CONGRUENTIAL GENERATOR OF COMPLEX PSEUDO-RANDOM OF NUMBERS

Tran The Vinh (Odessa, Ukraine)
Communicated by Imre Kátai

(Received August 26, 2015; accepted September 15, 2015)

Abstract

The sequences of complex pseudo-random of numbers (PRN's) producing by powers of generating element of the norm group E_{m} in the residue class ring modulo p^{m} (p is a rational prime) over the ring of Gaussian integers are studied.

1. Introduction

We consider the sequence of complex numbers $\left\{z_{n}\right\},\left|z_{n}\right| \leq 1$. Let $0 \leq \xi_{1}<$ $<\xi_{2} \leq 1,0 \leq \varphi_{1}<\varphi_{2} \leq 2 \pi, N(z)=|z|^{2}$, and let $P(\xi, \varphi)$ denotes the sectorial region of unit circle $|z| \leq 1$

$$
\begin{equation*}
P=P(\xi, \varphi):=\left\{z \in \mathbb{C}: \xi_{1}<N(z) \leq \xi_{2}, \varphi_{1}<\arg z \leq \varphi_{2}\right\} \tag{1}
\end{equation*}
$$

Denote by \mathfrak{F} the collection of sectorial regions $P(\xi, \varphi)$ for all ξ and φ.
We say that the sequence $\left\{z_{n}\right\}$ is pseudo-random in the unit circle if it is induced by a determinative algorithm and its statistic properties are "similar" to the property of the sequence of the random numbers. The "similarity"

Key words and phrases: Gaussian integers, the sequence of pseudo-random numbers, discrepancy.
2010 Mathematics Subject Classification: 11K45, 11T71, 94A60, 11L07, 11T23.
This work was completed with the support of the Hungarian and Vietnamese TET (grant agreement no. TET 10-1-2011-0645).
means that this sequence closely adjacent to uniformly distributed in the disk $|z| \leq 1$, and its elements are uncorrelated. On these properties of the sequence of pseudo-random numbers (abbreviation: PRN's) can destine by value of discrepancy D_{N} of the points $z_{1}, z_{2}, \ldots, z_{N}$:

$$
\begin{equation*}
D_{N}\left(z_{1}, \ldots, z_{N}\right):=\sup _{P \subset \mathbb{C}_{1}}\left|\frac{A_{N}(P)}{N}-\frac{|P|}{\pi}\right| \tag{2}
\end{equation*}
$$

where $\mathbb{C}_{1}:=\{z \in \mathbb{C},|z| \leq 1\} ; A_{N}(P)$ is the number of points among z_{1}, \ldots, z_{N} falling into $P,|P|$ denotes the volume P; supremum is extended over all sectorial region P of unit circle $|z| \leq 1$.

The similar definition of discrepancy D_{N} has for the s-dimensional sequence of complex points $Z_{n}^{(s)}=\left(z_{1}^{(s)}, \ldots, z_{n}^{(s)}\right), z_{j} \in \mathbb{C}$.

We say that the sequence z_{n} passes the s-dimensional test on uncorrelatedness if it passes the s-dimensional test on equidistribution
(i.e. $D_{N}^{(s)}\left(z_{1}^{(s)}, \ldots, z_{N}^{(s)}\right) \rightarrow 0$ at $N \rightarrow \infty$).

For the construction of the sequence of PRN's on $[0,1)$ frequently the congruential recursion of the form

$$
y_{n+1} \equiv f\left(y_{n}\right) \quad(\bmod m)
$$

is used, where $f(u)$ is an integral-valued function.
We will investigate the sequence of complex numbers produced by recursion

$$
\begin{equation*}
z_{n+1} \equiv z_{0} \cdot(u+i v)^{n} \quad\left(\bmod p^{m}\right) \tag{3}
\end{equation*}
$$

where z_{0} and $u+i v$ are Gaussian integers, $\left(z_{0}, p\right)=1 ; u^{2}+v^{2} \equiv \pm 1\left(\bmod p^{m}\right)$.
For real sequences x_{n} produced by congruential recursion, an estimate for D_{N} can be obtained by the Erdős-Turán-Koksma inequality (see, [3, Th. 3.10].

