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Abstract. We present local and semilocal convergence results for some
extended methods in order to approximate a locally unique solution of a
nonlinear equation in a Banach space setting. In earlier studies the oper-
ator involved is assumed to be at least once Fréchet-differentiable. In the
present study, we assume that the operator is only continuous. This way
we expand the applicability of these methods. In Part II of the study, we
present some choices of the operators involved in fractional calculus where
the operators satisfy the convergence conditions. Moreover, we present a
corrected version of the generalized fractional Taylor’s formula given in
[14].

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of the nonlinear equation

(1.1) F (x) = 0,
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where F is a continuous operator defined on a subset D of a Banach space X
with values in a Banach space Y .

A lot of problems in Computational Sciences and other disciplines can be
brought in a form like (1.1) using Mathematical Modelling [7], [11], [15]. The
solutions of such equations can be found in closed form only in special cases.
That is why most solution methods for these equations are iterative. Iterative
algorithms are usually studied based on semilocal and local convergence. The
semilocal convergence matter is, based on the information around the initial
point to give hypotheses ensuring the convergence of the method; while the
local one is, based on the information around a solution, to find estimates of
the radii of convergence balls as well as error bounds on the distances involved.

We introduce the method defined for each n = 0, 1, 2, ... by

(1.2) xn+1 = xn −A (xn)−1
F (xn) ,

where x0 ∈ D is an initial point and A (x) ∈ L (X,Y ) the space of bounded
linear operators from X into Y . There is a plethora on local as well as semilocal
convergence theorems for method (1.2) provided that the operator A is an
approximation to the Fréchet-derivative F ′ [1, 2, 5 - 15]. In the present study
we do not assume that operator A is not necessarily related to F ′. This way
we expand the applicability of method (1.2). Notice that many well known
methods are special case of method (1.2).

Newton’s method: Choose A (x) = F ′ (x) for each x ∈ D.
Steffensen’s method: Choose A (x) = [x,G (x) ;F ], where G : X → X

is a known operator and [x, y;F ] denotes a divided difference of order one
[7, 11, 15].

The so called Newton-like methods and many other methods are special
cases of method (1.2).

The rest of the paper is organized as follows. The semilocal as well as
the local convergence analysis of method (1.2) is given in Section 2. Some
applications from fractional calculus are given in Part II. In particular, we
first correct the generalized fractional Taylor’s formula, the integral version
extracted from [14]. Then, we use the corrected formula in our applications.

2. Convergence analysis

We present the main semilocal convergence result for method (1.2).
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Theorem 2.1. Let F : D ⊂ X → Y be a continuous operator and let A (x) ∈
∈ L (X,Y ). Suppose that there exist x0 ∈ D, η ≥ 0, p ≥ 1, a function
g : [0, η]→ [0,∞) continuous and nondecreasing such that for each x, y ∈ D

(2.1) A (x)−1 ∈ L (Y,X) ,

(2.2)
∥∥∥A (x0)−1

F (x0)
∥∥∥ ≤ η,

(2.3)
∥∥∥A (y)−1 (F (y)− F (x)−A (x) (y − x))

∥∥∥ ≤ g (‖x− y‖) ‖x− y‖p+1
,

(2.4) q := g (η) ηp < 1

and

(2.5) U (x0, r) ⊆ D,

where,

(2.6) r =
η

1− q
.

Then, the sequence {xn} generated by method (1.2) is well defined, remains in
U (x0, r) for each n = 0, 1, 2, . . . and converges to some x∗ ∈ U (x0, r) such that

(2.7) ‖xn+1 − xn‖ ≤ g (‖xn − xn−1‖) ‖xn − xn−1‖p+1 ≤ q ‖xn − xn−1‖

and

(2.8) ‖xn − x∗‖ ≤
qnη

1− q
.

