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UNSOLVED PROBLEMS SECTION

ABOUT AN UNSOLVED PROBLEM INVOLVING

NORMAL NUMBERS

Jean-Marie De Koninck1 (Québec, Canada)

Imre Kátai (Budapest, Hungary)

Abstract. We examine the discrepancy of various sequences created from
the values of additive functions and exhibit connections with q-normal
numbers.

1. Introduction

Let A be the set of all additive functions and let M1 stand for the set of
all multiplicative functions f such that |f(n)| ≤ 1 for all integers n ≥ 1. Let
℘ be the set of all prime numbers. As usual, given a real number y, we set
e(y) := exp{2πiy} and write {y} for the fractional part of y.

Given a fixed integer q ≥ 2, we say that a real number α is a q-normal num-
ber if the sequence ({qnα})n≥1 is uniformly distributed modulo 1. Moreover,
given N real numbers y1, . . . , yN , we define the discrepancy of these numbers
as

D(y1, . . . , yN ) :=
∑

[α,β)⊆[0,1]

∣∣∣∣∣∣ 1
N

∑
{yj}∈[α,β)

1− (β − α)

∣∣∣∣∣∣ .
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In 1948, Erdős and Turán [3], [4] proved that, given any positive integer M ,

(1.1) D(y1, . . . , yN ) ≤ c

N

∣∣∣∣∣∣
M∑
k=1

1
k

∣∣∣∣∣∣
N∑
j=1

e(kyj)

∣∣∣∣∣∣+
1
M

∣∣∣∣∣∣ .
Later, Daboussi and Delange [1], [2] proved that, if h ∈M1 and α ∈ R \Q,

then

(1.2)
∑
n≤x

h(n)e(nα) = o(x) (x→∞).

By using a simple method, the second author [5] gave a generalization of
Daboussi’s result, namely the following.

Lemma 1. Given a sequence of complex numbers (an)n≥1 such that |an| ≤ 1
for each integer n ≥ 1 and letting f ∈M1, set

S(x) :=
∑
n≤x

f(n)an.

Let ℘x be a subset of primes all of whose elements do not exceed x and let

Ax :=
∑
p∈℘x

1
p

. Then,

(1.3) |S(x)|2 ≤ Cx2

Ax
+

x

A2
x

∑
p1,p2∈℘
p1 6=p2

∣∣∣∣∣∣
∑

m≤min(x/p1,x/p2)

ap1map2m

∣∣∣∣∣∣ ,
where C is an absolute constant (so that the right hand side of 1.3) does not
depend on f).

It follows from this that if α ∈ R \Q, h ∈ A and yn(h, α) = h(n) + nα for
n = 1, 2, 3, . . ., then

(1.4) lim
N→∞

sup
h∈A

D(y1(h, α), . . . , yN (h, α)) = 0.

2. Main results

Given α ∈ R \Q and h ∈ A, let zn(h, α) = h(n) + qnα for n = 1, 2, 3, . . ..
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Theorem 1. For almost all α ∈ R \Q,

(2.1) lim
N→∞

sup
h∈A

D(z1(h, α), . . . , zN (h, α)) = 0.

Remark 1. Considering the additive function h defined by h(n) = 0 for all
n ∈ N, one can easily see that (2.1) can only hold if α is a q-normal number.

An interesting conjecture and an unsolved problem related to Theorem 1
are the following.

Conjecture. If α is a q-normal number, then (2.1) holds.

Open problem. Construct a real number α for which (2.1) holds.

Theorem 2. Let r1 < r2 < · · · be an infinite sequence of positive integers sat-
isfying the gap condition

rk+1

rk
> θ for all k ≥ k0, for some fixed real number

θ > 1, and let wn(h, α) := h(n)+rnα for n = 1, 2, 3 . . .. Then, for almost all α,

(2.2) lim
N→∞

sup
h∈A

D(w1(h, α), . . . , wN (h, α)) = 0.

3. Proof of the theorems

Since Theorem 1 is clearly a consequence of Theorem 2, we shall only prove
Theorem 2.

