THE FUNCTIONAL EQUATION

$f\left(p+n^{4}+m^{4}\right)=g(p)+h\left(n^{4}\right)+h\left(m^{4}\right)$
Bui Minh Phong (Budapest, Hungary)
Communicated by Imre Kátai
(Received April 16, 2015; accepted July 5, 2015)

Abstract. The solutions f, g, h of the functional equation

$$
f\left(p+n^{4}+m^{4}\right)=g(p)+h\left(n^{4}\right)+h\left(m^{4}\right)
$$

are given under condition that every positive number of the form $32640 k$ is the difference of two primes.

1. Introduction

This article is a continuation of [1], [2] and [3].
Let \mathcal{P}, \mathbb{N} and \mathbb{C} be the set of primes, positive integers and complex numbers, respectively. We are interested in solutions of those complex-valued functions f, g, h for which

$$
f(p+Q(n)+Q(m))=g(p)+h(Q(n))+h(Q(m))
$$

are satisfied for every $p \in \mathcal{P}, n, m \in \mathbb{N}$, where $Q(x) \in \mathbb{Z}[x], Q(x)>0$ for every $x \in \mathbb{N}$.

It was proved in [3] that if the functions f, g, h satisfy the above relation for $Q(x)=x^{3}$, then there exist $A, B, C \in \mathbb{C}$ such that

$$
h\left(n^{3}\right)=A n^{3}+B, \quad g(p)=A p+C
$$

Key words and phrases: Functional equation, reduced residue system, Dirichlet's theorem on arithmetic progressions.
2010 Mathematics Subject Classification: 11N32, 11Y70, 39B52.
and

$$
f\left(p+n^{3}+m^{3}\right)=A\left(p+n^{3}+m^{3}\right)+2 B+C
$$

for every $p \in \mathcal{P}, n, m \in \mathbb{N}$.
In this paper we shall investigate the case $Q(x)=x^{4}$.
Theorem 1. Assume that the functions $f, g, h: \mathbb{N} \rightarrow \mathbb{C}$ satisfy the relation

$$
\begin{equation*}
f\left(p+n^{4}+m^{4}\right)=g(p)+h\left(n^{4}\right)+h\left(m^{4}\right) \quad \text { for all } \quad p \in \mathcal{P}, n, m \in \mathbb{N} \tag{1}
\end{equation*}
$$

If every positive number of the form 32640 n is the difference of two primes, then there are complex numbers A, B, C such that

$$
h\left(n^{4}\right)=A n^{4}+B, \quad g(p)=A p+C
$$

and

$$
f\left(p+n^{4}+m^{4}\right)=A\left(p+n^{4}+m^{4}\right)+2 B+C
$$

holds for $p \in \mathcal{P}$ and $n, m \in \mathbb{N}$.

2. Lemmas

In the following assume that the arithmetical functions f, g, h satisfy (1). Let

$$
S_{n}:=h\left(n^{4}\right), \quad A:=\frac{S_{2}-S_{1}}{15}, \quad B:=S_{1}-A \quad \text { and } \quad C:=g(2)-2 A
$$

Let

$$
T(g):=\{p \in \mathcal{P} \quad \mid g(p)=A p+C\}
$$

and

$$
T(h):=\left\{n \in \mathbb{Z} \mid S_{n}=A n^{4}+B\right\}
$$

Lemma 1. We have

$$
\begin{equation*}
n \in T(h) \tag{2}
\end{equation*}
$$

for every $n \in \mathbb{N}, n \leq 20$ and

$$
\begin{equation*}
p \in T(g) \tag{3}
\end{equation*}
$$

for every $p \in \mathcal{P}, p \leq 73$.