Proof. The iterate x1 is well defined by method (1.2) for n = 0 and (2.1) for
x = x0. We also have by (2.2) and (2.6) that ‖x1 − x0‖ =

∥∥∥A (x0)−1
F (x0)

∥∥∥ ≤
≤ η < r, so we get that x1 ∈ U (x0, r) and x2 is well defined (by (2.5)). Using
(2.3) for y = x1, x = x0 and (2.4) we get that

‖x2 − x1‖ =
∥∥∥A (x1)−1 [F (x1)− F (x0)−A (x0) (x1 − x0)]

∥∥∥ ≤
≤ g (‖x1 − x0‖) ‖x1 − x0‖p+1 ≤ q ‖x1 − x0‖ ,

which shows (2.7) for n = 1. Then, we can have that
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‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖ ≤ q ‖x1 − x0‖+ ‖x1 − x0‖ =

= (1 + q) ‖x1 − x0‖ ≤
1− q2

1− q
η < r,

so x2 ∈ U (x0, r) and x3 is well defined.

Assuming ‖xk+1 − xk‖ ≤ q ‖xk − xk−1‖ and xk+1 ∈ U (x0, r) for each
k = 1, 2, . . . , n we get

‖xk+2 − xk+1‖ =
∥∥∥A (xk+1)−1 [F (xk+1)− F (xk)−A (xk) (xk+1 − xk)]

∥∥∥ ≤
≤ g (‖xk+1 − xk‖) ‖xk+1 − xk‖p+1 ≤

≤ g (‖x1 − x0‖) ‖x1 − x0‖p ‖xk+1 − xk‖ ≤ q ‖xk+1 − xk‖

and

‖xk+2 − x0‖ ≤ ‖xk+2 − xk+1‖+ ‖xk+1 − xk‖+ · · ·+ ‖x1 − x0‖ ≤

≤
(
qk+1 + qk + · · ·+ 1

)
‖x1 − x0‖ ≤

1− qk+2

1− q
‖x1 − x0‖ ≤

<
η

1− q
= r,

which completes the induction for (2.7) and xk+2 ∈ U (x0, r). We also have
that for m ≥ 0

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖+ · · ·+ ‖xn+1 − xn‖ ≤

≤
(
qm−1 + qm−2 + · · ·+ 1

)
‖xn+1 − xn‖ ≤

≤ 1− qm

1− q
qn ‖x1 − x0‖ .

It follows that {xn} is a complete sequence in a Banach space X and as such
it converges to some x∗ ∈ U (x0, r) (since U (x0, r) is a closed set). By letting
m→∞, we obtain (2.8). �

Stronger hypotheses are needed to show that x∗ is a solution of equation
F (x) = 0.

Proposition 2.2. Let F : D ⊂ X → Y be a continuous operator and let
A (x) ∈ L (X,Y ). Suppose that there exist x0 ∈ D, η ≥ 0, p ≥ 1, ψ > 0, a
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function g1 : [0, η] → [0,∞) continuous and nondecreasing such that for each
x, y ∈ D

(2.9) A (x)−1 ∈ L (Y,X) ,
∥∥∥A (x)−1

∥∥∥ ≤ ψ, ∥∥∥A (x0)−1
F (x0)

∥∥∥ ≤ η,
(2.10) ‖F (y)− F (x)−A (x) (y − x)‖ ≤ g1 (‖x− y‖)

ψ
‖x− y‖p+1

,

q1 := g1 (η) ηp < 1

and
U (x0, r1) ⊆ D,

where,
r1 =

η

1− q1
.

Then, the conclusions of Theorem 2.1 for sequence {xn} hold with g1, q1, r1,
replacing g, q and r, respectively. Moreover, x∗ is a solution of the equation
F (x) = 0.

Proof. Notice that∥∥∥A (xn)−1 [F (xn)− F (xn−1)−A (xn−1) (xn − xn−1)]
∥∥∥ ≤

≤
∥∥∥A (xn)−1

∥∥∥ ‖F (xn)− F (xn−1)−A (xn−1) (xn − xn−1)‖ ≤

≤ g1 (‖xn − xn−1‖) ‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ .

Therefore, the proof of Theorem 2.1 can apply. Then, in view of the estimate

‖F (xn)‖ = ‖F (xn)− F (xn−1)−A (xn−1) (xn − xn−1)‖ ≤

≤ g1 (‖xn − xn−1‖)
ψ

‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ ,

we deduce by letting n→∞ that F (x∗) = 0. �

Concerning the uniqueness of the solution x∗ we have the following result:

Proposition 2.3. Under the hypotheses of Proposition 2.2, further suppose
that

(2.11) q1r
p
1 < 1.

