{11}} \cdots f_l^{a_{l1}}(f'_l)^{n_{l1}}
\]

the differential monomial in \(f_1, \ldots, f_l \).

Let \(f_1, \ldots, f_l \) be meromorphic functions on \(\mathbb{C} \), \(M_1[f_1, \ldots, f_l], \ldots, M_k[f_1, \ldots, f_l] \) be differential monomials in \(f_1, \ldots, f_l \) and \(a_1, \ldots, a_k \in \mathbb{C} \setminus \{0\} \). The summation

\[
P[f_1, \ldots, f_l] = a_1M_1[f_1, \ldots, f_l] + \cdots + a_kM_k[f_1, \ldots, f_l]
\]

is said to be a differential polynomial in \(f_1, \ldots, f_l \).

Lemma 2.7. Let \(f \) be a meromorphic function on \(\mathbb{C} \). Suppose that \(f = \frac{f_1}{f_2} \), where \(f_1 \) and \(f_2 \) be entire functions that have no common zeros and let \(k \) be a positive integer number. Then there exists a differential polynomial \(\omega_k[f_1, f_2] \) in \(f_1, f_2 \) such that

\[
f^{(k)} = \frac{\omega_k[f_1, f_2]}{f_2^{k+1}}.
\]

Proof. We prove by induction. With \(k = 1 \), we have

\[
f' = f'_1f_2 - f'_2f_1 = \frac{\omega_1[f_1, f_2]}{f_2^2}.
\]

Assume

\[
f^{(k)} = \frac{\omega_k[f_1, f_2]}{f_2^{k+1}}.
\]
We have
\[
J_{k+1} = \frac{f_{k+1}}{f_{k}} = \frac{\alpha_k[f_1, f_2] - (k+1)\beta f_{k+1} \alpha_k[f_1, f_2]}{\beta f_{k+2}} = \frac{\alpha_{k+1}[f_1, f_2]}{f_{k+2}}.
\]
This completes the proof of Lemma 2.7.

Lemma 2.8. Let \(f \) be an entire function on \(\mathbb{C} \), \(a, b \in \mathbb{C} \setminus \{0\} \) and \(m, l, k \) be positive integers. Suppose that \(f^m(f^{(k)})^l \) is a non-constant function. Then we have
\[
T\left(r, f^m(f^{(k)})^l\right) \leq N\left(r, \frac{1}{f} \right) + N\left(r, \frac{1}{af^m(f^{(k)})^l - b} \right) + T\left(r, f^{(k)}\right) + S(r, f).
\]

Proof. By Lemma 2.6 and the assumption that \(f \) is a non-constant entire function, we have
\[
T(r, f^m(f^{(k)})^l) \leq N(r, f^m(f^{(k)})^l) + N(r, f^m(f^{(k)})^l - \frac{b}{a}) + S(r, f) \leq N(r, f^m(f^{(k)})^l) + S(r, f) \leq N\left(r, f^{(k)}\right) + S(r, f),
\]
which implies,
\[
T(r, f^m(f^{(k)})^l) \leq N(r, f^{(k)}) + S(r, f) + T(r, f^{(k)}) + S(r, f).
\]
Lemma 2.8 is proved.

Lemma 2.9 ([22], Lemma 3). Let \(f \) and \(g \) be non-constant meromorphic functions on \(\mathbb{C} \). If \(f \) and \(g \) share \(1 \) CM, then one of the following cases holds:
1) \(T(r, f) + T(r, g) \leq 2\{N_2(r, f) + N_2(r, g) + N_2(r, f^{1/2}) + N_2(r, g^{1/2})\} + S(r, f) + S(r, g); \)
2) \(f \equiv g; \)
3) \(fg \equiv 1. \)
Lemma 2.10 ([24], Theorem 1). Let \(f \) and \(g \) be non-constant meromorphic functions on \(\mathbb{C} \). If \(f \) and \(g \) share 1 IM, then one of the following three cases holds:

1) \(T(r,f) + T(r,g) \leq 2N_2(r,f) + 3N(r,f) + 2N_2(r,g) + 3N(r,g) + 2N_2(r,\frac{1}{f}) + 3N(r,\frac{1}{f}) + 2N_2(r,\frac{1}{g}) + 3N(r,\frac{1}{g}) + S(r,f) + S(r,g); \)
2) \(f \equiv g; \)
3) \(fg \equiv 1. \)

3. **Proof of the Theorems**

Proof. [Proof of Theorem 1.1]

We claim that \(af^m(f^{(k)})^l - b \not\equiv 0 \). Suppose that \(af^m(f^{(k)})^l - b \equiv 0 \), we have \(f^{(k)} \not\equiv 0 \) and

\[
mT(r,f) = T(r,f^m) + O(1) = lT(r,f^{(k)}) + O(1) \leq (k+1)T(r,f) + S(r,f).
\]

Hence

\[
(m -(k+1))T(r,f) \leq S(r,f),
\]

which contradicts the assumption that \(m \geq l(k+1) + 1 \). Similarly, we have \(ag^m(g^{(k)})^l - b \not\equiv 0 \).