Proof. We shall prove that (2) holds for every $n \leq 20$ and (3) is satisfied for every $p \in \mathcal{B}$, where

$$
\begin{aligned}
& \mathcal{B}=\{p \in \mathcal{P}, p \leq 73\} \cup\{83,97,101,103,107,109,113,127, \\
&131,151,157,163,193,229,293,353\} .
\end{aligned}
$$

For numbers $a, b, c, d \in \mathbb{N}$ and $p, q \in \mathcal{P}$, we define I as follows:

$$
I:=\left\{(p, a, b, q, c, d) \mid p+a^{4}+b^{4}=q+c^{4}+d^{4}\right\} .
$$

It is obvious from (1) that

$$
\begin{equation*}
g(p)+S_{a}+S_{b}=g(q)+S_{c}+S_{d} \quad \text { if } \quad(p, a, b, q, c, d) \in I \tag{4}
\end{equation*}
$$

With the help of computer, we computed that the following 54 elements (p, a, $b, q, c, d)$ are in I :
$(2,2,3,97,1,1),(2,7,7,83,5,8),(2,10,13,131,2,14),(3,1,3,83,1,1)$, $(3,3,3,163,1,1),(3,6,6,113,3,7),(3,10,13,67,3,14),(5,8,9,37,5,10)$, $(5,11,11,101,5,13),(7,2,2,37,1,1),(11,8,9,43,5,10),(13,2,2,43,1$, 1), $(13,10,13,157,1,14),(13,11,11,109,5,13),(17,2,2,47,1,1),(17,11$, $11,113,5,13),(19,10,13,163,1,14),(23,1,3,103,1,1),(23,2,2,53,1,1)$, $(29,1,3,109,1,1),(29,2,2,59,1,1),(29,8,9,61,5,10),(31,2,2,61,1,1)$, $(31,11,11,127,5,13),(37,2,2,67,1,1),(41,2,2,71,1,1),(43,2,2,73,1$, 1), $(47,1,3,127,1,1),(67,2,2,2,2,3),(67,2,2,17,1,3),(67,5,5,5,2,6)$, $(67,6,6,2,4,7),(67,7,8,2,1,9),(67,13,13,3,9,15),(71,2,2,101,1,1)$, $(71,8,9,103,5,10),(73,2,2,103,1,1),(83,2,2,113,1,1),(107,5,13,11$, $11,11),(107,18,17,43,13,20),(127,4,4,13,1,5),(131,4,4,2,2,5),(131$, $8,9,163,5,10),(131,19,5,5,16,16),(151,2,2,101,1,3),(193,1,3,3,2$, $4),(193,10,11,2,8,12),(229,4,12,19,9,11),(229,10,12,3,7,13),(229$, $20,12,19,15,19)(293,10,12,67,7,13),(293,11,15,7,2,16),(353,11,15$, $2,3,16),(353,17,7,3,12,16)$.

Thus, from these values of I and from (4), we obtain the system of 54 equations with 57 unknowns, namely $S_{n}, n \in \mathbb{N}, n \leq 20$ and $g(p)(p \in \mathcal{B})$ are unknowns. We solve this linear system and with computer one can check that (2) and (3) are true.

Lemma 1 is proved.
Lemma 2. We have

$$
\left\{p_{1}=2, \ldots, p_{620}=4583\right\} \subseteq T(g)
$$

where p_{i} is the i-th prime number.

Proof. First we note from Lemma 1 that $p_{i} \in T(g)$ for every $i \leq 21$.
One can check that the following elements belong to I :
(5)

$$
\begin{cases}(3,30,6,17,23,27), & 30^{4}+6^{4}-23^{4}-27^{4}=17-3=14 \\ (3,86,34,19,50,84), & 86^{4}+34^{4}-50^{4}-84^{4}=19-3=16 \\ (7,2,2,37,1,1), & 2^{4}+2^{4}-1^{4}-1^{4}=37-7=30 \\ (5,8,9,37,5,10), & 8^{4}+9^{4}-5^{4}-10^{4}=37-5=32 \\ (3,49,5,37,26,48,), & 49^{4}+5^{4}-26^{4}-48^{4}=37-3=34 \\ (17,1,3,67,2,2), & 1^{4}+3^{4}-2^{4}-2^{4}=67-17=50 \\ (5,2,6,67,5,5), & 2^{4}+6^{4}-5^{4}-5^{4}=67-5=62 \\ (3,10,13,67,3,14), & 10^{4}+13^{4}-3^{4}-14^{4}=67-3=64 \\ (3,1,3,83,1,1), & 1^{4}+3^{4}-1^{4}-1^{4}=83-3=80 \\ (5,58,61,101,52,65), & 58^{4}+61^{4}-52^{4}-65^{4}=101-5=96 \\ (5,106,146,131,155,43), & 106^{4}+146^{4}-155^{4}-43^{4}=131-5=126 \\ (7,71,47,137,58,66), & 71^{4}+47^{4}-58^{4}-66^{4}=137-7=130 \\ (5,35,19,149,29,31), & 35^{4}+19^{4}-29^{4}-31^{4}=149-5=144 \\ (3,114,134,193,99,141), & 114^{4}+134^{4}-99^{4}-141^{4}=193-3=190\end{cases}
$$

