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Abstract. We present some choices of the operators involved in fractional
calculus where the operators satisfy the convergence conditions of some
iterative methods given in Part I [4]. Moreover, we provide a corrected
version of the generalized fractional Taylor’s formula given in [14].

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of the nonlinear equation

(1.1) F (x) = 0,

where F is a continuous operator defined on a subset D of a Banach space X
with values in a Banach space Y .

A lot of problems in Computational Sciences and other disciplines can be
brought in a form like (1.1) using Mathematical Modelling [7], [11], [15]. The
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solutions of such equations can be found in closed form only in special cases.
That is why most solution methods for these equations are iterative. Iterative
algorithms are usually studied based on semilocal and local convergence. The
semilocal convergence matter is, based on the information around the initial
point to give hypotheses ensuring the convergence of the method; while the
local one is, based on the information around a solution, to find estimates of
the radii of convergence balls as well as error bounds on the distances involved.

We introduce the method defined for each n = 0, 1, 2, ... by

(1.2) xn+1 = xn −A (xn)−1
F (xn) ,

where x0 ∈ D is an initial point and A (x) ∈ L (X,Y ) the space of bounded
linear operators from X into Y . There is a plethora on local as well as semilocal
convergence theorems for method (1.2) provided that the operator A is an
approximation to the Fréchet-derivative F ′ [1], [2], [5]–[15]. In the present
study we do not assume that operator A is not necessarily related to F ′. This
way we expand the applicability of method (1.2). Notice that many well known
methods are special case of method (1.2).

Newton’s method: Choose A (x) = F ′ (x) for each x ∈ D.
Steffensen’s method: Choose A (x) = [x,G (x) ;F ], where G : X → X

is a known operator and [x, y;F ] denotes a divided difference of order one [7],
[11], [15].

The so called Newton-like methods and many other methods are special
cases of method (1.2).

The semilocal as well as the local convergence analysis of method (1.2)
was given in Part I [4]. Some applications from fractional calculus are given
in Part II. In particular, we first correct the generalized fractional Taylor’s
formula, the integral version extracted from [14]. Then, we use the corrected
formula in our applications.

2. Applications to fractional calculus

Remark 2.1. We present some choices and properties of operator A (y, x) from
fractional calculus satisfying the crucial estimate (2.15) (see Part I) [4], in the
special case when,

g1 (t) = cψ for some c > 0 and each t ≥ 0.

(see the end of Section 2 for a possible definition of the constant c).
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Hence, Theorem 2.6 in [4] can apply to solve equation F (x) = 0. Other
choices for operator A (x) or operator A (y, x) can be found in [5]–[7],
[9]–[15].

Let f : [a, b] → R such that f (m) ∈ L∞ ([a, b]), the left Caputo fractional
derivative of order α /∈ N, α > 0, m = dαe (d·e ceiling) is defined as follows:

(2.1) (Dα
a f) (x) =

1
Γ (m− α)

x∫
a

(x− t)m−α−1
f (m) (t) dt,

where Γ is the gamma function, ∀ x ∈ [a, b] .

We observe that

|(Dα
a f) (x)| ≤ 1

Γ (m− α)

x∫
a

(x− t)m−α−1
∣∣∣f (m) (t)

∣∣∣ dt ≤

≤
∥∥f (m)

∥∥
∞

Γ (m− α)

 x∫
a

(x− t)m−α−1
dt

 =

∥∥f (m)
∥∥
∞

Γ (m− α)
(x− a)m−α

(m− α)
=

(2.2) =

∥∥f (m)
∥∥
∞

Γ (m− α+ 1)
(x− a)m−α .

We have proved that

(2.3) |(Dα
a f) (x)| ≤

∥∥f (m)
∥∥
∞

Γ (m− α+ 1)
(x− a)m−α ≤

∥∥f (m)
∥∥
∞

Γ (m− α+ 1)
(b− a)m−α .

Clearly then (Dα
a f) (a) = 0.

Let n ∈ N we denote Dnα
a = Dα

aD
α
a · · ·Dα

a (n-times).

Let us assume now that

(2.4) Dkα
a f ∈ C ([a, b]) , k = 0, 1, . . . , n+ 1; n ∈ N, 0 < α ≤ 1.

