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Abstract. Given a set A of positive integers and its counting function
A(x) := #{n ≤ x : n ∈ A}, we examine the size of the n-th element of A
using the size of A(x).

1. Introduction and notation

Determining the size of the n-th element of a set of positive integers using
the known size of the counting function of that set is a classical problem in
analytic number theory. For example, letting π(x) stand for the number of
prime numbers p ≤ x, by using the Prime Number Theorem in the form π(x) ∼
∼ x/ log x as x → ∞, one can easily show that the n-th prime number pn
satisfies

pn = (1 + o(1))n log n (n→∞) .

In fact, in 1902, by using the logarithmic integral function, Cipolla [3] improved
this estimate by showing that there exists a unique sequence of polynomials
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(Qj)j≥1 with rational coefficients such that, for any given positive integer m,

(1.1)
pn = n

log n+ log2 n− 1 +
m∑
j=1

(−1)j−1
Qj (log2 n)

logj n
+ o

(
1

logm n

)
(n→∞) .

Here and in what follows, we write log2 x for max (1, log log x).
Another example is given by the search of an estimate for an, the n-th

composite number. Bojarincev [2] and Shiu [12] showed that, for any given
positive integer m,

(1.2)
an = n

(
1 +

β1

log n
+

β2

log2 n
+ · · ·+ βm

logm n
+ o

(
1

logm n

))
(n→∞) ,

where the βi are computable constants.
Finally, recall that we say that a number is a powerful number (or a square-

full number) if p | n implies that p2 | n. Let ℘n denote the n-th powerful
number. In 1982, Ivić and Shiu [7] showed that

(1.3) ℘n =
(

ζ(3)
ζ(3/2)

)2

n2 +O
(
n5/3

)
(n→∞) .

Here, we examine the problem of estimating the size of the n-th element of
a given set A of positive integers using the size of A(x) := #{n ≤ x : n ∈ A},
often called the counting function of A. We will do so in two particular cases.
The first one is when A(x) = b1x

λ1 + b2x
λ2 + R(x), where R(x) = o(xλ3), for

some real constants b1 > 0 and b2, with 1 > λ1 > λ2 > λ3 > 0, from which we
will then deduce an improvement of the estimate (1.3).

The second case is when A(x) =
x

L(x)

(
1 +O

(
1

ϕ(x)

))
where ϕ is an in-

creasing function which tends to +∞ as x → ∞ and L is a differentiable
increasing slowly oscillating function. Recall that a function L : [M,+∞)→ R
continuous on [M,+∞), where M is a positive real number, is said to be a
slowly oscillating function if for each positive real number c > 0,

(1.4) lim
x→∞

L(cx)
L(x)

= 1.

This class of functions was introduced by Karamata [8] in 1930. His paper,
along with [9] as well as the book of Seneta [11], provide some interesting
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properties of slowly oscillating functions. In particular, it is possible to show
that a differentiable function L is slowly oscillating if and only if

(1.5)
xL′(x)
L(x)

= o(1) (x→∞)

and, in fact, that L is slowly oscillating if and only if there exists x0 > 0 such
that

(1.6) L(x) = C(x) exp
{∫ x

x0

η(t)
t

dt

}
,

where limx→∞ C(x) = C, for a certain constant C 6= 0, and η(t)→ 0 as t→∞.

We shall denote by L the set of increasing and differentiable slowly oscil-
lating functions.

From here on, the letter c, with or without subscript, stands for an absolute
positive constant, but not necessarily the same at each occurrence, while the
letter p, with or without subscript, will always denote a prime number.

2. Main results

Theorem 1. Given a sequence of positive integers a1 < a2 < · · · , let
A = {a1, a2, . . .} with counting function A(x) satisfying

(2.1) A(x) = b1x
λ1 + b2x

λ2 +R(x),

where
R(x) = o(xλ3) (x→∞)

and where b1 > 0 and b2 are real constants, with 1 > λ1 > λ2 > λ3 > 0 which
satisfy

3λ2

λ1
− 3 <

λ3

λ1
− 1 ≤ 2λ2

λ1
− 2.

