UNSOLVED PROBLEMS SECTION

SOME UNSOLVED PROBLEMS ON ARITHMETICAL FUNCTIONS

Imre Kátai and Bui Minh Phong

(Budapest, Hungary)
Let, as usual, $\mathcal{P}, \mathbb{N}, \mathbb{Q}, \mathbb{R}$ be the set of primes, positive integers, rationals and real numbers, respectively. Let $\mathbb{Q}_{\times}=$multiplicative group of positive rationals.

1. Let α, β distinct positive numbers, at least one of which is irrational. Let $\gamma_{n}=\frac{[\alpha n]}{[\beta n]}, \mathcal{B}$ be the multiplicative group generated by $\left\{\gamma_{n} \mid n \in \mathbb{N}\right\}$.

Conjecture 1. $\mathcal{B}=\mathbb{Q}_{\times}$.
Conjecture 2. Let f be a completely additive function for which

$$
f([\alpha n])-f([\beta n]) \rightarrow C \quad(n \rightarrow \infty) .
$$

Then $f(n)=A \log (n), A=\frac{C}{\log \frac{\alpha}{\beta}}$.
Note. We proved these conjectures in the case $\alpha=\sqrt{2}, \beta=1$ (see [2], [3], [4], [5]).
2. Let \mathcal{A}, \mathcal{B} be the subsets of $\mathbb{N}, \mathcal{C}=\mathcal{A} \oplus \mathcal{B}=\{a+b \mid a \in \mathcal{A}, b \in \mathcal{B}\}$. Let \mathcal{F} be the set of those collection of functions $f: \mathcal{C} \rightarrow \mathbb{R}, g: \mathcal{A} \rightarrow \mathbb{R}, h: \mathcal{C} \rightarrow \mathbb{R}$, for which

$$
\begin{equation*}
f(a+b)=g(a)+h(b) \quad \text { for all } \quad a \in \mathcal{A}, b \in \mathcal{B} \tag{*}
\end{equation*}
$$

is satisfied.
It is clear that for each choice of $A, B, C \in \mathbb{R}$, the functions

$$
\left\{\begin{aligned}
g(n) & =A n+B \quad(\forall n \in \mathcal{A}), \\
h(m) & =A m+C \quad(\forall m \in \mathcal{B}), \\
f(k) & =A k+(B+C) \quad(\forall k \in \mathcal{C})
\end{aligned}\right.
$$

give a solution of $(*)$.
Problem. Under what condition is true that \mathcal{F} does not contain more elements?
3.

Conjecture 3. If $a, b \in \mathbb{N}, a \neq b, f_{1}, f_{2}$ are real-valued completely additive functions and $f_{1}(p+a) \equiv f_{2}(p+b)(\bmod 1)$ for every $p \in \mathcal{P}$, then $f_{1}(n) \equiv$ $\equiv f_{2}(n) \equiv 0(\bmod 1)$ holds for every $n \in \mathbb{N}$.

Conjecture 4. If $a, b \in \mathbb{N}, a \neq b$, f_{1}, f_{2} are real-valued completely additive functions and $f_{1}(p+a)=f_{2}(p+b)$ for every $p \in \mathcal{P}$, then $f_{1}(n)=f_{2}(n)=0$ holds for every $n \in \mathbb{N}$.

Conjecture 5. Let D be a positive integer. Assume that the arithmetical function $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfy

$$
f\left(n^{2}+D m^{2}\right)=f(n)^{2}+D f(m)^{2} \quad \text { for all } \quad n, m \in \mathbb{N}
$$

Then one of the following assertions holds:
a) $f(n)=0$ for all $n \in \mathbb{N}$,
b) $f(n)=\frac{\epsilon(n)}{D+1} \quad$ for all $n \in \mathbb{N}$,
c) $\quad f(n)=\epsilon(n) n \quad$ for all $\quad n \in \mathbb{N}$,
where $\epsilon(n)=1$ if $n \in E$ and $\epsilon(n)= \pm 1$ if $n \notin E, E:=\left\{n^{2}+D m^{2} \mid n, m \in \mathbb{N}\right\}$.
This is proved in [1] for $D=1$ and in [6] for $D=2,3$.
4. Let f, g be arithmetical functions and $a, b \in \mathbb{N}$. Assume that

$$
f(p+q+a+b)=g(p+a)+g(q+b) \quad \text { for all } \quad p, q \in \mathcal{P}
$$

Let

$$
S_{p}:=g(p+a) \quad \text { for all } \quad p \in \mathcal{P}
$$

Conjecture 6. We have

$$
S_{p}=\frac{p-3}{2} S_{5}-\frac{p-5}{2} S_{3} \quad \text { for all } \quad p \in \mathcal{P} \backslash\{2\}
$$

that is

$$
g(p+a)=\frac{p-3}{2} g(5+a)-\frac{p-5}{2} g(3+a) \quad \text { for all } \quad p \in \mathcal{P} \backslash\{2\}
$$

References

[1] Bojan, Basic, Characterization of arithmetic functions that preserve the sum-of-squares operation, Acta Mathematica Sinica, English Series, 30 (2014), Issue 4, 689-695.
[2] Kátai, I. and B. M. Phong, On the multiplicative group generated by $\left\{\left.\frac{[\sqrt{2} n]}{n} \right\rvert\, n \in \mathbb{N}\right\}$, Acta Math. Hungar., 145(1) (2015), 80-87.
[3] Kátai, I. and B. M. Phong, On the multiplicative group generated by $\left\{\left.\frac{[\sqrt{2} n]}{n} \right\rvert\, n \in \mathbb{N}\right\}$ II., Acta Math. (Szeged), 81(3-4) (2015), 431-436.
[4] Kátai, I. and B. M. Phong, On the multiplicative group generated by $\left\{\left.\frac{[\sqrt{2} n]}{n} \right\rvert\, n \in \mathbb{N}\right\}$ III., Acta Math. Hungar., 147 (2015), 247-254.
[5] Kátai, I. and B. M. Phong, On the multiplicative group generated by $\left\{\left.\frac{[\sqrt{2} n]}{n} \right\rvert\, n \in \mathbb{N}\right\}$ IV., Mathematica Pannonica (Pécs), (accepted).
[6] Khanh, B. M. M., On the equation $f\left(n^{2}+D m^{2}\right)=f(n)^{2}+D f(m)^{2}$, Annales Univ. Sci. Budapest., Sect. Comp., 44 (2015), 59-68.

I. Kátai and B. M. Phong
Department of Computer Algebra
Faculty of Informatics
Eötvös Loránd University
H-1117 Budapest
Pázmány Péter sétány $1 / \mathrm{C}$
Hungary
katai@inf.elte.hu
bui@inf.elte.hu