In our paper we get an analogue of the Erdős-Turán-Koksma inequality for the sequence of pseudorandom complex numbers. And then we show that the sequence generated by (3) is a sequence of PRN's in \mathbb{C}_{1}.

2. Preliminary results

Notation. Let G denote the ring of the Gaussian integers, $G:=\{a+b i: a, b \in$ $\in \mathbb{Z}\} ; N(z)=|z|^{2}$ be the norm of $z \in G$. For $\gamma \in G$ denote G_{γ} (respectively, $\left.G_{\gamma}^{*}\right)$ the complete system of residues (respectively, reduced residues system) in G modulo $\gamma ; p$ is a prime number in $\mathbb{Z} ; \mathfrak{p}$ is a Gaussian prime number. If q is
a positive integer, $q>1$, then we write $e_{q}(x)=e^{2 \pi i \frac{x}{q}}$ for $x \in \mathbb{R}$. Symbols "O" and " \ll " are equivalent; $\nu_{p}(\alpha)=k$ if $\mathfrak{p}^{k} \mid \alpha, \mathfrak{p}^{k+1} \nless \alpha$.

Let $M>1$ be a positive integer and let $y_{1}, y_{2}, \ldots, y_{N}$ be some sequence of points from G_{M} and let $Y_{M}=\left\{\left.\frac{y_{n}}{M} \right\rvert\, n=0, \ldots, N-1\right\}$. For $P \in \mathfrak{F}$ denote $A\left(P, Y_{M}\right)$ the number of points from Y_{M} contained in P.

We will adapt the proof from [2] for an analogue of the Erdős-TuránKoksma inequality.

We define the adequate approximation of sectorial region $P \in \mathfrak{F}$,

$$
P:=\left\{\frac{z}{q}: z \in G, N_{1} \leq N(z) \leq N_{2}, 0 \leq \varphi_{1}<\arg z \leq \varphi_{2}<2 \pi\right\}, q \in \mathbb{N} .
$$

We say that the set $S(P)$ is the adequate approximation of P if

- (i) $A\left(P, Y_{N}(M)\right)=A\left(S(P), Y_{N}(M)\right)+O\left(N^{\frac{1}{2}}\right)$,
- (ii) volumes $|P|$ and $|S(P)|$ are "similar",
- (iii) $A\left(S(P), Y_{N}(M)\right.$) has a representation by an exponential sum.

Let $N_{1}, N_{2}, \varphi_{1}, \varphi_{2}$ be the parameters in the definition of P. For $r, s \in \mathbb{Z}_{M}$ we set $\bar{r}=\frac{r}{M}, \bar{s}=\frac{s}{M}$.

Determine
$S_{\bar{r}, \bar{s}}:\left\{\beta=\frac{\alpha}{M}: \alpha \in G_{M}, \bar{r}<N(\beta) \leq \bar{r}+\frac{1}{M}, 2 \pi \bar{s}<\arg \alpha \leq 2 \pi\left(\bar{s}+\frac{1}{M}\right)\right\}$.
Put

$$
S(P):=\bigcup_{\substack{\bar{r}, \bar{s} \\ S_{\bar{s}, \bar{s}} \subset P}} S_{\bar{r}, \bar{s}}
$$

It is obvious that $S(P)=P\left(\bar{N}_{1}, \bar{N}_{2}, \psi_{1}, \psi_{2}\right)$, where

$$
\begin{aligned}
& \bar{N}_{1}=\min \left\{\frac{a}{M}, a \in \mathbb{Z}_{M}: \quad N_{1} \leq \frac{a}{M}\right\} \\
& \bar{N}_{2}=\min \left\{\frac{b}{M}, b \in \mathbb{Z}_{M}: N_{2} \leq \frac{b}{M}\right\} \\
& \psi_{1}=\min \left\{\frac{2 \pi a}{M}, a \in \mathbb{Z}_{M}: \psi_{1} \leq \frac{2 \pi a}{M}\right\} \\
& \psi_{2}=\min \left\{\frac{2 \pi b}{M}, b \in \mathbb{Z}_{M}: \psi_{2} \leq \frac{2 \pi b}{M}\right\} .
\end{aligned}
$$

We proved the following analogue of the Erdős-Turán-Koksma inequality (see, 3]