Then

(2.2)
an =

n
1
λ1

b
1
λ1
1

− 1
λ1

b2

b
λ2+1
λ1

1

n
λ2+1
λ1
−1 +

1
2

(
2λ2 + 1
λ2

1

− 1
λ1

)
b22

b
2λ2+1
λ1

1

n
2λ2+1
λ1
−2+

+o
(
n
λ3+1
λ1
−1
)
.
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Theorem 2. Given a sequence of positive integers a1 < a2 < · · · , let
A = {a1, a2, . . .} with counting function A(x) satisfying

(2.3) A(x) =
x

L(x)

(
1 +O

(
1

ϕ(x)

))
(x→∞),

where ϕ is an increasing function which tends to +∞ as x → ∞ and where
L ∈ L with corresponding function η(t) defined implicitly by (1.6). Moreover,
assume that η(t) is a decreasing function and that

(2.4) C(x) = C +O

(
1

ψ(x)

)
(x→∞) ,

where ψ(x) is an increasing function which tends to +∞ as x→∞. Then,

(2.5)
an = n

C (an)
C(n)

L(n) exp
{∫ an

n

η(t)
t

dt

}(
1 +O

(
1

ϕ(n)

))
(n→∞)

and

(2.6) an = nL(n)1/(1−δ(n))

(
1 +O

(
1

ϕ(n)
+

1
ψ(n)

))
(n→∞),

where δ is some function satisfying η(an) < δ(n) < η(n) for all integers n ≥ x0.
Moreover, if there exists a positive constant c such that

(2.7) η(n)
∫ n

x0

η(t)
t

dt→ c (n→∞),

then

(2.8) an = (ec + o(1))nL(n) (n→∞).

3. Proof of Theorem 1

To prove Theorem 1, we use an approach already used by Copil and Panaitopol
[4] to estimate the size of the n-th non powerful number.

First, observe that it follows from (2.1) that

n = A (an) = b1a
λ1
n + b2a

λ2
n +R (an) ,
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so that

aλ1
n =

n

b1

(
1− b2

aλ2
n

n
− R (an)

n

)
thereby implying that

(3.1) an =
n1/λ1

b
1/λ1
1

(
1− b2

aλ2
n

n
− R (an)

n

)1/λ1

.

In particular, since both expressions b2
aλ2
n

n and R(an)
n goes to 0 as n→∞, we

have an = n1/λ1

b
1/λ1
1

(1 + o(1)) and

(3.2) an =
n1/λ1

b
1/λ1
1

+O
(
n
λ2+1
λ1
−1
)
.

Moreover, for any α > 0,

(1− y)α = 1− αy +
1
2
(
α2 − α

)
y2 +O

(
y3
)

as y → 0.

Thus

(3.3)

(
1− b2

aλ2
n

n
− R (an)

n

)1/λ1

=

= 1− b2
λ1

aλ2
n

n
+

1
2

(
1
λ2

1

− 1
λ1

)
b22
a2λ2
n

n2
+O

(
R (an)
n

)
.

Substituting this estimate in (3.1) yields

(3.4) an =
n1/λ1

b
1/λ1
1

− 1
λ1

b2

b
λ2+1
λ1

1

n
λ2+1
λ1
−1 +O

(
n

2λ2+1
λ1
−2
)
.

Using this estimate and the fact that R (an) = o
(
aλ3
n

)
= o

(
nλ3/λ1

)
, we can

replace the RHS of (3.3) by

(3.5) 1− 1
λ1

b2

b
λ2/λ1
1

n
λ2
λ1
−1 +

1
2

(
2λ2 + 1
λ2

1

− 1
λ1

)
b22

b
2λ2/λ1
1

n
2λ2
λ1
−2 + o

(
n
λ3
λ1
−1
)
,

which substituted back in (3.4) yields (2.2). �
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4. Proof of Theorem 2

It follows from estimate (2.3) that

(4.1) n = A(an) =
an

L(an)

(
1 +O

(
1

ϕ(an)

))
(n→∞)

and therefore that

(4.2) an = nL(an)
(

1 +O

(
1

ϕ(n)

))
(n→∞).

Since L is a slowly oscillating function, we have

(4.3) L (an) = C (an) exp
(∫ an

x0

η(t)
t

dt
)

=
C (an)
C(n)

L(n) exp
(∫ an

n

η(t)
t

dt
)
.

