UNSOLVED PROBLEMS SECTION

ABOUT AN UNSOLVED PROBLEM INVOLVING NORMAL NUMBERS

Jean-Marie De Koninck ${ }^{1}$ (Québec, Canada)
Imre Kátai (Budapest, Hungary)

Abstract

We examine the discrepancy of various sequences created from the values of additive functions and exhibit connections with q-normal numbers.

1. Introduction

Let \mathcal{A} be the set of all additive functions and let \mathcal{M}_{1} stand for the set of all multiplicative functions f such that $|f(n)| \leq 1$ for all integers $n \geq 1$. Let \wp be the set of all prime numbers. As usual, given a real number y, we set $e(y):=\exp \{2 \pi i y\}$ and write $\{y\}$ for the fractional part of y.

Given a fixed integer $q \geq 2$, we say that a real number α is a q-normal number if the sequence $\left(\left\{q^{n} \alpha\right\}\right)_{n \geq 1}$ is uniformly distributed modulo 1. Moreover, given N real numbers y_{1}, \ldots, y_{N}, we define the discrepancy of these numbers as

$$
D\left(y_{1}, \ldots, y_{N}\right):=\sum_{[\alpha, \beta) \subseteq[0,1]}\left|\frac{1}{N} \sum_{\left\{y_{j}\right\} \in[\alpha, \beta)} 1-(\beta-\alpha)\right| .
$$

Key words and phrases: Discrepancy, normal numbers. 2010 Mathematics Subject Classification: 11K16.
${ }^{1}$ Research supported in part by a grant from NSERC.

In 1948, Erdős and Turán [3], 4] proved that, given any positive integer M,

$$
\begin{equation*}
D\left(y_{1}, \ldots, y_{N}\right) \leq \frac{c}{N}\left|\sum_{k=1}^{M} \frac{1}{k}\right| \sum_{j=1}^{N} e\left(k y_{j}\right)\left|+\frac{1}{M}\right| \tag{1.1}
\end{equation*}
$$

Later, Daboussi and Delange [1], 2] proved that, if $h \in \mathcal{M}_{1}$ and $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, then

$$
\begin{equation*}
\sum_{n \leq x} h(n) e(n \alpha)=o(x) \quad(x \rightarrow \infty) \tag{1.2}
\end{equation*}
$$

By using a simple method, the second author [5] gave a generalization of Daboussi's result, namely the following.

Lemma 1. Given a sequence of complex numbers $\left(a_{n}\right)_{n \geq 1}$ such that $\left|a_{n}\right| \leq 1$ for each integer $n \geq 1$ and letting $f \in \mathcal{M}_{1}$, set

$$
S(x):=\sum_{n \leq x} f(n) a_{n}
$$

Let \wp_{x} be a subset of primes all of whose elements do not exceed x and let $A_{x}:=\sum_{p \in \wp_{x}} \frac{1}{p}$. Then,

$$
\begin{equation*}
|S(x)|^{2} \leq \frac{C x^{2}}{A_{x}}+\frac{x}{A_{x}^{2}} \sum_{\substack{p_{1}, p_{2} \in \wp \\ p_{1} \neq p_{2}}}\left|\sum_{m \leq \min \left(x / p_{1}, x / p_{2}\right)} a_{p_{1} m} \overline{a_{p_{2} m}}\right| \tag{1.3}
\end{equation*}
$$

where C is an absolute constant (so that the right hand side of 1.3) does not depend on f).

It follows from this that if $\alpha \in \mathbb{R} \backslash Q, h \in \mathcal{A}$ and $y_{n}(h, \alpha)=h(n)+n \alpha$ for $n=1,2,3, \ldots$, then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sup _{h \in \mathcal{A}} D\left(y_{1}(h, \alpha), \ldots, y_{N}(h, \alpha)\right)=0 \tag{1.4}
\end{equation*}
$$

2. Main results

Given $\alpha \in \mathbb{R} \backslash Q$ and $h \in \mathcal{A}$, let $z_{n}(h, \alpha)=h(n)+q^{n} \alpha$ for $n=1,2,3, \ldots$.

Theorem 1. For almost all $\alpha \in \mathbb{R} \backslash \mathbb{Q}$,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sup _{h \in \mathcal{A}} D\left(z_{1}(h, \alpha), \ldots, z_{N}(h, \alpha)\right)=0 \tag{2.1}
\end{equation*}
$$

Remark 1. Considering the additive function h defined by $h(n)=0$ for all $n \in \mathbb{N}$, one can easily see that (2.1) can only hold if α is a q-normal number.

