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Abstract. The sequences of complex pseudo-random of numbers (PRN’s)
producing by powers of generating element of the norm group FE,, in the
residue class ring modulo p™ (p is a rational prime) over the ring of Gaus-
sian integers are studied.

1. Introduction

We consider the sequence of complex numbers {z,}, |2, < 1. Let 0 < & <
<& <1,0< 91 < o <2m, N(2) = |2|%, and let P(£, ¢) denotes the sectorial

region of unit circle |z| <1

(1) P=P,p)={2z€C: & < N(2) <&, o1 <argz < @y}

Denote by § the collection of sectorial regions P (€, ) for all £ and .

We say that the sequence {z,} is pseudo-random in the unit circle if it is
induced by a determinative algorithm and its statistic properties are ”simi-
lar” to the property of the sequence of the random numbers. The ”similarity”
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means that this sequence closely adjacent to uniformly distributed in the disk
|z| <1, and its elements are uncorrelated. On these properties of the sequence
of pseudo-random numbers (abbreviation: PRN’s) can destine by value of dis-

crepancy Dy of the points z1, 29,...,2N:
An(P) |P|
2 Dn(z1,...,2N) := sup |———F — —|,
(2) ~ (21 N) S| TN -
where Cy := {z € C, |z| < 1}; Ax(P) is the number of points among z1, ..., 25

falling into P, |P| denotes the volume P; supremum is extended over all secto-
rial region P of unit circle |z| < 1.

The similar definition of discrepancy Dy has for the s-dimensional sequence
of complex points Z,(f) = (z%s), ey z,(f)), zj € C.

We say that the sequence z,, passes the s-dimensional test on uncorrelated-
ness if it passes the s-dimensional test on equidistribution

(i.e. DE\?)(Z§S)7 . ,z](\?)) —0at N — o0).
For the construction of the sequence of PRN’s on [0,1) frequently the con-
gruential recursion of the form

Ynt+1 = f(yn) (mOd m)v

is used, where f(u) is an integral-valued function.
We will investigate the sequence of complex numbers produced by recursion

(3) Zn+1 = 20 (u+iv)"  (mod p™)

where zg and u+iv are Gaussian integers, (zo,p) = 1; uw?+0? =41 (mod p™).

For real sequences x, produced by congruential recursion, an estimate for
Dy can be obtained by the Erdds—Turdn—-Koksma inequality (see,[3, Th. 3.10].

In our paper we get an analogue of the Erdés—Turan—-Koksma inequality for
the sequence of pseudorandom complex numbers. And then we show that the
sequence generated by (3) is a sequence of PRN’s in C;.

2. Preliminary results

Notation. Let G denote the ring of the Gaussian integers, G := {a+bi : a,b €
€ Z}; N(z) = |z|> be the norm of z € G. For v € G denote G, (respectively,
G*) the complete system of residues (respectively, reduced residues system) in
G modulo 7; p is a prime number in Z; p is a Gaussian prime number. If ¢ is
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a positive integer, ¢ > 1, then we write ey(z) = e*™4 for z € R. Symbols 7O
and <" are equivalent; v,(a) = k if p¥|a, pF*! fa.

Let M > 1 be a positive integer and let y1,¥ys,...,yn be some sequence
of points from Gy and let Yy = {4%|n = 0,...,N — 1}. For P € § denote
A(P,Yyr) the number of points from Y); contained in P.

We will adapt the proof from [2] for an analogue of the Erdds—Turdn—
Koksma inequality.

We define the adequate approximation of sectorial region P € §,
P .= {Z z€ G, N < N(z) < No, 0§<p1<argz§<p2<27r}, q € IN.
We say that the set S(P) is the adequate approximation of P if
o () A(P, Yy (M) = A(S(P), Y (M) + O (N*),
o (ii) volumes |P| and |S(P)| are ”similar”,
o (iii) A(S(P),Yn(M)) has a representation by an exponential sum.

Let N1, N2, @1, @2 be the parameters in the definition of P. For r, s € Z; we

S

ot 7— I T — S
set T =37 ,5 = 37
Determine

(4)
Srs ﬁ—g' €eq 7<N(ﬁ)<?+i 215 < arga < 2 E—&—i
7,5 + —M-a M, T S M v go < 2T i .