Then, x∗ is the only solution of equation F (x) = 0 in U (x0, r1) .
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Proof. The existence of the solution x∗ ∈ U (x0, r1) has been established in
Proposition 2.2. Let y∗ ∈ U (x0, r1) with F (y∗) = 0. Then, we have in turn
that

‖xn+1 − y∗‖ =
∥∥∥xn − y∗ −A (xn)−1

F (xn)
∥∥∥ =

=
∥∥∥A (xn)−1 [A (xn) (xn − y∗)− F (xn) + F (y∗)]

∥∥∥ ≤
≤
∥∥∥A (xn)−1

∥∥∥ ‖F (y∗)− F (xn)−A (xn) (y∗ − xn)‖ ≤

≤ ψg1 (‖xn − y∗‖)
ψ

‖xn − y∗‖p+1 ≤ q1rp
1 ‖xn − x∗‖ < ‖xn − y∗‖ ,

so we deduce that lim
n→∞

xn = y∗. But we have that lim
n→∞

xn = x∗. Hence, we
conclude that x∗ = y∗. �

Next, we present a local convergence analysis for the method (1.2).

Proposition 2.4. Let F : D ⊂ X → Y be a continuous operator and let
A (x) ∈ L (X,Y ). Suppose that there exist x∗ ∈ D, p ≥ 1, a function
g2 : [0,∞)→ [0,∞) continuous and nondecreasing such that for each x ∈ D

F (x∗) = 0, A (x)−1 ∈ L (Y,X) ,

(2.12)

∥∥∥A (x)−1 [F (x)− F (x∗)−A (x) (x− x∗)]
∥∥∥ ≤

≤ g2 (‖x− x∗‖) ‖x− x∗‖p+1
,

and
U (x∗, r2) ⊆ D,

where r2 is the smallest positive solution of equation

h (t) := g2 (t) tp − 1.

Then, sequence {xn} generated by method (1.2) for x0 ∈ U (x∗, r2) − {x∗} is
well defined, remains in U (x∗, r2) for each n = 0, 1, 2, . . . and converges to x∗.
Moreover, the following estimates hold

‖xn+1 − x∗‖ ≤ g2 (‖xn − x∗‖) ‖xn − x∗‖p+1
< ‖xn − x∗‖ < r2.

Proof. We have that h (0) = −1 < 0 and h (t) → +∞ as t → +∞. Then, it
follows from the intermediate value theorem that function h has positive zeros.
Denote by r2 the smallest such zero. By hypothesis x0 ∈ U (x∗, r2) − {x∗}.
Then, we get in turn that
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‖x1 − x∗‖ =
∥∥∥x0 − x∗ −A (x0)−1

F (x0)
∥∥∥ =

=
∥∥∥A (x0)−1 [F (x∗)− F (x0)−A (x0) (x∗ − x0)]

∥∥∥ ≤
≤ g2 (‖x0 − x∗‖) ‖x0 − x∗‖p+1

< g2 (r2) rp
2 ‖x0 − x∗‖ =

= ‖x0 − x∗‖ < r2,

which shows that x1 ∈ U (x∗, r2) and x2 is well defined. By a simple inductive
argument as in the preceding estimate we get that

‖xk+1 − x∗‖ =
∥∥∥xk − x∗ −A (xk)−1

F (xk)
∥∥∥ ≤

≤
∥∥∥A (xk)−1 [F (x∗)− F (xk)−A (xk) (x∗ − xk)]

∥∥∥ ≤
≤ g2 (‖xk − x∗‖) ‖xk − x∗‖p+1

< g2 (r2) rp
2 ‖xk − x∗‖ = ‖xk − x∗‖ < r2,

which shows lim
k→∞

xk = x∗ and xk+1 ∈ U (x∗, r2) . �

Remark 2.1. (a) Hypothesis (2.3) specializes to Newton-Mysowski-type, if
A (x) = F ′ (x) [7], [11], [15]. However, if F is not Fréchet-differentiable, then
our results extend the applicability of iterative algorithm (1.2).