Theorem 1. Let $M>1$ be integer. Then for any sequence $\left\{y_{n}\right\}, y_{n} \in G_{M}$, the discrepancy D_{N} of points $\left\{\frac{y_{n}}{M}\right\}$ satisfies the inequality

$$
\begin{aligned}
D_{N} & \leq 2\left(1-\left(1-\frac{2 \pi}{M}\right)^{2}\right)+ \\
& +\frac{1}{M} \sum_{\substack{\gamma \in G_{M} \\
\gamma \neq 0}} \min \left(\frac{1}{|\sin \pi \Re(\gamma)|}, \frac{1}{|\sin \pi \Im(\gamma)|}\right) \frac{1}{N}\left(\left|S_{N}\right|+O\left(N^{\frac{1}{2}}\right)\right)
\end{aligned}
$$

where $S_{N}=\sum_{n=0}^{N-1} e_{M}\left(\Re\left(\gamma y_{n}\right)\right)$.
Proof. By an analogue with the work [2] we infer

$$
\begin{equation*}
R_{N}(S(P)):=\frac{A(S(P))}{N}-|S(P)|=\frac{1}{N} \sum_{n=0}^{N-1} \chi_{S(P)}\left(x_{n}\right)-|S(P)| \tag{5}
\end{equation*}
$$

where $x_{n}=\frac{y_{n}}{M}, \chi_{\Delta}$ is the characteristic function of the set Δ.
By the equality

$$
\chi_{S_{\bar{r}, \bar{s}}}(x)=\sum_{\alpha \in S_{\bar{r}, \bar{s}}} \frac{1}{M^{2}} \sum_{\gamma \in G_{M}} e_{M}(\gamma(\alpha-x))
$$

we get

$$
\leq \sum_{0 \neq \gamma \in G_{M}} \frac{1}{M^{2}}\left|R_{N}(S(P))\right| \leq \begin{gather*}
\left.\sum_{z(r, s) \in S_{\bar{r}, \bar{s}}} e_{M}(-\Re(\gamma z(r, s)))|\cdot| \frac{1}{N} \sum_{n=0}^{N-1} e_{M}\left(\Re\left(\gamma y_{n}\right)\right) \right\rvert\,, \tag{6}
\end{gather*}
$$

where $z(r, s)$ is the complex number such that

$$
N(z(r, s))=\frac{r}{M}, \arg z(r, s)=\frac{2 \pi s}{M} .
$$

In order to calculate the first inner sum over $S_{\bar{r}, \bar{s}}$ one needs an estimate of the sum

$$
\begin{equation*}
\sum_{M}=\sum_{\substack{N_{1}<N(\omega)<N_{2} \\ \varphi_{1} \leq \arg \omega \leq \varphi_{2}}} e_{M}(\Re(\gamma \omega)),\left(0 \neq \gamma \in G_{M}\right) \tag{7}
\end{equation*}
$$

The sum \sum_{M} can be considered as a sum of coefficients of the next Dirichlet series for the Hecke Z-function over the Gaussian field $\mathbb{Q}(i)$:

$$
Z_{m}\left(s, \delta_{0}, \delta_{1}\right)=\sum_{0 \neq \omega \in G} \frac{e^{2 \pi i \Re\left(\omega \delta_{1}\right)}}{N\left(\omega+\delta_{0}\right)^{s}} e^{4 m i \arg \omega},(\Re s>1) .
$$

Putting $\delta_{0}=0, \delta_{1}=\frac{\gamma}{M}$, we obtain for any $T>1$ by a standard way the following estimates:

$$
\begin{gather*}
\sum_{N(\omega) \leq X} e_{M}(\gamma \omega)=\left(\varphi_{2}-\varphi_{1}\right) \sum N(\omega) \leq x e_{M}(\gamma \omega)+O\left(\frac{1}{T} \sum_{N(\omega) \leq x} 1\right)+ \\
+O\left(\left(\varphi_{2}-\varphi_{1}\right) \sum_{m=1}^{T}\left|\sum_{N(\omega) \leq x} e_{M}(\gamma \omega) e^{4 m i \arg \omega}\right|\right) . \tag{8}\\
\sum_{N(\omega) \leq x} e_{M}(\gamma \omega) e^{4 m i \arg \omega} \lll \varepsilon \frac{x^{\frac{1}{2}+\varepsilon}}{M^{\frac{1}{4}}}+M^{\frac{1}{2}}(|m|+3)^{1+\varepsilon}
\end{gather*}
$$