Put
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We proved the following analogue of the Erdés—Turdn—Koksma inequality
(see, [3])

Theorem 1. Let M > 1 be integer. Then for any sequence {yn}, yn € G,
the discrepancy Dy of points {yﬁ} satisfies the inequality

+% Z min<|sin7r13?('y)|’ |sin7r1%(7)|>]1/ ('SNH_O(N%))’

N1
where Sy = > ear(R(yyn)).

n=0

Proof. By an analogue with the work [2] we infer

N-1
6) AP = ) isp) = L3 v ()~ ISP
n=0

where x, = %%, xa is the characteristic function of the set A.
By the equality

o) = Y 1 O eulrlo )

aESr s YEG M
we get
|Rn(S(P)) <
(6) 1 1 N1
< X el 2 em(=R(0za(ns))| w2 em(R(vwn))|,
0#vEG M z(r,s)ESF n=

where z(r, s) is the complex number such that

2rs

N(z(r,s)) = — =

L arga(r,s) =

In order to calculate the first inner sum over Sy s one needs an estimate of
the sum

(7) Yo=Y en®Ow). (0#7€GCu).

Ny <N(w)<N2
prlargw<eps
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The sum ), can be considered as a sum of coefficients of the next Dirichlet
series for the Hecke Z-function over the Gaussian field Q(7):

2W1§R(w61)

Zm(s,00,01) = Z 7647’”&%‘“ (Rs > 1).
e N(w + (50)

Putting do = 0, 6y = 7, we obtain for any 7" > 1 by a standard way the
following estimates:

Z eM(W’w):(@z—sm)ZN(w)SxeM(ﬂyw)-yO % Z 1]+

N(w)<X N(w)<=

T
+O | (o2 — 1) Z Z 61\4(%‘;)647’”'Mg‘d

m=1|N(w)<z

(8)

14e
) T2
(9) D em(w)etmEY < SV M (Jm] +3)'*2
N(w)<z

(for the details, see Chapter 2 of [I], for example).
Next, we have a simple analogue of the estimate of linear exponential sum
over G

E 22wiﬂ(aw) S
N;<N(w)<Ny

(10)

< (NQ - N1>§ min ((N2 - Nl)i’ |sin7r1§R(a)|’ \sin'frl%(oz)

).

Now by (4)—(9), putting T = #3 and taking into account that |P| =
= P25 (N, — Ny), we obtain our assertion. [ |

3. Sequence of PRNs produced by the cyclic group E,

Let p = 3 (mod 4) be a prime integer. Consider the set of the classes of
residue (mod p™) over G, such that for every o € E,, we have N(a) = +1
(mod p™). Respectively for a convolution of multiplication the set F,, forms a
group. It is well known that a regular generative element of E; (i.e. u?+v? =
—1 (mod p), u? +v% = —1+ph, (h,p) = 1) is a generative element for any Ey,
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(=1,2,...,n. Moreover, |E,| =2(p+1)p"~! (|E,| is the number of elements
in E,).

We fix the generative element of E,, and let some zy € Gy, (N(29),p) = 1.
We call zp an initial value for the sequence {z,,}, where z,, = zo(u + iv)™,
m=0,1,...,N —1.

Lemma 1 (([], pp. 232-233)). Let p = 3 (mod 4), n > 3, and let u + iv is
a generative element of the group E,. Then for every 0 < £ <p" 2, 0<k <
<2(p+1), we have

(u+ iv)2PTOP R = A0 k) +iB(£,k) (mod p),

where

Al k) = Ag(k) + A (B) + -+ A1 (k)€™ (mod p™),

B(,k) = By(k) + By(k){ + -+ + B_1 (k)" (mod p"),
Moreover,
A](k) = Aju(k') — ij(k), B](k‘) = A]v(k) + BJU(]C), j = 0, ]., e, — 1,
Ap=1 (mod p), By=0 (mod p);
A1 =0 (modp?), Ay =p*Ajy, (A5,p) =1;
By =pB}, (B},p)=1, Bo=A3=Bs=---=A4, 1=B,_1=0 (mod p?);
u(0) =1, v(0) =0, (u(p+1),p) =1, pllv(p+1);
(v(k),p) =1 for k#0,p+ 1.