Combining (4.2) and (4.3) proves (2.5).
Now, let α = α(n) be the unique positive integer satisfying 2α−1n <

< nL(an) ≤ 2αn, so that α =
⌈

logL(an)
log 2

⌉
=

logL (an)
log 2

+ ε(n), where 0 ≤

≤ ε(n) < 1. On the one hand, since η(t) is decreasing and positive, we have∫ an

n

η(t)
t

dt ≤
∫ 2n

n

η(t)
t

dt+
∫ 22n

2n

η(t)
t

dt+ · · ·+
∫ 2αn

2α−1n

η(t)
t

dt <

< η(n) log 2 + η(2n) log 2 + · · ·+ η(2α−1n) log 2 ≤

≤ η(n)α log 2 = η(n) log 2
(

logL (an)
log 2

+ ε(n)
)
.(4.4)

On the other hand,∫ an

n

η(t)
t

dt ≥
∫ 2n

n

η(t)
t

dt+
∫ 22n

2n

η(t)
t

dt+ · · ·+
∫ 2α−1n

2α−2n

η(t)
t

dt >

> η(2n) log 2 + η(4n) log 2 + · · ·+ η(2α−1n) log 2 >

> η(2α−1n)(α− 1) log 2 ≥ η (an) log 2
(

logL (an)
log 2

+ ε(n)
)
.(4.5)

It follows from (4.3), (4.4) and (4.5) that there exists a function δ satisfying
η(an) < δ(n) < η(n) for all integers n ≥ x0 such that∫ an

n

η(t)
t

dt = δ(n) logL (an) .
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Combining this result with (2.4), we get

(4.6) L (an) = L(n)1/(1−δ(n))

(
1 +O

(
1

ψ(n)

))
.

Substituting (4.6) in (4.2) proves (2.6). Finally, (2.8) follows easily from (2.7).
Indeed, by (4.6), we have

(4.7) L (an) = L(n)1+δ(n)+O(δ2(n)).

We have

L(n)δ(n) ≤ L(n)η(n) = C(n)η(n) exp
(
η(n)

∫ n

x0

η(t)
t

dt
)

= ec + o(1)

and

L(n)δ(n) ≥ L(n)η(an) = L (an)η(an)

(
L(n)
L (an)

)η(an)

=
(
L(n)
L (an)

)η(an)

(ec + o(1)) .

Since

logL (an)− logL(n) =
∫ an

n

η(t)
t

dt (1 + o(1)) = δ(n) logL (an) (1 + o(1)) ,

it follows that (
L(n)
L (an)

)η(an)

= 1 + o(1)

and thus

(4.8) L(n)δ(n) = ec + o(1).

Moreover, using (4.8),

L(n)δ(n)2 ≤
(
L(n)η(n)

)δ(n)

= (ec + o(1))δ(n) = 1 + o(1).

Combining this last result with (4.8) and (4.7) gives

L (an) = L(n) (ec + o(1)) (n→∞) .

Substituting this estimate in (4.2) yields

an = (ec + o(1))nL(n). �
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5. Applications of Theorem 1

We provide two applications.
First, we shall prove that there exists a positive constant C such that, as

n→∞,

(5.1)
℘n =

(
ζ(3)
ζ(3/2)

)2

n2 − 2
ζ(2/3)
ζ(2)

(
ζ(3)
ζ(3/2)

) 8
3

n
5
3 +

+
7
3

(
ζ(2/3)
ζ(2)

)2(
ζ(3)
ζ(3/2)

) 10
3

n
4
3 +R0(n),

where

(5.2) R0(n)� n4/3 exp
(
−C (log n)3/5 (log2 n)−1/5

)
.

In order to prove (5.1), we first recall the 1958 result of Bateman and
Grosswald [1]

(5.3) P2(x) := #{n ≤ x : n powerful} =
ζ(3/2)
ζ(3)

x1/2 +
ζ(2/3)
ζ(2)

x1/3 +R(x),

where

(5.4) R(x)� x1/6 exp
(
−C (log x)3/5 (log2 x)−1/5

)
,

which is the best known error term and is due to Suryanarayana and Sitara-
machandra Rao [14].

Then setting λ1 = 1/2, λ2 = 1/3, λ3 = 1/6, b1 = ζ(3/2)
ζ(3) and b2 = ζ(2/3)

ζ(2)

in Theorem 1, keeping track of the explicit error term given by (5.2), estimate
(5.1) follows.

As a second application, we consider the general case of k-full numbers.
Recall that, given an integer k ≥ 2, we say that a positive integer n is said

to be k-full if p | n implies that pk | n. We denote by Pk(x) the number of
k-full integers ≤ x and by ℘n,k the n-th k-full number.