Setting

\[
F = \frac{-f^n}{af^m(f^{(k)})^l - b}, \quad G = \frac{-g^n}{ag^m(g^{(k)})^l - b}.
\]

By Lemma 2.1 and Lemma 2.3, we have

\[
nT(r,f) = T(r,-f^n) + O(1) \leq T(r,\frac{-f^n}{af^m(f^{(k)})^l - b}) + T(r,af^m(f^{(k)})^l - b) + O(1) \leq T(r,F) + mT(r,f) + lT(r,f^{(k)}) + O(1) \leq T(r,F) + (m + l(k+1))T(r,f) + S(r,f) \leq T(r,F) + (m + l(k+1))T(r,f) + S(r,f).
\]

Hence

\[
(n - m - l(k+1))T(r,f) \leq T(r,F) + S(r,f).
\]
From this and the assumption that \(n \geq 3l(k+1) + 3m + 9 \), we have \(F \) is non-constant. Similarly, we have \(G \) is non-constant.

Suppose that \(f = \frac{f_1}{f_2} \), where \(f_1, f_2 \) are entire functions which have no common zeros and \(g = \frac{g_1}{g_2} \), where \(g_1, g_2 \) are entire functions which have no common zeros. By Lemma 2.7, there exists a differential polynomial \(\omega [f_1, f_2] \) such that \(f^{(k)} = \frac{\omega [f_1, f_2]}{f_2^{l+1}} \) and \(g^{(k)} = \frac{\omega [g_1, g_2]}{g_2^{m+1}} \). So

\[
\phi_f - b = \frac{f_1^n + (af_1^n(\omega_k[f_1, f_2])^l - bf_2^{m+l(k+1)})f_2^{n-m-l(k+1)}}{f_2^n}
\]

and

\[
\phi_g - b = \frac{g_1^n + (ag_1^n(\omega_k[g_1, g_2])^l - bg_2^{m+l(k+1)})g_2^{n-m-l(k+1)}}{g_2^n}.
\]

In the following we prove that the functions

\[
f_1^n + (af_1^n(\omega_k[f_1, f_2])^l - bf_2^{m+l(k+1)})f_2^{n-m-l(k+1)}
\]

and \(f_2 \) have no common zeros. Suppose that there exists a constant \(\gamma \) such that

\[
(f_1(\gamma))^n + \left(a(f_1(\gamma))^m(\omega_k[f_1, f_2](\gamma))^l - b(f_2(\gamma))^{m+l(k+1)}\right)(f_2(\gamma))^{n-m-l(k+1)} = 0
\]

and

\[
f_2(\gamma) = 0.
\]

This implies \(f_1(\gamma) = 0 \) and \(f_2(\gamma) = 0 \), which contradicts to the assumption that \(f_1 \) and \(f_2 \) have no common zeros. Hence \(f_1^n + (af_1^n(\omega_k[f_1, f_2])^l - bf_2^{m+l(k+1)})f_2^{n-m-l(k+1)} \) and \(f_2 \) have no common zeros. Therefore

\[
E_{\phi_f}(b) = E_{f_1^n + (af_1^n(\omega_k[f_1, f_2])^l - bf_2^{m+l(k+1)})f_2^{n-m-l(k+1)}(0)}.
\]

Similarly, we have

\[
E_{\phi_g}(b) = E_{g_1^n + (ag_1^n(\omega_k[g_1, g_2])^l - bg_2^{m+l(k+1)})g_2^{n-m-l(k+1)}(0)}.
\]

On the other hand, we have

\[
F = \frac{f_1^n}{-(af_1^n(\omega_k(f_1, f_2))^l - bf_2^{m+l(k+1)})f_2^{n-m-l(k+1)}}.
\]