Let $\mathcal{U}:=\{14,16,30,32,34,50,62,64,80,96,126,130,144,190\}$. It follows easily from (4), (5) and Lemma 1 that

$$
g(p)=g(q)+(p-q) A, \quad \text { if } \quad p, q \in \mathcal{P} \quad \text { and } \quad p-q \in \mathcal{U}
$$

consequently

$$
\begin{equation*}
p \in T(g), \quad \text { if } \quad q \in T(g) \quad \text { and } \quad p-q \in \mathcal{U} \tag{6}
\end{equation*}
$$

Assume that $p_{j} \in T(g)$ for all $j<i$, where $21<i \leq 620$. If $p_{i}-p_{j} \in \mathcal{U}$ for some $j<i$, then we shall write $i \in \mathcal{T}$. It is obvious from (6) that if $i \in \mathcal{T}$, then $p_{i} \in T(g)$.

With the help of computer, among $p_{i}, i \leq 620$ only $526 \notin \mathcal{T}$. We prove that $p_{526}=3779 \in T(g)$. Indeed, since $p_{527}-p_{516}=3793-3697=96 \in \mathcal{U}$ and $p_{527}-p_{526}=3793-3779=14 \in \mathcal{U}$, we have $p_{526}=3779 \in T(g)$.

Lemma 2 is proved.
Lemma 3. We have

$$
\begin{equation*}
\{1,2, \cdots, 256\} \subseteq T(h) \tag{7}
\end{equation*}
$$

Proof. Assume that $a \in\{1,2, \cdots, 256\}, a>21$ and $n \in T(h)$ holds for every $n<a$. We shall prove that $a \in T(h)$.

We consider the following 11 equations

$$
\begin{gather*}
\left|a^{4}+x^{4}-y^{4}-z^{4}\right|=p_{i}-2, \quad 0 \leq x, y, z \leq a-1,1 \leq i \leq 620 \tag{8}\\
\left|a^{4}+x^{4}-y^{4}-z^{4}\right|=p_{i}-3, \quad 0 \leq x, y, z \leq a-1,1 \leq i \leq 620 \tag{9}\\
\left|a^{4}+x^{4}-y^{4}-z^{4}\right|=p_{i}-5, \quad 0 \leq x, y, z \leq a-1,1 \leq i \leq 620 \tag{10}\\
\left|a^{4}+x^{4}-y^{4}-z^{4}\right|=p_{i}-7, \quad 0 \leq x, y, z \leq a-1,1 \leq i \leq 620 \tag{11}\\
\left|a^{4}+x^{4}-y^{4}-z^{4}\right|=p_{i}-11, \quad 0 \leq x, y, z \leq a-1,1 \leq i \leq 620 \tag{12}\\
\left|a^{4}+x^{4}-y^{4}-z^{4}\right|=p_{i}-13, \quad 0 \leq x, y, z \leq a-1,1 \leq i \leq 620 \tag{13}\\
\left|a^{4}+x^{4}-y^{4}-z^{4}\right|=p_{i}-17, \quad 0 \leq x, y, z \leq a-1,1 \leq i \leq 620 \tag{14}\\
\left|a^{4}+x^{4}-y^{4}-z^{4}\right|=p_{i}-19, \quad 0 \leq x, y, z \leq a-1,1 \leq i \leq 620 \tag{15}\\
\left|a^{4}+x^{4}-y^{4}-z^{4}\right|=p_{i}-23, \quad 0 \leq x, y, z \leq a-1,1 \leq i \leq 620 \tag{16}\\
\left|a^{4}+x^{4}-y^{4}-z^{4}\right|=p_{i}-29, \quad 0 \leq x, y, z \leq a-1,1 \leq i \leq 620 \tag{17}\\
\left|a^{4}+x^{4}-y^{4}-z^{4}\right|=p_{i}-31, \quad 0 \leq x, y, z \leq a-1,1 \leq i \leq 620 \tag{18}
\end{gather*}
$$

It is clear that if one of (8)-(18) is soluble, then from Lemma 1 and Lemma 2 we have $a \in T(h)$. With the help of computer, we obtain that one of (8)-(18) is soluble, except if $a=62,186,205,232,238,254$.