Ivić and Shiu [7] obtained that

(5.5) Pk(x) = γ0,kx
1/k + γ1,kx

1/(k+1) + · · ·+ γk−1,kx
1/(2k−1) + ∆k(x),

where the constants γi,k are given explicitly and ∆k(x) is a suitable error term.
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Using (5.5) in the particular case k = 3 and Theorem 1, we can prove that
there exists a positive constant C and constants A3, A4 and A5 such that, as
n→∞,

℘n,3 = (A3)−3
n3 − 3 (A3)

−15
4 A4n

11
4 − 3 (A3)

−18
5 A5n

13
5 +

+
21
4

(A3)
−9
2 (A4)2 n

5
2 +R(n),

where
R(n)� n

19
8 exp

(
−C (log n)3/5 (log2 n)−1/5

)
.

Remark 1. Observe that explicit values for the constants Ai were obtained
by Shiu [12]. Moreover, for k ≥ 4, as n→∞, one can prove that

(5.6) ℘n,k =
(

n

γ0,k

)k
−k γ1,k

(γ0,k)
k(k+2)
k+1

n
k2+k−1
k+1 −k γ2,k

(γ0,k)
k(k+3)
k+2

n
k2+2k−2
k+2 +Rk(n),

where Rk(n)� n
k2+k−2
k+1 .

Remark 2. Observe that explicit values for the constants γi,k are given in
Bateman and Grosswald [1] and Erdős and Szekeres [6]. Moreover, for k > 4,
additional terms on the right hand side of (5.6) can be provided.

6. Applications of Theorem 2

We provide three applications.

1. Fix a positive integer k and let

A = Ak = {n ∈ N : ω(n) = k} = {an : n ∈ N} ,

where ω(n) stands for the number of distinct prime factors of n. It is well
known that, as x→∞,

A(x) =
x

L(x)

(
1 +O

(
1

log log x

))
,

where L(x) = (k−1)! log x

(log2 x)
k−1 (see for instance Theorem 10.4 in the book of

De Koninck and Luca [5]). It follows from Theorem 2 that

an = n
(k − 1)! log n

(log2 n)k−1

(
1 +O

(
1

log log n

))
(n→∞) .
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2. Consider the set A of those integers n ≥ 2 such that bz(n)c−bz(n− 1)c =
= 1, where z(n) = n/e

√
logn. Using a computer, we easily obtain the first

elements of A, so that we may write

A = {3, 9, 16, 24, 33, 42, 51, 61, 71, 82, 93, . . .} = {an : n ∈ N} .

Clearly |A(x) − z(x)| ≤ 1 for all x ≥ 2. Then, since condition (2.7) of
Theorem 2 is satisfied with c = 1/2, we get from (2.8) that

an =
(√
e+ o(1)

)
ne
√

logn (n→∞) .

3. Let W = {a1, a2, . . .} be the set of those positive integers which can be
written as the sum of two squares. It has been known since Euler that a
positive integer can be represented as a sum of two squares if and only if
each of its prime factors of the form 4k + 3 occurs with an even power,
so that

W = {2, 5, 8, 10, 13, 17, 18, 20, 25, 26, 29, 32, 34, 37, 40, 41, 45, 50, . . .}.

In 1908, Landau [10] showed that

W (x) = (B + o(1))
x√

log x
(x→∞),

whereB =
1√
2

∏
p≡3 (mod 4)

(√
1− 1

p2

)−1

= 0.7642236 . . .. In 1986, Shiu [13]

showed that

(6.1) W (x) =
Bx√
log x

(
1 +O

(
1

log x

))
.

Since one can show that

(6.2) L(x) :=
1
B

√
log x =

1
B

exp
{∫ x

e

1
2 log t

dt

t

}
,

it follows from (6.1) and (6.2) that the corresponding functions ϕ(x),
η(x), C(x) and ψ(x) from the statement of Theorem 2 are given by

ϕ(x) = log x, η(x) =
1

2 log x
, C(x) = 1/B, ψ(x) =∞.

Hence, it follows from (2.5) that

an =
1
B
n
√

log an

(
1 +O

(
1

log n

))
.

Thus, using the logarithm on this formula, one can improve it to

an =
1
B
n
√

log n
(

1 +
1
4

log log n
log n

+O

(
1

log n

))
(n→∞).
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Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca
vincent.ouellet.7@ulaval.ca


	Introduction and notation
	Main results
	Proof of Theorem 1
	Proof of Theorem 2
	Applications of Theorem 1
	Applications of Theorem 2