Let P,Q ∈ ℘ with P > Q and, for each M ∈ N, set LM := [M2,M2 + 2M ]
and

TM (α) =
∑
k∈LM

e ((rPk − rQk)α) .

First observe that, for some positive constants C1 and C2, we have

(3.1)

1∫
0

|TM (α)|4 dα ≤ C1M
2 + C2.

Now, since the left hand side of (3.1) represents the number of solutions
(k1, k2, k3, k4) of the equation

(3.2) rPk1 − rQk1 + rPk2 − rQk2 = rPk3 − rQk3 + rPk4 − rQk4
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and since
PM2 −Q(M2 + 2M) = (P −Q)M2 −Q · 2M,

it follows that
maxν∈LM

rQν
maxµ∈LM

rPµ
≤
(

1
θ

)(P−Q)M2−Q·2M

.

First assuming that k1 > k2, k3 > k4 and k1 ≥ k3, and dividing (3.2) by
rPk1 , we obtain that

1− rQk1
rPk1

+
rPk2
rPk1

− rQk2
rPk1

=
rPk3
rPk1

− rQk3
rPk1

+
rPk4
rPk1

− rQk4
rPk1

.

If k1 = k3, then |k2 − k4| ≤ c, where c is a constant that may depend on θ if
QM2 > k0. On the other hand, if k1 > k3, then k1−k3 ≤ c. We therefore have
that if k1, k3 and k2 are fixed, the number of different choices for k4 cannot
exceed c. It follows from this observation that equation (3.2) has no more than
C1M

2 solutions.
For each M ∈ N, consider the set

JM :=
{
α ∈ [0, 1) : |TM (α)| ≥M3/4+δ

}
.

From (3.1), it follows that λ(JM ) ≤ 1/M1+4δ (here λ stands for the Lebesgue
measure) and therefore that

∑
M≥1

λ(JM ) < +∞. We may therefore apply the

Borel–Cantelli Lemma and conclude that for almost α ∈ [0, 1) there exists a
positive integer M0 such that

α 6∈
⋃

M≥M0

JM .

Consequently, letting M1 := bx1/3c ≥M0, we obtain that

1
x

∣∣∣∣∣∣
∑
k≤x

e(rPk − rQk)α

∣∣∣∣∣∣ ≤ 1
x

∣∣∣∣∣∣
∑
k≤M2

1

e(rPk − rQk)α

∣∣∣∣∣∣+
+

1
x

∑
M2

1<M≤
√
x

|TM (α)|+O

(
1√
x

)
≤

≤ M2
1

x
+O

(
1√
x

)
+

1
x

∑
M≤
√
x

M3/4+δ.

(3.3)

Observe that this last quantity tends to 0 as x → ∞ and that the conver-
gence is uniform with respect to h.
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Now, let W1 be the set of those α for which the last quantity in (3.3) does
not tend to 0 for at least one prime pair {P,Q}, in which case we have that
λ(W1) = 0. From Lemma 1, we obtain that

∆(x, α) := sup
h∈A

1
x

∣∣∣∣∣∣
∑
n≤x

e(wn(h, α))

∣∣∣∣∣∣
tends to zero as x→∞ whenever α 6∈W1. Let us now replace α by `α (where
` ∈ N), and define W` to be the set of those α for which the last quantity in
(3.3) does not tend to zero if α is replaced by `α. We then have λ(W`) = 0, so

that λ

⋃
`≥1

W`

 = 0.

Setting S := R \

⋃
`≥1

W`

, then for α ∈ S, we have

∆(x, `α)→ 0 (x→∞).

Then, using the Erdős-Turán inequality (1.1), we obtain that, given any positive
integer K,

DN (w1(h, α), . . . , wN (h, α)) ≤ C

K
+

K∑
`=1

1
`

1
N

∣∣∣∣∣∣
∑
n≤N

e(wn(`h, `α)

∣∣∣∣∣∣
≤ C

K

K∑
`=1

1
`

∆(N, `α).

Hence,

(3.4) lim sup
N→∞

DN (w1(h, α), . . . , wN (h, α)) ≤ C

K
.

Since K can be chosen arbitrarily large, it follows that the left hand side of
(3.4) is zero, thus completing the proof of Theorem 2.
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