(for the details, see Chapter 2 of [1], for example).
Next, we have a simple analogue of the estimate of linear exponential sum over G

$$
\begin{gather*}
\left|\sum_{N_{1}<N(\omega) \leq N_{2}} 2^{2 \pi i \Re(\alpha \omega)}\right| \leq \tag{10}\\
\leq\left(N_{2}-N_{1}\right)^{\frac{1}{2}} \min \left(\left(N_{2}-N_{1}\right)^{\frac{1}{2}}, \frac{1}{|\sin \pi \Re(\alpha)|}, \frac{1}{|\sin \pi \Im(\alpha)|}\right) .
\end{gather*}
$$

Now by (4)-(9), putting $T=x^{\frac{2}{3}}$ and taking into account that $|P|=$ $=\frac{\varphi_{2}-\varphi_{1}}{2}\left(N_{2}-N_{1}\right)$, we obtain our assertion.

3. Sequence of PRNs produced by the cyclic group $\boldsymbol{E}_{\boldsymbol{n}}$

Let $p \equiv 3(\bmod 4)$ be a prime integer. Consider the set of the classes of residue $\left(\bmod p^{n}\right)$ over G, such that for every $\alpha \in E_{n}$ we have $N(\alpha) \equiv \pm 1$ $\left(\bmod p^{n}\right)$. Respectively for a convolution of multiplication the set E_{n} forms a group. It is well known that a regular generative element of E_{1} (i.e. $u^{2}+v^{2} \equiv$ $\left.-1(\bmod p), u^{2}+v^{2}=-1+p h,(h, p)=1\right)$ is a generative element for any E_{ℓ},
$\ell=1,2, \ldots, n$. Moreover, $\left|E_{n}\right|=2(p+1) p^{n-1}\left(\left|E_{n}\right|\right.$ is the number of elements in E_{n}).

We fix the generative element of E_{n} and let some $z_{0} \in G_{n},\left(N\left(z_{0}\right), p\right)=1$. We call z_{0} an initial value for the sequence $\left\{z_{m}\right\}$, where $z_{m}=z_{0}(u+i v)^{m}$, $m=0,1, \ldots, N-1$.

Lemma 1 (([4], pp. 232-233)). Let $p \equiv 3(\bmod 4), n>3$, and let $u+i v$ is a generative element of the group E_{n}. Then for every $0 \leq \ell \leq p^{n-2}, 0 \leq k<$ $<2(p+1)$, we have

$$
(u+i v)^{2(p+1) p^{\ell}+k} \equiv A(\ell, k)+i B(\ell, k) \quad\left(\bmod p^{n}\right)
$$

where

$$
\begin{aligned}
& A(\ell, k) \equiv A_{0}(k)+A_{1}(k) \ell+\cdots+A_{n-1}(k) \ell^{n-1} \quad\left(\bmod p^{n}\right) \\
& B(\ell, k) \equiv B_{0}(k)+B_{1}(k) \ell+\cdots+B_{n-1}(k) \ell^{n-1} \quad\left(\bmod p^{n}\right)
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& A_{j}(k)=A_{j} u(k)-B_{j} v(k), B_{j}(k)=A_{j} v(k)+B_{j} u(k), j=0,1, \ldots, n-1 \\
& A_{0} \equiv 1 \quad(\bmod p), B_{0} \equiv 0 \quad(\bmod p) \\
& A_{1} \equiv 0 \quad\left(\bmod p^{3}\right), A_{2}=p^{2} A_{2}^{\prime},\left(A_{2}^{\prime}, p\right)=1 \\
& B_{1}=p B_{1}^{\prime}, \quad\left(B_{1}^{\prime}, p\right)=1, B_{2} \equiv A_{3} \equiv B_{3} \equiv \cdots \equiv A_{n-1} \equiv B_{n-1} \equiv 0 \quad\left(\bmod p^{3}\right) \\
& u(0)=1, v(0)=0, \quad(u(p+1), p)=1, p \| v(p+1) \\
& (v(k), p)=1 \text { for } k \neq \overline{0, p+1}
\end{aligned}
$$