By [14], we are able to extract the following interesting generalized fractional
Caputo type Taylor’s formula: (there it is assumed that Dkα

a f (x) ∈ C ((a, b]),
k = 0, 1, . . . , n+ 1; 0 < α ≤ 1)
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(2.5) f (x) =
n∑
i=0

(x− a)iα

Γ (iα+ 1)
(
Diα
a f
)

(a) +

+
1

Γ ((n+ 1)α)

x∫
a

(x− t)(n+1)α−1
(
D(n+1)α
a f

)
(t) dt, ∀ x ∈ (a, b].

Notice that [14] has lots of typos or minor errors, which we fixed.

Under our assumption and conclusion, see (2.4), Taylor’s formula (2.5) be-
comes

f (x)− f (a) =
n∑
i=2

(x− a)iα

Γ (iα+ 1)
(
Diα
a f
)

(a) +

(2.6)
1

Γ ((n+ 1)α)

x∫
a

(x− t)(n+1)α−1
(
D(n+1)α
a f

)
(t) dt,

∀ x ∈ (a, b], 0 < α < 1.

Here we are going to operate more generally. Again we assume 0 < α ≤ 1,
and f : [a, b]→ R, such that f ′ ∈ C ([a, b]). We define the following left Caputo
fractional derivatives:

(2.7)
(
Dα
y f
)

(x) =
1

Γ (1− α)

x∫
y

(x− t)−α f ′ (t) dt,

for any x ≥ y; x, y ∈ [a, b] , and

(2.8) (Dα
xf) (y) =

1
Γ (1− α)

y∫
x

(y − t)−α f ′ (t) dt,

for any y ≥ x; x, y ∈ [a, b] .

Notice D1
yf = f ′, D1

xf = f ′ by convention.

Clearly here
(
Dα
y f
)
, (Dα

xf) are continuous functions over [a, b], see [2],
p. 388. We also make the convention that

(
Dα
y f
)

(x) = 0, for x < y, and
(Dα

xf) (y) = 0, for y < x.

Here we assume that Dkα
y f , Dkα

x f ∈ C ([a, b]), k = 0, 1, . . . , n + 1, n ∈ N;
∀ x, y ∈ [a, b] .
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Then by (2.6) we obtain

f (x)− f (y) =
n∑
i=2

(x− y)iα

Γ (iα+ 1)
(
Diα
y f
)

(y) +

(2.9) +
1

Γ ((n+ 1)α)

x∫
y

(x− t)(n+1)α−1
(
D(n+1)α
y f

)
(t) dt,

∀ x > y; x, y ∈ [a, b] , 0 < α < 1,

and also it holds

f (y)− f (x) =
n∑
i=2

(y − x)iα

Γ (iα+ 1)
(
Diα
x f
)

(x) +

(2.10) +
1

Γ ((n+ 1)α)

y∫
x

(y − t)(n+1)α−1
(
D(n+1)α
x f

)
(t) dt,

∀ y > x; x, y ∈ [a, b] , 0 < α < 1.

We define the following linear operator

(A (f)) (x, y) =

(2.11)

∑n
i=2

(x−y)iα−1

Γ(iα+1)

(
Diα
y f
)

(y) +
(
D

(n+1)α
y f (x)

)
(x−y)(n+1)α−1

Γ((n+1)α+1) , x > y,

∑n
i=2

(y−x)iα−1

Γ(iα+1)

(
Diα
x f
)

(x) +
(
D

(n+1)α
x f (y)

)
(y−x)(n+1)α−1

Γ((n+1)α+1) , y > x,

f ′ (x) , when x = y,

∀ x, y ∈ [a, b] , 0 < α < 1.

We may assume that

(2.12) |(A (f)) (x, x)− (A (f)) (y, y)| = |f ′ (x)− f ′ (y)| ≤

≤ Φ |x− y| , ∀ x, y ∈ [a, b] , with Φ > 0.

We estimate and have:
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i) case of x > y :

|f (x)− f (y)− (A (f)) (x, y) (x− y)| =

(2.13) =

∣∣∣∣∣∣ 1
Γ ((n+ 1)α)

x∫
y

(x− t)(n+1)α−1
(
D(n+1)α
y f

)
(t) dt−

−
(
D(n+1)α
y f (x)

) (x− y)(n+1)α

Γ ((n+ 1)α+ 1)

∣∣∣∣∣ =

=
1

Γ ((n+ 1)α)