Hence

\[
F - 1 = \frac{f_1^n + (af_1^n(\omega_k(f_1, f_2))^l - bf_2^{m+l(k+1)})f_2^{n-m-l(k+1)}}{-(af_1^n(\omega_k(f_1, f_2))^l - bf_2^{m+l(k+1)})f_2^{n-m-l(k+1)}}.
\]
We will show that the functions $f_1^n + (af_1^n(\omega_k(f_1, f_2))^l - bf_2'^{m+l(k+1)})f_2'^{n-m-l(k+1)}$ and $bf_2'^{n-m-l(k+1)}$ have no common zeros. Suppose that there exists a constant $\alpha \in \mathbb{C}$ such that

$$
\begin{align*}
(f_1(\alpha))^n + (af_1(\alpha))^m(\omega_k(f_1, f_2)(\alpha))^l - b(f_2(\alpha))^{m+l(k+1)}), \\
(f_1(\alpha))^n - b(f_2(\alpha))^{m+l(k+1)} = 0.
\end{align*}
$$

From this and the assumption that $m \geq 1$, we have $f_1(\alpha) = f_2(\alpha) = 0$. This contradicts to the assumption that f_1, f_2 have no common zeros. Therefore $f_1^n + (af_1^n(\omega_k(f_1, f_2))^l - bf_2'^{m+l(k+1)})f_2'^{n-m-l(k+1)}$ and $bf_2'^{n-m-l(k+1)}$ have no common zeros. Combining this with the previous fact that $f_1^n + (af_1^n(\omega_k(f_1, f_2))^l - bf_2'^{m+l(k+1)})f_2'^{n-m-l(k+1)}$ and $f_2'^{n-m-l(k+1)}$ have no common zeros. So we have

$$
(3.5) \quad EF(1) = E_{f_1^n + (af_1^n(\omega_k(f_1, f_2))^l - bf_2'^{m+l(k+1)})f_2'^{n-m-l(k+1)}}(0).
$$

Similarly, we get

$$
(3.6) \quad EG(1) = E_{g_1^n + (af_1^n(\omega_k(g_1, g_2))^l - bf_2'^{m+l(k+1)})f_2'^{n-m-l(k+1)}}(0).
$$

From (3.2) to (3.6) and the assumption that $E_{\phi_f}(b) = E_{\phi_g}(b)$, we have

$$
EF(1) = EG(1).
$$

Applying Lemma 2.9 to F and G with the following cases:

Case 1.

$$
(3.7) \quad T(r, F) + T(r, G) \leq 2\{N_2(r, F) + N_2(r, \frac{1}{F}) + N_2(r, G) + N_2(r, \frac{1}{G})\} + S(r, F) + S(r, G).
$$

By (3.4), we obtain

$$
N_2(r, \frac{1}{F}) \leq 2N(r, \frac{1}{F}).
$$

Hence

$$
(3.8) \quad N_2(r, \frac{1}{F}) \leq 2T(r, f).
$$

Similarly, we get

$$
(3.9) \quad N_2(r, \frac{1}{G}) \leq 2T(r, g).
$$
On the other hand, we have

\[
N_2(r, F) = N_2(r, \frac{-f^n}{a f^m(f^{(k)}l - b)}) \leq \\
\leq N_2(r, \frac{1}{a f^m(f^{(k)}l - b)}) + N_2(r, f^n) \leq \\
\leq N_2(r, \frac{1}{a f^m(f^{(k)}l - b)}) + 2N(r, f) \leq \\
\leq T(r, f^m(f^{(k)}l)^l + 2T(r, f) \leq \\
\leq mT(r, f) + lT(r, f^{(k)}) + 2T(r, f) + O(1) \leq \\
\leq mT(r, f) + l(k + 1)T(r, f) + 2T(r, f) + S(r, f),
\]

which implies

\[
N_2(r, F) \leq (m + 2 + l(k + 1))T(r, f) + S(r, f).
\]

Similarly, we get

\[
N_2(r, G) \leq (m + 2 + l(k + 1))T(r, g) + S(r, g).
\]

From (3.7) to (3.11), we have

\[
T(r, F) + T(r, G) \leq 2\{(l(k + 1) + m + 4)T(r, f) + (l(k + 1) + m + 4)T(r, g)\} + \\
+ S(r, f) + S(r, g).
\]