(b) Theorem 2.1 has practical value although we do not show that x∗ is a
solution of equation F (x) = 0, since this may be shown in another way.

(c) Hypothesis (2.12) can be replaced by the stronger∥∥∥A (x)−1 [F (x)− F (y)−A (x) (x− y)]
∥∥∥ ≤ g2 (‖x− y‖) ‖x− y‖p+1

.

The preceding results can be extended to hold for two point methods defined
for each n = 0, 1, 2, . . . by

(2.13) xn+1 = xn −A (xn, xn−1)−1
F (xn) ,

where x−1, x0 ∈ D are initial points and A (w, v) ∈ L (X,Y ) for each v, w ∈ D.
If A (w, v) = [w, v;F ], then method (2.13) reduces to the popular secant
method, where [w, v;F ] denotes a divided difference of order one for the oper-
ator F . Many other choices for A are also possible [7], [11], [15].

If we simply replace A (x) by A (y, x) in the proof of Proposition 2.2 we
arrive at the following semilocal convergence result for method (2.13).
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Theorem 2.5. Let F : D ⊂ X → Y be a continuous operator and let A (y, x) ∈
∈ L (X,Y ) for each x, y ∈ D. Suppose that there exist x−1, x0 ∈ D, η ≥ 0,
p ≥ 1, ψ > 0, a function g1 : [0, η] → [0,∞) continuous and nondecreasing
such that for each x, y ∈ D :

(2.14) A (y, x)−1 ∈ L (Y,X) ,
∥∥∥A (y, x)−1

∥∥∥ ≤ ψ,
min

{
‖x0 − x−1‖ ,

∥∥∥A (x0, x−1)−1
F (x0)

∥∥∥} ≤ η,
(2.15) ‖F (y)− F (x)−A (y, x) (y − x)‖ ≤ g1 (‖x− y‖)

ψ
‖x− y‖p+1

,

q1 < 1, q1r
p
1 < 1

and
U (x0, r1) ⊆ D,

where,
r1 =

η

1− q1
and q1 is defined in Proposition 2.2.

Then, sequence {xn} generated by method (2.13) is well defined, remains in
U (x0, r1) for each n = 0, 1, 2, . . . and converges to the only solution of equation
F (x) = 0 in U (x0, r1).

Moreover, the estimates (2.7) and (2.8) hold with g1, q1 replacing g and q,
respectively.

Concerning, the local convergence of the iterative algorithm (2.13) we obtain
the analogous to Proposition 2.4 result.

Proposition 2.6. Let F : D ⊂ X → Y be a continuous operator and let
A (y, x) ∈ L (X,Y ). Suppose that there exist x∗ ∈ D, p ≥ 1, a function
g2 : [0,∞)2 → [0,∞) continuous and nondecreasing such that for each x, y ∈ D

F (x∗) = 0, A (y, x)−1 ∈ L (Y,X) ,∥∥∥A (y, x)−1 [F (y)− F (x∗)−A (y, x) (y − x∗)]
∥∥∥ ≤

≤ g2 (‖y − x∗‖ , ‖x− x∗‖) ‖y − x∗‖p+1

and
U (x∗, r2) ⊆ D,
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where r2 is the smallest positive solution of equation

h (t) := g2 (t, t) tp − 1.

Then, sequence {xn} generated by method (2.13) for x−1, x0 ∈ U (x∗, r2)−
−{x∗} is well defined, remains in U (x∗, r2) for each n = 0, 1, 2, . . . and con-
verges to x∗. Moreover, the following estimates hold

‖xn+1 − x∗‖ ≤ g2 (‖xn − x∗‖ , ‖xn−1 − x∗‖) ‖xn − x∗‖p+1
<

< ‖xn − x∗‖ < r2.

Remark 2.2. In Part II, we present some choices and properties of operator
A (y, x) from fractional calculus satisfying the crucial estimate (2.15) in the
special case when,

g1 (t) = cψ for some c > 0 and each t ≥ 0.

(see the end of Part II for a possible definition of the constant c).
Hence, Theorem 2.5 can apply to solve equation F (x) = 0. Other choices

for operator A (x) or operator A (y, x) can be found in [5]–[7], [9]–[15].
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