Corollary 1.

$$
\begin{aligned}
& p \| A_{1}(k), A_{j}(k) \equiv 0 \quad\left(\bmod p^{2}\right), j=2,3, \ldots ; k \neq \overline{0, p+1} \\
& p^{2} \| A_{1}(0), A_{j}(0) \equiv 0 \quad\left(\bmod p^{3}\right), j=2,3, \ldots \\
& p^{2}\left\|A_{1}(p+1), p^{2}\right\| A_{2}(k), A_{j}(p+1) \equiv 0 \quad\left(\bmod p^{3}\right), j=3,4, \ldots \\
& p^{2} \| B_{2}(k) \text { if } k \neq \overline{0, p+1} ; B_{2}(k) \equiv 0 \quad\left(\bmod p^{3}\right) \text { else } \\
& B_{j}(k) \equiv 0 \quad\left(\bmod p^{3}\right), j=3,4, \ldots ; \nu_{p}\left(B_{1}(k)\right)=1, k=0,1, \ldots, 2 p+1
\end{aligned}
$$

Lemma 2. Let $\alpha \in G_{p^{n}}, \alpha=p^{h} \alpha_{0},\left(\alpha_{0}, p\right)=1, h<n$, and let $z_{m}=z_{0}(\text { uiv })^{m}$ $\left(\bmod p^{n}\right), m=0,1, \ldots, 2(p+1) p^{n-1}-1$.

Then

$$
\left|\sum_{j=0}^{N-1} e_{p^{n-1}}\left(\Re\left(\alpha z_{j}\right)\right)\right| \leq 2 p^{\frac{n-h-r-1}{2}}
$$

where r is determined from (13)(see, below) and depends on α.

Proof. Let us denote

$$
\begin{aligned}
& \nu_{p}(\alpha)=h, 0 \leq h<n-1, \alpha=p^{h} \alpha_{0}, \quad\left(\alpha_{0}, p\right)=1 \\
& M_{h}=2(p+1) p^{n-1-h}
\end{aligned}
$$

Then we have

$$
\begin{align*}
& \left|\sum_{m=0}^{M_{0}-1} e_{p^{n-h-1}}\left(\Re\left(\alpha_{0} z^{m}\right)\right)\right|=p^{2 h}\left|\sum_{m=0}^{M_{h}-1} e_{p^{n-h-1}}\left(\Re\left(\alpha_{0} z^{m}\right)\right)\right|= \\
& =p^{2 h}\left|\sum_{k=0}^{2 p+1} \sum_{\ell=0}^{p^{n-h-1}-1} e_{p^{n-h-1}}\left(a A_{k}(\ell)-b B_{k}(\ell)\right)\right| \tag{11}
\end{align*}
$$

For every $k=0,1, \ldots, 2 p+1$, we consider the polynomial

$$
a A_{k}(\ell)-b B_{k}(\ell)=\sum_{j=0}^{n-1} c_{j}(k) \ell^{j}
$$

where

$$
c_{j}(k)=\left(a A_{j}-b B_{j}\right) u(k)+\left(b A_{j}-a B_{j}\right) v(k), j=0,1, \ldots, n-1
$$

In particular,

$$
\begin{align*}
c_{1}(k) & =\left(a A_{1}-b B_{1}\right) u(k)+\left(b A_{1}-a B_{1}\right) v(k)= \\
& =(a u(k)+b v(k)) A_{1}-(b u(k)-a v(k)) B_{1}, \\
c_{2}(k) & =\left(a A_{2}-b B_{2}\right) u(k)+\left(b A_{2}-a B_{2}\right) v(k)= \tag{12}\\
& =(a u(k)+b v(k)) A_{2}-(b u(k)-a v(k)) B_{2} .
\end{align*}
$$

We see that for all values of $k=0,1, \ldots, 2 p+1$

$$
\nu_{p}\left(A_{1}(k)\right) \neq \nu_{p}\left(B_{1}(k)\right), \nu_{p}\left(A_{2}(k)\right) \neq \nu_{p}\left(B_{2}(k)\right) .
$$

Now if for given α_{0} and k the inequality

$$
\begin{equation*}
\nu_{p}\left(c_{1}(k)\right) \geq \nu_{p}\left(c_{2}(k)\right)=r \tag{13}
\end{equation*}
$$

holds, then the inner sum over ℓ in (11) can be estimated as $p^{\frac{n-h+r-1}{2}}$ (such sum by consequent slope leads to the Gaussian sum).