Therefore

\[
nT(r, f) + nT(r, g) = T(r, f^n) + T(r, g^n) + O(1) \leq \\
\leq T(r, F) + T(r, \frac{1}{a f^m(f^{(k)}l - b)}) + O(1) + \\
+ T(r, G) + T(r, \frac{1}{a g^m(g^{(k)}l - b)}) + O(1) = \\
= T(r, F) + T(r, f^m(f^{(k)}l)^l) + O(1) + \\
+ T(r, G) + T(r, g^m(g^{(k)}l)^l) + O(1) \leq \\
\leq T(r, F) + T(r, f^m) + T(r, f^{(k)}l) + O(1) + \\
+ T(r, G) + T(r, g^m) + T(r, g^{(k)}l) + O(1) \leq \\
\leq m(k + 1) + l + 4 + m)T(r, f) + \\
+ (m + l(k + 1) + 4 + m)T(r, g) + \\
S(r, f) + S(r, g).
\]
which implies
\[n(T(r, f) + T(r, g)) \leq (3l(k + 1) + 3m + 8)(T(r, f) + T(r, g)) + S(r, f) + S(r, g). \]

Thus
\[(n - 3l(k + 1) - 3m - 8)(T(r, f) + T(r, g)) \leq S(r, f) + S(r, g), \]

which contradicts to the assumption that \(n \geq 3l(k + 1) + 3m + 9. \)

Case 2. \(F = G. \) Then
\[
-\frac{fn}{a f^m(f(k)^l - b} = -\frac{gn}{a g^m(g(k)^l - b}.
\]

Therefore
\[
\frac{\phi_f - b}{\phi_g - b} = \frac{fn}{g^n} = \frac{a f^m(f(k)^l - b}{a g^m(g(k)^l - b}.
\]

Case 3. \(FG = 1. \) Thus
\[
\frac{\phi_f - b}{\phi_g - b} = \frac{fn}{g^n} = \frac{a f^m(f(k)^l - b}{a g^m(g(k)^l - b}.
\]

This completes the proof of Theorem 1.1.

Proof. [Proof of Theorem 1.2]

We claim that \(a f^m(f(k)^l - b \not\equiv 0. \) If \(a f^m(f(k)^l - b \equiv 0, \) we have \(f(k) \equiv 0 \) and
\[
mT(r, f) = T(r, f^m) + O(1) = T(r, (f(k)^l) + O(1) = lT(r, f(k) + O(1) \leq lT(r, f) + S(r, f),
\]

which implies
\[
(m - l)T(r, f) \leq S(r, f),
\]

which contradicts to the assumption that \(m \geq l + 3. \) Similarly, we have \(a g^m(g(k)^l - b \neq 0. \)

We define the functions \(F \) and \(G \) as in the proof of Theorem 1.1. Proceeding as in the proof of Theorem 1.1, we can obtain that \(F \) and \(G \) share 1 CM. Applying Lemma 2.9 to \(F \) and \(G, \) we have the following three cases:

Case 1.
\[
T(r, F) + T(r, G) \leq 2\{N_2(r, F) + N_2(r, \frac{1}{F}) + N_2(r, G) + N_2(r, \frac{1}{G})\} + S(r, F) + S(r, G).
\]
We have

\[N_2(r, \frac{1}{F}) \leq 2T(r, f), \]
\[N_2(r, \frac{1}{G}) \leq 2T(r, g). \]

By Lemma 2.3, we get

\[N_2(r, F) = N_2(r, \frac{-f^m}{a f^m(f^{(k)})^l - b}) \leq \]
\[\leq N_2(r, \frac{1}{a f^m(f^{(k)})^l - b}) \leq \]
\[\leq T(r, \frac{f^m(f^{(k)})^l}{1}) \leq \]
\[\leq mT(r, f) + lT(r, f^{(k)}) + O(1), \]

which implies

\[N_2(r, \frac{1}{F}) \leq (m + l)T(r, f) + S(r, f). \]

Similarly, we have

\[N_2(r, \frac{1}{G}) \leq (m + l)T(r, g) + S(r, g). \]

Hence

\[T(r, F) + T(r, G) \leq 2\{(m + l + 2)T(r, f) + (m + l + 2)T(r, g)\} + S(r, f) + S(r, g). \]

Therefore

\[nT(r, f) + nT(r, f) = T(r, f^n) + T(r, f^n) + O(1) \leq \]
\[\leq T(r, F) + T(r, \frac{1}{a f^m(f^{(k)})^l - b}) + T(r, G) + \]
\[+ T(r, \frac{1}{a f^m(g^{(k)})^l - b}) + O(1) = \]
\[= T(r, F) + T(r, \frac{f^m(f^{(k)})^l}{1}) + T(r, G) + \]
\[+ T(r, \frac{1}{f^m(g^{(k)})^l}) + O(1) = \]
\[= T(r, F) + T(r, f^m(f^{(k)})^l) + T(r, G) + \]
\[+ T(r, f^m(g^{(k)})^l) + O(1) \leq \]
\[\leq T(r, F) + T(r, f) + T(r, f^{(k)}) + T(r, G) + \]
\[+ T(r, g^m) + T(r, g^{(k)}) + O(1) \leq \]
\[\leq 2\{(m + l + 2)T(r, f) + (m + l + 2)T(r, g)\} + \]
\[+ (m + l)T(r, f) + (m + l)T(r, g) + S(r, f) + S(r, g), \]
Differential polynomials and value-sharing

which implies

\[n(T(r,f) + T(r,g)) \leq (3l + 3m + 4)(T(r,f) + T(r,g)) + S(r,f) + S(r,g). \]