An interesting conjecture and an unsolved problem related to Theorem 1 are the following.

Conjecture. If α is a q-normal number, then (2.1) holds.
Open problem. Construct a real number α for which (2.1) holds.
Theorem 2. Let $r_{1}<r_{2}<\cdots$ be an infinite sequence of positive integers satisfying the gap condition $\frac{r_{k+1}}{r_{k}}>\theta$ for all $k \geq k_{0}$, for some fixed real number $\theta>1$, and let $w_{n}(h, \alpha):=h(n)+r_{n} \alpha$ for $n=1,2,3 \ldots$ Then, for almost all α,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sup _{h \in \mathcal{A}} D\left(w_{1}(h, \alpha), \ldots, w_{N}(h, \alpha)\right)=0 \tag{2.2}
\end{equation*}
$$

3. Proof of the theorems

Since Theorem 1 is clearly a consequence of Theorem 2, we shall only prove Theorem2

Let $P, Q \in \wp$ with $P>Q$ and, for each $M \in \mathbb{N}$, set $L_{M}:=\left[M^{2}, M^{2}+2 M\right]$ and

$$
T_{M}(\alpha)=\sum_{k \in L_{M}} e\left(\left(r_{P k}-r_{Q k}\right) \alpha\right)
$$

First observe that, for some positive constants C_{1} and C_{2}, we have

$$
\begin{equation*}
\int_{0}^{1}\left|T_{M}(\alpha)\right|^{4} d \alpha \leq C_{1} M^{2}+C_{2} \tag{3.1}
\end{equation*}
$$

Now, since the left hand side of (3.1) represents the number of solutions $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$ of the equation

$$
\begin{equation*}
r_{P k_{1}}-r_{Q k_{1}}+r_{P k_{2}}-r_{Q k_{2}}=r_{P k_{3}}-r_{Q k_{3}}+r_{P k_{4}}-r_{Q k_{4}} \tag{3.2}
\end{equation*}
$$

and since

$$
P M^{2}-Q\left(M^{2}+2 M\right)=(P-Q) M^{2}-Q \cdot 2 M
$$

it follows that

$$
\frac{\max _{\nu \in L_{M}} r_{Q \nu}}{\max _{\mu \in L_{M}} r_{P \mu}} \leq\left(\frac{1}{\theta}\right)^{(P-Q) M^{2}-Q \cdot 2 M}
$$

First assuming that $k_{1}>k_{2}, k_{3}>k_{4}$ and $k_{1} \geq k_{3}$, and dividing 3.2 by $r_{P k_{1}}$, we obtain that

$$
1-\frac{r_{Q k_{1}}}{r_{P k_{1}}}+\frac{r_{P k_{2}}}{r_{P k_{1}}}-\frac{r_{Q k_{2}}}{r_{P k_{1}}}=\frac{r_{P k_{3}}}{r_{P k_{1}}}-\frac{r_{Q k_{3}}}{r_{P k_{1}}}+\frac{r_{P k_{4}}}{r_{P k_{1}}}-\frac{r_{Q k_{4}}}{r_{P k_{1}}} .
$$

If $k_{1}=k_{3}$, then $\left|k_{2}-k_{4}\right| \leq c$, where c is a constant that may depend on θ if $Q M^{2}>k_{0}$. On the other hand, if $k_{1}>k_{3}$, then $k_{1}-k_{3} \leq c$. We therefore have that if k_{1}, k_{3} and k_{2} are fixed, the number of different choices for k_{4} cannot exceed c. It follows from this observation that equation (3.2) has no more than $C_{1} M^{2}$ solutions.