∣∣∣∣∣∣
x∫
y

(x− t)(n+1)α−1
((
D(n+1)α
y f

)
(t)−

(
D(n+1)α
y f

)
(x)
)
dt

∣∣∣∣∣∣ ≤

≤ 1
Γ ((n+ 1)α)

x∫
y

(x− t)(n+1)α−1
∣∣∣D(n+1)α

y f (t)−
(
D(n+1)α
y f

)
(x)
∣∣∣ dt ≤

(we assume here that

(2.14)
∣∣∣D(n+1)α

y f (t)−D(n+1)α
y f (x)

∣∣∣ ≤ λ1 |t− x| ,

∀ t, x, y ∈ [a, b] : x ≥ t ≥ y, where λ1 > 0)

≤ λ1

Γ ((n+ 1)α)

x∫
y

(x− t)(n+1)α−1 (x− t) dt =

(2.15) =
λ1

Γ ((n+ 1)α)

x∫
y

(x− t)(n+1)α
dt =

λ1

Γ ((n+ 1)α)
(x− y)(n+1)α+1

((n+ 1)α+ 1)
.

We have proved that
(2.16)

|f (x)− f (y)− (A (f)) (x, y) (x− y)| ≤ λ1

Γ ((n+ 1)α)
(x− y)(n+1)α+1

((n+ 1)α+ 1)
,

for any x, y ∈ [a, b] : x > y, 0 < α < 1.
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ii) case of x < y :

|f (x)− f (y)− (A (f)) (x, y) (x− y)| =

= |f (y)− f (x)− (A (f)) (x, y) (y − x)| =

(2.17) =

∣∣∣∣∣∣ 1
Γ ((n+ 1)α)

y∫
x

(y − t)(n+1)α−1
(
D(n+1)α
x f

)
(t) dt−

−
(
D(n+1)α
x f (y)

) (y − x)(n+1)α

Γ ((n+ 1)α+ 1)

∣∣∣∣∣ =

=
1

Γ ((n+ 1)α)

∣∣∣∣∫ y

x

(y − t)(n+1)α−1
((
D(n+1)α
x f

)
(t)−

(
D(n+1)α
x f

)
(y)
)
dt

∣∣∣∣ ≤
≤ 1

Γ ((n+ 1)α)

∫ y

x

(y − t)(n+1)α−1
∣∣∣(D(n+1)α

x f
)

(t)−
(
D(n+1)α
x f

)
(y)
∣∣∣ dt ≤

(we assume that

(2.18)
∣∣∣(D(n+1)α

x f
)

(t)−
(
D(n+1)α
x f

)
(y)
∣∣∣ ≤ λ2 |t− y| ,

∀ t, y, x ∈ [a, b] : y ≥ t ≥ x, where λ2 > 0)

≤ λ2

Γ ((n+ 1)α)

y∫
x

(y − t)(n+1)α−1 (y − t) dt =

(2.19) =
λ2

Γ ((n+ 1)α)

y∫
x

(y − t)(n+1)α
dt =

λ2

Γ ((n+ 1)α)
(y − x)(n+1)α+1

((n+ 1)α+ 1)
.

We have proved that

(2.20) |f (x)− f (y)−A (f) (x, y) (x− y)| ≤ λ2

Γ ((n+ 1)α)
(y − x)(n+1)α+1

((n+ 1)α+ 1)
,

∀ x, y ∈ [a, b] : y > x, 0 < α < 1.
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Conclusion. Let λ := max (λ1, λ2) . It holds

(2.21) |f (x)− f (y)− (A (f)) (x, y) (x− y)| ≤ λ

Γ ((n+ 1)α)
|x− y|(n+1)α+1

((n+ 1)α+ 1)
,

∀ x, y ∈ [a, b], where 0 < α < 1, n ∈ N.
One may assume that λ

Γ((n+1)α) < 1.

(Above notice that (2.21) is trivial when x = y.)
Now based on (2.12) and (2.21), we can apply our numerical methods pre-

sented in this article, to solve f (x) = 0.
To have (n+ 1)α+ 1 ≥ 2, we need to take 1 > α ≥ 1

n+1 , where n ∈ N.
Then, returning back to Remark 2.1, we see that the constant c can be

defined by

c =
λ

Γ ((n+ 1)α) [(n+ 1)α+ 1]

provided that n = p, (p+ 1)α ≤ p and

(2.22) |y − x| ≤ 1 for each x, y ∈ [a, b] .

Notice that condition (2.22) can always be satisfied by choosing x, y (i.e. a, b)
sufficiently close to each other.
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