Thus

\[(n - 3l - 3m - 4)(T(r,f) + T(r,g)) \leq S(r,f) + S(r,g), \]

which contradicts to the assumption that \(n \geq 3l + 3m + 5 \).

Case 2. \(F = G \). Then

\[
\frac{-f^n}{af^m(f(k))^{l} - b} = \frac{-g^n}{ag^m(g(k))^{l} - b}.
\]

Therefore (1.5) holds.

Case 3. \(FG = 1 \). Then

\[
(3.12) \quad \frac{\phi_f - b}{\phi_g - b} = \frac{f^n}{ag^m(g(k))^{l} - b} = \frac{a f^m(f(k))^{l} - b}{g^n}.
\]

We will prove that (3.12) cannot occur. Since \(\phi_f, \phi_g \) share the value \(b \) CM and \(f, g \) are entire functions, \(\frac{\phi_f - b}{\phi_g - b} \) has no zero or pole at all. From this and (3.12), we have

\[
(3.13) \quad N(r, \frac{1}{f}) = \frac{1}{n} N(r, \frac{1}{g^m(g(k))^{l} - \frac{b}{a}}), \quad N(r, \frac{1}{g}) = \frac{1}{n} N(r, \frac{1}{f^m(f(k))^{l} - \frac{b}{a}}),
\]

\[
(3.14) \quad N(r, \frac{1}{f^m(f(k))^{l} - \frac{b}{a}}), \quad N(r, \frac{1}{g}) = N(r, \frac{1}{g^m(g(k))^{l} - \frac{b}{a}}).
\]

We will show that \(f^{(k)} \not\equiv 0 \). Suppose for contradiction that \(f^{(k)} \equiv 0 \). Then \(f \) is a non-constant polynomial. Combining this and (3.13), we have \(g \) has no zero at all. This implies \(fg \) is a non-constant function and \(g^{(k)} \not\equiv 0 \). From (3.12), we have

\[
(3.15) \quad (fg)^n = -b(ag^m(g^{(k)})^{l} - b).
\]

From this and Lemma 2.6, we have

\[
nT(r, fg) \leq N(r, \frac{1}{(fg)^{n}}) + N(r, \frac{1}{g^m(g^{(k)})^{l}}) + S(r, fg) \leq N(r, \frac{1}{fg}) + N(r, \frac{1}{g^{(k)}}) + S(r, fg) \leq T(r, fg) + T(r, g^{(k)}) + S(r, fg),
\]
which implies

\[(3.16) \quad (n - 1)T(r, fg) \leq T(r, g) + S(r, f) + S(r, g).\]

On the other hand, by Lemma 2.6 and (3.15), we have

\[
mT(r, g) = T(r, g^n) + O(1) \leq T(r, g^n(g^{(k)})^l) + O(1) \leq N(r, \frac{1}{g^n}) + IT(r, g) + S(r, g) \leq T(r, f) + T(r, g) + IT(r, g) + S(r, g),
\]

which yields

\[(3.17) \quad (m - l - 1)T(r, g) \leq T(r, f) + S(r, g).\]

From (3.16) and (3.17), we have

\[(n - 1)T(r, f) + (m - l - 2)T(r, g) \leq S(r, f) + S(r, g),\]

which contradicts to the assumptions that \(n \geq 3l + 3m + 5\) and \(m \geq l + 3\).

Hence \(f^{(k)} \not\equiv 0\) and similarly, we have \(g^{(k)} \not\equiv 0\).