Arguing similarly as in the proof of Lemma 2, we can prove that these values also belong to $T(h)$.

It is clear to see that if $(p, a, b, q, c, d) \in I, p, q \in \mathcal{P}, p, q \leq p_{620}=4583$ and three elements of a, b, c, d belong $T(h)$, then the fourth element also belongs to $T(h)$.

If $a=62$, then $(3,63,13,563,53,53) \in I$ and $(487,34,63,7,39,62) \in I$ imply that $62 \in T(h)$.

If $a=186$, then $(7,102,184,373,187,75) \in I$ and $(3,72,186,2593,31,187) \in$ $\in I$ imply that $186 \in T(h)$.

If $a=205$, then $(2,39,209,1987,136,199)$ and $(5,110,205,3413,46,209) \in$ $\in I$ imply that $205 \in T(h)$.

If $a=232$, then $(23,234,63,4423,168,217)$ and $(13,110,232,1277,82,234) \in$ $\in I$ imply that $232 \in T(h)$.

If $a=238$, then $(11,242,108,1801,169,229)$ and $(7,242,107,3607,137,238) \in$ $\in I$ imply that $238 \in T(h)$.

Finally, if $a=254$, then we infer from

$$
(23,255,117,3847,199,231), \quad(2,254,203,4513,201,255) \in I
$$

that $254 \in T(h)$.
Lemma 3 is proved.
Lemma 4. If

$$
\begin{equation*}
32640 \mathbb{Z} \subseteq \mathcal{P}-\mathcal{P} \tag{19}
\end{equation*}
$$

then

$$
\begin{align*}
& S_{16 n+m}-S_{16 n-m}-S_{8 n+8 m}+S_{8 n-8 m}= \\
& =S_{2 n+2 m}-S_{2 n-2 m}-S_{n+16 m}+S_{n-16 m} \tag{20}
\end{align*}
$$

holds for all $n, m \in \mathbb{N}$.

Proof. It is easy to check that

$$
(16 n+m)^{4}-(16 n-m)^{4}-(8 n+8 m)^{4}+(8 n-8 m)^{4}=-32640 n m^{3}
$$

and

$$
(2 n+2 m)^{4}-(2 n-2 m)^{4}-(n+16 m)^{4}+(n-16 m)^{4}=-32640 n m^{3}
$$

which, using (19), there are primes p, q such that $-32640 \mathrm{~nm}^{3}=p-q$, consequently

$$
S_{16 n+m}-S_{16 n-m}-S_{8 n+8 m}+S_{8 n-8 m}=g(p)-g(q)
$$

and

$$
S_{2 n+2 m}-S_{2 n-2 m}-S_{n+16 m}+S_{n-16 m}=g(p)-g(q)
$$

These imply (20).
Lemma 4 is proved.

3. Proof of the Theorem 1.

Assume that $n \in T(h)$ for every $n \in \mathbb{Z},|n|<N$. From Lemma 3, we have $N>256$. Let $N=16 n+m$, where $n>16$ and $m \in\{1,2, \cdots, 16\}$. We get from (20) that

$$
\begin{aligned}
S_{N} & =S_{16 n+m}= \\
& =S_{16 n-m}+S_{8 n+8 m}-S_{8 n-8 m}+S_{2 n+2 m}-S_{2 n-2 m}-S_{n+16 m}+S_{n-16 m}= \\
& =A\left((16 n-m)^{4}+(8 n+8 m)^{4}-(8 n-8 m)^{4}+(2 n+2 m)^{4}-(2 n-2 m)^{4}-\right. \\
& \left.-(n+16 m)^{4}+(n-16 m)^{4}\right)+B=A(16 n+m)^{4}+B=A N^{4}+B .
\end{aligned}
$$

Thus we proved that $n \in T(h)$ for every $n \in \mathbb{N}$.
Now we prove $T(g)=\mathcal{P}$.
We check easily that

$$
\begin{equation*}
(2 n-1)^{4}+(n+8)^{4}-(2 n+1)^{4}-(n-8)^{4}=4080 n \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
(3 n-1)^{4}+(n+27)^{4}-(3 n+1)^{4}-(n-27)^{4}=157440 n \tag{22}
\end{equation*}
$$