In other cases (i.e., $\left.\nu_{p}\left(c_{1}(k)\right)<\nu_{p}\left(c_{2}(k)\right)\right)$ this sum is vanishes.

Hence, from (10)-(12) we infer the assertion of lemma.

Lastly we prove the main result
Theorem 2. Let the sequence $\left\{z_{n}\right\}$ be generated by the recursion

$$
z_{m+1} \equiv z_{m}(u+i v) \quad\left(\bmod p^{n}\right)
$$

where $z_{0} \in G_{p^{m}}, u+i v$ is a generative element of the group E_{n} of classes of residue modulo p^{n} with the norms that $\equiv \pm 1\left(\bmod p^{n}\right)$. Then the discrepancy of the points $\left\{\frac{z_{m}}{p^{n}}\right\}, m=0,1, \ldots, N-1, N \leq 2(p+1) p^{n-1}$ satisfies the inequality

$$
D_{N} \leq 2\left(1-\left(1-\frac{2 \pi}{p^{n}}\right)^{2}\right)+N^{-1} p^{\frac{n}{2}} \log p^{n} .
$$

Proof. Indeed, for every $h, 0 \leq h \leq n-1$ there is at most $O\left(p^{n-h-r}\right)$ numbers $\alpha_{0}, \alpha_{0} \in G_{p^{n-h}}$ for which $\nu_{p}\left(c_{1}(k)\right) \geq \nu_{p}\left(c_{2}(k)\right)=r$, where $c_{1}(k), c_{2}(k)$ are determined by (11).

Now, by Lemma 2 and Theorem 1 we immediately obtain the theorem.
If $A, B \in \mathbb{Z},(B, p)=1$, then for $A \cdot B^{-1}\left(\bmod p^{n}\right)$ we shall write $\left[\frac{A}{B}\right]_{p^{n}}$
Remark 1. The characterization of elements for the sequence $\left\{z_{m}\right\}$ (producing by (3)) permits to construct the new sequences of PRN's in interval $[0,1]$ (for example, $\left.\left\{\frac{1}{p^{n}} \Re\left(z_{m}\right)\right\},\left\{\frac{1}{p^{n}} \Im\left(z_{m}\right)\right\},\left\{\frac{1}{p^{n}}\left[\frac{\Re\left(z_{m}\right)}{\Im z_{m}}\right]_{p^{n}}\right\}\right)$.
Remark 2. It is possible to deduce from Theorem 1 that the sequence of complex numbers z_{n} produced by the recursion

$$
z_{m+1} \equiv \alpha z_{m}^{-1}+\beta+\gamma z_{m} \quad\left(\bmod p^{n}\right)
$$

$\alpha, \beta, \gamma, z_{0} \in G,(\alpha, p)=\left(z_{0}, p\right)=1, \beta \equiv \gamma \equiv 0(\bmod p)$, passes the s-dimensional test for the equidistribution and unpredictability.

References

[1] Baker R. C., Diophantine Inequalities, LMS Monographs (New Series), v.1(Clarendon Press, Oxford), 1986.
[2] Hellekalen P., General discrepancy estimates: the Walsh function system, Acta Arith., 67 (1994), 209-218.
[3] Niederreiter H., Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.
[4] Varbanets S., The norm Kloosterman sums over $\mathbb{Z}[i]$, in: Analytic and Probabilistic Methods in Number Theory, Proc. Forth. International Conference in Honour of J. Kubilius, Palanga, Lithuania, 25-29 Semtember, 213-224, 2006.

Tran The Vinh

Department of Computer Algebra and Discrete Mathematics
I.I. Mechnikov Odessa National University

65026 Odessa, Dvoryanskaya street 2
Ukraine
ttvinhentt@yahoo.com.vn