By Lemma 2.8, we have

\[
mT(r, f) = T(r, f^m) + O(1) \leq T(r, f^m(f^{(k)})^l) + O(1) \leq N(r, \frac{1}{f}) + IT(r, f^{(k)}) + (l + 1)T(r, f) + S(r, f),
\]

which implies

\[(m - l - 1)T(r, f) \leq N(r, \frac{1}{f}) + IT(r, f^{(k)}) + (l + 1)T(r, f) + S(r, f).\]
From this and (3.13), (3.14), we have

\[(m - l - 1)T(r, f) \leq \frac{1}{n} N(r, \frac{1}{ag^m(g^{(k)})^{l} - b}) + \frac{1}{n} N(r, \frac{1}{a} - \frac{1}{g}) + S(r, f) \leq \frac{1}{n} N(r, g) + S(r, f) = \]

\[= \frac{1}{n} N(r, \frac{1}{ag^m(g^{(k)})^{l} - b}) + \frac{1}{n} N(r, \frac{1}{af^m(f^{(k)})^{l} - b}) + S(r, f) \leq \frac{1}{n} T(r, ag^m(g^{(k)})^{l} - b) + \frac{1}{n} T(r, af^m(f^{(k)})^{l} - b) + S(r, f) + S(r, g) = \]

\[= \frac{1}{n} T(r, g^m(g^{(k)})^{l}) + \frac{1}{n} T(r, f^m(f^{(k)})^{l}) + S(r, f) + S(r, g) \leq \]

\[\leq \frac{1}{n} \left(mT(r, g) + lT(r, g^{(k)}) \right) + \frac{1}{n} \left(mT(r, f) + lT(r, f^{(k)}) \right) + S(r, g) \leq \]

\[\leq \frac{1}{n} \left(mT(r, g) + lT(r, g) \right) + \frac{1}{n} \left(mT(r, f) + lT(r, f) \right) + S(r, f) + S(r, g), \]

which implies

\[(m - l - 1)T(r, f) \leq \frac{m + l}{n} T(r, g) + \frac{m + l}{n} T(r, f) + S(r, f) + S(r, g). \]

Similarly, we get

\[(m - l - 1)T(r, g) \leq \frac{m + l}{n} T(r, f) + \frac{m + l}{n} T(r, g) + S(r, g). \]

Hence

\[(m - l - 1)(T(r, f) + T(r, g)) \leq \frac{2(m + l)}{n} (T(r, f) + T(r, g)) + S(r, f) + S(r, g). \]

Therefore

\[(n(m - l - 1) - 2(m + l))(T(r, f) + T(r, g)) \leq S(r, f) + S(r, g), \]

which contradicts to the assumptions that \(m \geq l + 3 \) and \(n \geq 3l + 3m + 5 \). This proves Theorem 1.2. ■
Proof. [Proof of Theorem 1.3]

We define the functions F and G as in the proof of Theorem 1.1. Proceeding as in the proof of Theorem 1.1, we obtain that F and G share 1 IM. Applying Lemma 2.10 to F and G, we have the following three cases:

Case 1.

\[
T(r, F) + T(r, G) \leq 2N_2(r, F) + 3N(r, F) + 2N_2(r, G) + 3N(r, G) + 2N_2(r, \frac{1}{F}) + 3N(r, \frac{1}{F}) + 2N_2(r, \frac{1}{G}) + 3N(r, \frac{1}{G}) + S(r, F) + S(r, G).
\]

Proceeding as in the proof of Theorem 1.1, we have

\[
N_2(r, \frac{1}{F}) \leq 2T(r, f),
\]

\[
N_2(r, \frac{1}{G}) \leq 2T(r, g),
\]

\[
\overline{N}(r, \frac{1}{F}) \leq T(r, f),
\]

\[
\overline{N}(r, \frac{1}{G}) \leq T(r, g),
\]

\[
N_2(r, F) \leq (m + 2 + l(k + 1))T(r, f) + S(r, f),
\]

\[
N_2(r, G) \leq (m + 2 + l(k + 1))T(r, g) + S(r, g).
\]

By Lemma 2.3, we have

\[
\overline{N}(r, F) = \overline{N}(r, \frac{-f^n}{af^m(f(k))^l - b}) \leq \overline{N}(r, \frac{1}{af^m(f(k))^l - b}) + \overline{N}(r, f) \leq T(r, af^m(f(k))^l - b) + \overline{N}(r, f) \leq T(r, f^m(f(k))^l) + \overline{N}(r, f) \leq mT(r, f) + lT(r, f^k) + T(r, f) \leq mT(r, f) + l(k + 1)T(r, f) + T(r, f) + S(r, f).
\]

which implies

\[
\overline{N}(r, \frac{1}{F}) \leq (l(k + 1) + m + 1)T(r, f) + S(r, f).
\]
Similarly, we have
\[N(r, \frac{1}{G}) = (l(k + 1) + m + 1)T(r, g) + S(r, g). \]