Let $U:=4080=2^{4} \cdot 3 \cdot 5 \cdot 17$ and $V:=157440=2^{8} \cdot 3 \cdot 5 \cdot 41$. It is obvious that $(U, V)=240$ and these relations with the fact $T(h)=\mathbb{N}$ imply that

$$
\begin{equation*}
g(p)-g(q)=A(p-q) \quad \text { if } p, q \in \mathcal{P}, p \equiv q \quad(\bmod U) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
g(r)-g(\pi)=A(r-\pi) \text { if } r, \pi \in \mathcal{P}, r \equiv \pi \quad(\bmod V) \tag{24}
\end{equation*}
$$

Indeed, if $p, q \in \mathcal{P}, p>q, p \equiv q(\bmod U)$, then $p-q=U n$ for some $n \in \mathbb{N}$. Then from (21) we have

$$
(2 n-1)^{4}+(n+8)^{4}-(2 n+1)^{4}-(n-8)^{4}=p-q
$$

consequently

$$
\begin{aligned}
g(p)-g(q) & =S_{2 n-1}+S_{n+8}-S_{2 n+1}-S_{n-8}= \\
& =A\left((2 n-1)^{4}+(n+8)^{4}-(2 n+1)^{4}-(n-8)^{4}\right)=A(p-q)
\end{aligned}
$$

Thus, (23) is proved. The proof of (24) is similar as the proof of (23).

Let \mathfrak{M} denote the reduced residue system modulo 240 for which every element of \mathfrak{M} is a prime number and coprime to V, i.e.
$\mathfrak{M}:=\{241,7,11,13,17,19,23,29,31,37,281,43,47,769,53,59,61,67,71,73,317$, $79,83,89,331,97,101,103,107,109,113,359,601,127,131,373,137,139$, $383,149,151,157,401,163,167,409,173,179,181,907,191,193,197,199$, $443,449,211,457,461,223,227,229,233,239\}$.

It follows from Lemma 2 that $\mathfrak{M} \subseteq T(g)$.
Let $p \in \mathcal{P}$ and $p>p_{620}=4583$. We shall prove that $p \in T(g)$.
First, we note that there is a prime $r \in \mathfrak{M}$ such that $p \equiv r(\bmod 240)$. Since $(U, V)=240$, therefore there exists a $n_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
U n_{1}+p \equiv r \quad(\bmod V) \tag{25}
\end{equation*}
$$

We infer from (25), by using the fact $p>4583$ and from definitions of U, V, \mathfrak{M} that

$$
\left(U V, U n_{1}+p\right)=\left(V, U n_{1}+p\right)=(V, r)=1
$$

From Dirichlet's theorem on arithmetic progressions, there is a prime $P=$ $=U V n_{2}+U n_{1}+p$ for some $n_{2} \in \mathbb{N}$. Since

$$
P \equiv r \quad(\bmod V) \quad \text { and } \quad P \equiv p \quad(\bmod U)
$$

we get from (23) and (24) that

$$
g(P)-g(r)=A(P-r) \quad \text { and } \quad g(P)-g(p)=A(P-p)
$$

This shows that $g(p)=A p-A r+g(r)=A p+C$, and so the proof of the theorem is finished.

The theorem is proved.

References

[1] Kátai, I. and B.M. Phong, A consequence of the ternary Goldbach theorem, Publ. Math. Debrecen, 86 (2015), 465-471.
[2] Kátai, I. and B.M. Phong, The functional equation $f(\mathcal{A}+\mathcal{B})=g(\mathcal{A})+$ $+h(\mathcal{B})$, Annales Univ. Sci. Budapest., Sect. Comp., 43 (2014), 287-301.
[3] Phong, B.M., The functional equation $f\left(a+n^{3}+m^{3}\right)=g(a)+h\left(n^{3}\right)+$ $+h\left(m^{3}\right)$, (Submitted to Publ. Math. Debrecen.)

B. M. Phong
Department of Computer Algebra
Faculty of Informatics
Eötvös Loránd University
H-1117 Budapest, Pázmány Péter sétány $1 / \mathrm{C}$
Hungary
bui@inf.elte.hu

