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UNSOLVED PROBLEMS SECTION

SOME UNSOLVED PROBLEMS

ON ARITHMETICAL FUNCTIONS

Imre Kátai and Bui Minh Phong

(Budapest, Hungary)

Let, as usual, P, N, Q, R be the set of primes, positive integers, rationals
and real numbers, respectively. Let Q× = multiplicative group of positive
rationals.

1. Let α, β distinct positive numbers, at least one of which is irrational. Let

γn =
[αn]
[βn]

, B be the multiplicative group generated by {γn | n ∈ N}.

Conjecture 1. B = Q×.

Conjecture 2. Let f be a completely additive function for which

f([αn])− f([βn])→ C (n→∞).

Then f(n) = A log(n), A =
C

log α
β

.

Note. We proved these conjectures in the case α =
√

2, β = 1 (see [2], [3], [4],
[5]).

2. Let A,B be the subsets of N, C = A ⊕ B = {a + b | a ∈ A, b ∈ B}. Let F
be the set of those collection of functions f : C → R, g : A → R, h : C → R, for
which

(∗) f(a+ b) = g(a) + h(b) for all a ∈ A, b ∈ B
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is satisfied.
It is clear that for each choice of A,B,C ∈ R, the functions

g(n) = An+B (∀n ∈ A),
h(m) = Am+ C (∀m ∈ B),
f(k) = Ak + (B + C) (∀k ∈ C)

give a solution of (∗).

Problem. Under what condition is true that F does not contain more ele-
ments?

3.

Conjecture 3. If a, b ∈ N, a 6= b, f1, f2 are real-valued completely additive
functions and f1(p + a) ≡ f2(p + b) (mod 1) for every p ∈ P, then f1(n) ≡
≡ f2(n) ≡ 0 (mod 1) holds for every n ∈ N.

Conjecture 4. If a, b ∈ N, a 6= b, f1, f2 are real-valued completely additive
functions and f1(p + a) = f2(p + b) for every p ∈ P, then f1(n) = f2(n) = 0
holds for every n ∈ N.

Conjecture 5. Let D be a positive integer. Assume that the arithmetical
function f : N→ C satisfy

f(n2 +Dm2) = f(n)2 +Df(m)2 for all n,m ∈ N.

Then one of the following assertions holds:

a) f(n) = 0 for all n ∈ N,

b) f(n) =
ε(n)
D + 1

for all n ∈ N,

c) f(n) = ε(n)n for all n ∈ N,

where ε(n) = 1 if n ∈ E and ε(n) = ±1 if n 6∈ E, E := {n2 +Dm2 | n,m ∈ N}.
This is proved in [1] for D = 1 and in [6] for D = 2, 3.

4. Let f, g be arithmetical functions and a, b ∈ N. Assume that

f(p+ q + a+ b) = g(p+ a) + g(q + b) for all p, q ∈ P.

Let
Sp := g(p+ a) for all p ∈ P.
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Conjecture 6. We have

Sp =
p− 3

2
S5 −

p− 5
2

S3 for all p ∈ P \ {2},

that is

g(p+ a) =
p− 3

2
g(5 + a)− p− 5

2
g(3 + a) for all p ∈ P \ {2}.
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[3] Kátai, I. and B. M. Phong, On the multiplicative group generated by{
[
√

2n]
n | n ∈ N

}
II., Acta Math. (Szeged), 81(3–4) (2015), 431–436.
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