Hence
\[T(r, F) + T(r, G) \leq (5l(k + 1) + 5m + 14)T(r, f) + (5l(k + 1) + 5m + 14)T(r, g) + S(r, f) + S(r, g). \]

Therefore
\[nT(r, f) + nT(r, g) = T(r, f^n) + T(r, g^n) + O(1) \leq T(r, F) + T(r, G) + O(1) \leq (5l(k + 1) + 5m + 14)T(r, f) + (5l(k + 1) + 5m + 14)T(r, g) + S(r, f) + S(r, g), \]

which implies
\[n(T(r, f) + T(r, g)) \leq (6l(k + 1) + 6m + 14)(T(r, f) + T(r, g)) + S(r, f) + S(r, g). \]

Thus
\[(n - 6l(k + 1) - 6m - 14)(T(r, f) + T(r, g)) \leq S(r, f) + S(r, g), \]

which contradicts the assumption that \(n \geq 6l(k + 1) + 6m + 15. \)

Case 2. \(F = G. \) Then
\[\frac{\phi_f - b}{\phi_g - b} = \frac{f^n}{g^n} = \frac{af^m(f^{(k)}y^l - b)}{ag^m(g^{(k)}y^l - b)}. \]

Case 3. \(FG = 1. \) Then
\[\frac{\phi_f - b}{\phi_g - b} = \frac{f^n}{ag^m(g^{(k)}y^l - b)} = \frac{af^m(f^{(k)}y^l - b)}{g^n}. \]

This completes the proof of Theorem 1.3. \(\square \)
Proof. [Proof of Theorem 1.4]

Proceeding as the proof of Theorem 1.2, we have $a f^m(f^{(k)})^l - b \neq 0$ and $a g^m(g^{(k)})^l - b \neq 0$. We define the functions F and G as in the proof of Theorem 1.1. Proceeding as in the proof of Theorem 1.1, we have F and G share 1 IM.

Applying Lemma 2.10 to F and G, we have the following three cases:

Case 1.

$$T(r, F) + T(r, G) \leq 2N_2(r, F) + 3\overline{N}(r, F) + 2N_2(r, G) + 3\overline{N}(r, G) +$$
$$+ 2N_2(r, \frac{1}{F}) + 3\overline{N}(r, \frac{1}{F}) + 2N_2(r, \frac{1}{G}) + 3\overline{N}(r, \frac{1}{G}) +$$
$$S(r, F) + S(r, G).$$

Proceeding as the proof of Theorem 1.2, we have

$$N_2(r, \frac{1}{F}) \leq 2T(r, f),$$

$$N_2(r, \frac{1}{G}) \leq 2T(r, g),$$

$$\overline{N}(r, \frac{1}{F}) \leq T(r, f),$$

$$\overline{N}(r, \frac{1}{G}) \leq T(r, g),$$

$$N_2(r, F) \leq (m + l)T(r, f) + S(r, f),$$

$$N_2(r, G) \leq (m + l)T(r, g) + S(r, g),$$

$$\overline{N}(r, F) \leq (m + l)T(r, f) + S(r, f),$$

$$\overline{N}(r, G) \leq (m + l)T(r, g) + S(r, g).$$

Hence

$$T(r, F) + T(r, G) \leq (5l + 5m + 7)T(r, f) + (5l + 5m + 7)T(r, g) + S(r, f) + S(r, g).$$
Therefore

\[nT(r, f) + nT(r, g) = T(r, f^n) + T(r, g^n) + O(1) \leq \]
\[\leq T(r, F) + T(r, \frac{1}{af^m(f^{(k)})^l - b}) + T(r, G) + \]
\[+ T(r, \frac{1}{ag^m(g^{(k)})^l - b}) + O(1) = \]
\[= T(r, F) + T(r, f^m(f^{(k)})^l) + T(r, G) + \]
\[+ T(r, g^m(g^{(k)})^l) + O(1) \leq \]
\[\leq T(r, F) + mT(r, f) + \ell T(r, (f^{(k)})) + T(r, G) + \]
\[+ mT(r, g) + \ell T(r, (g^{(k)})) + O(1) \leq \]
\[\leq (5l + 5m + 7)T(r, f) + (5l + 5m + 7)T(r, g) + \]
\[+ (m + l)T(r, f) + (m + l)T(r, g) + S(r, f) + S(r, g). \]

Thus

\[(n - 6l - 6m - 7)(T(r, f) + T(r, g)) \leq S(r, f) + S(r, g), \]

which contradicts to the assumption that \(n \geq 6l + 6m + 8 \).