Corollary 1.

pllAi(k), Aj(k) =0 (modp?), j=2,3,...; k#0,p+ 1;

p?[|A1(0), A;(0)=0 (mod p?®), j =2,3,...;

PllAi(p +1), p*||A2(k), Aj(p+1)=0 (modp®), j=3,4,...;

p?||Ba(k) if k#0,p+1; Ba(k) =0 (mod p°) else;

Bj(k)=0 (modp?®), j=3,4,...;v(B1(k)) =1, k=0,1,...,2p+ L.
Lemma 2. Let a € Gpn, a = phag, (ap,p) =1, h < n, and let 2, = zo(uiv)™
(mod p"), m=0,1,...,2(p+ 1)p"~! — 1.

Then
N—-1
n—h—r—1

S e (Rlaz)))| < 2p 7,

Jj=0

where r is determined from (13)(see, below) and depends on c.
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Proof. Let us denote
V;D(O‘) = h7 0<h<n-— 17 « :pha07 (QOap) = 17
My, =2(p+ 1)p" 17"

Then we have

Z epnhl(%(aozm))| = p?h
m=0

(11)
2p+1pn7h71_1
= p2h Z epn—n—1(aAy(f) — bB(¢))| .
k=0 £=0

For every £ =0,1,...,2p + 1, we consider the polynomial
aAk( - ka Z

where
Cj(k‘) = (aAj — ij)u(k) + (bAj — aBj)v(k), 7=01,...,n—1.

In particular,

c1(k) = (aAi1 — bBy)u(k) + (bAy —aBy)v(k) =
) — (au(k) + bo(k)) Ay — (bu(k) — av(k)) By,
co(k) = (aAy — bBa)u(k) + (bAy — aBo)u(k) =
= (au(k) + bv(k)) A2 — (bu(k) — av(k))Ba.

We see that for all values of £k =0,1,...,2p+1
vp(A1(k)) # vp(Bi(k)), vp(Az2(k)) # vp(Ba(k)).
Now if for given ay and k the inequality

(13) vp(er (k) = plealk)) = 7

holds, then the inner sum over £ in (11) can be estimated as p"~ 2 — (such

sum by consequent slope leads to the Gaussian sum).
In other cases (i.e., vp(c1(k)) < vp(c2(k))) this sum is vanishes.

Hence, from (10)-(12) we infer the assertion of lemma. ]
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Lastly we prove the main result
Theorem 2. Let the sequence {z,} be generated by the recursion
Zm+1 = zm(u+ ) (mod p"),

where zg € Gpm, u + v 15 a generative element of the group E, of classes of
residue modulo p™ with the norms that = £1 (mod p™). Then the discrepancy

of the points {;—T;}, m = 0,1,....,.N —1, N < 2(p + 1)p"~! satisfies the

21\ * .
Dy <2 (1 <17T> ) + N7 p2 logp™.
p'fL

inequality

Proof. Indeed, for every h, 0 < h < n—1 there is at most O(p"~"~") numbers
ag, a9 € Gpn-n for which v,(c1(k)) > vp(ca(k)) = r, where ¢i(k), ca(k) are
determined by (11).

Now, by Lemma 2 and Theorem 1 we immediately obtain the theorem. W

If A,B€Z,(B,p) =1, then for A- B~! (mod p") we shall write [%}pn

Remark 1. The characterization of elements for the sequence {z,,} (producing

by (3)) permits to construct the new sequences of PRN’s in interval [0, 1] { for

example, {p%%(zm)}’ {#%(zm)} {pl” [%n)} })
on

Remark 2. It is possible to deduce from Theorem 1 that the sequence of
complex numbers z,, produced by the recursion

Zmil = az;ll + B8+ vzm (mod p™),

O‘7ﬂ77a20 € Ga (aap) = (207p) = la 6 =7 = 0 (mOdp)7 passes the
s-dimensional test for the equidistribution and unpredictability.
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