For each $M \in \mathbb{N}$, consider the set

$$
J_{M}:=\left\{\alpha \in[0,1):\left|T_{M}(\alpha)\right| \geq M^{3 / 4+\delta}\right\}
$$

From 3.1, it follows that $\lambda\left(J_{M}\right) \leq 1 / M^{1+4 \delta}$ (here λ stands for the Lebesgue measure) and therefore that $\sum_{M \geq 1} \lambda\left(J_{M}\right)<+\infty$. We may therefore apply the Borel-Cantelli Lemma and conclude that for almost $\alpha \in[0,1)$ there exists a positive integer M_{0} such that

$$
\alpha \notin \bigcup_{M \geq M_{0}} J_{M}
$$

Consequently, letting $M_{1}:=\left\lfloor x^{1 / 3}\right\rfloor \geq M_{0}$, we obtain that

$$
\begin{align*}
\frac{1}{x}\left|\sum_{k \leq x} e\left(r_{P k}-r_{Q k}\right) \alpha\right| \leq & \frac{1}{x}\left|\sum_{k \leq M_{1}^{2}} e\left(r_{P k}-r_{Q k}\right) \alpha\right|+ \\
& +\frac{1}{x} \sum_{M_{1}^{2}<M \leq \sqrt{x}}\left|T_{M}(\alpha)\right|+O\left(\frac{1}{\sqrt{x}}\right) \leq \tag{3.3}\\
\leq & \frac{M_{1}^{2}}{x}+O\left(\frac{1}{\sqrt{x}}\right)+\frac{1}{x} \sum_{M \leq \sqrt{x}} M^{3 / 4+\delta}
\end{align*}
$$

Observe that this last quantity tends to 0 as $x \rightarrow \infty$ and that the convergence is uniform with respect to h.

Now, let W_{1} be the set of those α for which the last quantity in (3.3) does not tend to 0 for at least one prime pair $\{P, Q\}$, in which case we have that $\lambda\left(W_{1}\right)=0$. From Lemma 1, we obtain that

$$
\Delta(x, \alpha):=\sup _{h \in \mathcal{A}} \frac{1}{x}\left|\sum_{n \leq x} e\left(w_{n}(h, \alpha)\right)\right|
$$

tends to zero as $x \rightarrow \infty$ whenever $\alpha \notin W_{1}$. Let us now replace α by $\ell \alpha$ (where $\ell \in \mathbb{N}$), and define W_{ℓ} to be the set of those α for which the last quantity in (3.3) does not tend to zero if α is replaced by $\ell \alpha$. We then have $\lambda\left(W_{\ell}\right)=0$, so that $\lambda\left(\bigcup_{\ell \geq 1} W_{\ell}\right)=0$.

$$
\begin{gathered}
\text { Setting } S:=\mathbb{R} \backslash\left(\bigcup_{\ell \geq 1} W_{\ell}\right) \text {, then for } \alpha \in S \text {, we have } \\
\Delta(x, \ell \alpha) \rightarrow 0 \quad(x \rightarrow \infty) .
\end{gathered}
$$

Then, using the Erdős-Turán inequality (1.1), we obtain that, given any positive integer K,

$$
\begin{aligned}
D_{N}\left(w_{1}(h, \alpha), \ldots, w_{N}(h, \alpha)\right) & \left.\leq \frac{C}{K}+\sum_{\ell=1}^{K} \frac{1}{\ell} \frac{1}{N} \right\rvert\, \sum_{n \leq N} e\left(w_{n}(\ell h, \ell \alpha) \mid\right. \\
& \leq \frac{C}{K} \sum_{\ell=1}^{K} \frac{1}{\ell} \Delta(N, \ell \alpha)
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} D_{N}\left(w_{1}(h, \alpha), \ldots, w_{N}(h, \alpha)\right) \leq \frac{C}{K} \tag{3.4}
\end{equation*}
$$

Since K can be chosen arbitrarily large, it follows that the left hand side of (3.4) is zero, thus completing the proof of Theorem 2 .

References

[1] Daboussi, H. and H. Delange, Quelques propriétés des fonctions multiplicatives de module au plus égal à 1, C. R. Acad. Sci. Paris Série A, 278 (1974), 657-660.
[2] Daboussi, H. and H. Delange, On multiplicative arithmetical functions whose modulus does not exceed one, J. London Math. Soc., (2) 26 (1982), no. 2, 245-264.
[3] Erdős, P. and P. Turán, On a problem in the theory of uniform distribution I, Nederl. Akad. Wetensch., 51 (1948), 1146-1154.
[4] Erdős, P. and P. Turán, On a problem in the theory of uniform distribution II, Nederl. Akad. Wetensch., 51 (1948), 1262-1269.
[5] Kátai, I., A remark on a theorem of H. Daboussi, Acta Math. Hungar., 47 (1986), no. 1-2, 223-225.
J.-M. De Koninck

Dép. math. et statistique
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

I. Kátai

Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@inf.elte.hu