Case 2. \(F = G \). Then

\[\frac{-f^n}{af^m(f^{(k)})^l - b} = \frac{-g^n}{ag^m(g^{(k)})^l - b}. \]

Therefore (1.5) holds.

Case 3. \(FG = 1 \). Then

(3.18) \[\frac{\phi_f - b}{\phi_g - b} = \frac{f^n}{a(g^{(k)})^l - b} = \frac{a(f^{(k)})^l - b}{g^n}. \]

We will prove that (3.18) cannot occur. Since \(\phi_f, \phi_g \) share the value \(b \) IM and \(f, g \) are entire functions, we have

(3.19) \[N(r, \frac{1}{f}) = N(r, \frac{1}{g^m(g^{(k)})^l - b}), N(r, \frac{1}{g}) = N(r, \frac{1}{f^m(f^{(k)})^l - b}). \]

We will show that \(f^{(k)} \not\equiv 0 \). Suppose for contradiction that \(f^{(k)} \equiv 0 \). This implies \(f \) is a non-constant polynomial. Combining this and (3.19), we have \(fg \) is non-constant and \(g^{(k)} \not\equiv 0 \). From (3.18), we have

(3.20) \[(fg)^n = -b(af^m(g^{(k)})^l - b). \]
From this and Lemma 2.6, we have
\[
\begin{align*}
T(r, fg) &\leq N(r, \frac{1}{fg^n}) + N(r, \frac{1}{g^{m(g(k)^l)}}) + S(r, fg) \\
&\leq N(r, \frac{1}{fg^n}) + N(r, \frac{1}{g^m}) + S(r, fg) \\
&\leq T(r, fg) + T(r, g) + T(r, g^{(k)}) + S(r, fg),
\end{align*}
\]
which implies
\[
(n - 1)T(r, fg) \leq 2T(r, g) + S(r, fg) + S(r, g).
\]

On the other hand, by (3.20) we have
\[
mT(r, g) = T(r, g^m) + O(1) \leq T(r, g^{m(g^{(k)})^l}) + T(r, \frac{1}{g^{(g^{(k)})^l}}) + O(1) \leq N(r, \frac{1}{fg^n}) + N(r, \frac{1}{g^{m(g^{(k)})^l}}) + IT(r, g) + S(r, g) \leq T(r, fg) + 2T(r, g) + IT(r, g) + S(r, g),
\]
which yields
\[
(m - l - 2)T(r, g) \leq T(r, fg) + S(r, g).
\]

From (3.21) and (3.22), we have
\[
(n - 1)T(r, fg) + (m - l - 3)T(r, g) \leq S(r, fg) + S(r, g),
\]
which contradicts to the assumptions that \(n \geq 6l + 6m + 5 \) and \(m \geq l + 4 \).

Hence \(f^{(k)} \neq 0 \) and similarly we have \(g^{(k)} \neq 0 \).

By Lemma 2.8, we have
\[
T(r, f^m(f^{(k)})^l) \leq N(r, \frac{1}{f}) + N(r, \frac{1}{f^m(f^{(k)})^l} - \frac{1}{2}) + T(r, f^{(k)}) + S(r, f) = N(r, \frac{1}{f}) + N(r, \frac{1}{g}) + T(r, f^{(k)}) + S(r, f) \leq 2T(r, f) + T(r, g) + S(r, f).
\]
Hence
\[
mT(r, f) = T(r, f^m) + O(1) \leq T(r, f^m(f^{(k)})^l) + T(r, \frac{1}{(f^{(k)})^l}) + O(1) \leq 2T(r, f) + T(r, g) + T(r, f^{(k)})^l + S(r, f) \leq 2T(r, f) + T(r, g) + IT(r, f) + S(r, f) + S(r, g),
\]
which implies
\[mT(r, f) \leq (l + 2)T(r, f) + T(r, g) + S(r, f) + S(r, g). \]

Similarly, we have
\[mT(r, g) \leq (l + 2)T(r, g) + T(r, f) + S(r, f) + S(r, g). \]

Hence
\[(m - l - 3)(T(r, f) + T(r, g)) \leq S(r, f) + S(r, g), \]

which contradicts to the assumption that \(m \geq l + 4 \).

This proves Theorem 1.4. ■

References

Phan Duc Tuan
Dept. of Math. & Appl.
Saigon University
273 An Duong Vuong Street
Ho Chi Minh City, Vietnam
tuanphan@sgu.edu.vn

Nguyen Thanh Quang
Department of Mathematics
Vinh University
182 Le Duan Road
Vinh City, Nghe An Province, Vietnam
ntquang144@yahoo.com