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Abstract. The solutions f, g, h of the functional equation

f(p + n4 + m4) = g(p) + h(n4) + h(m4)

are given under condition that every positive number of the form 32640k
is the difference of two primes.

1. Introduction

This article is a continuation of [1], [2] and [3].
Let P,N and C be the set of primes, positive integers and complex numbers,

respectively. We are interested in solutions of those complex-valued functions
f, g, h for which

f(p+Q(n) +Q(m)) = g(p) + h(Q(n)) + h(Q(m))

are satisfied for every p ∈ P, n,m ∈ N, where Q(x) ∈ Z[x], Q(x) > 0 for every
x ∈ N.

It was proved in [3] that if the functions f, g, h satisfy the above relation
for Q(x) = x3, then there exist A,B,C ∈ C such that

h(n3) = An3 +B, g(p) = Ap+ C

Key words and phrases: Functional equation, reduced residue system, Dirichlet’s theorem on
arithmetic progressions.
2010 Mathematics Subject Classification: 11N32, 11Y70, 39B52.



110 B.M. Phong

and
f(p+ n3 +m3) = A(p+ n3 +m3) + 2B + C

for every p ∈ P, n,m ∈ N.
In this paper we shall investigate the case Q(x) = x4.

Theorem 1. Assume that the functions f, g, h : N→ C satisfy the relation

(1) f(p+ n4 +m4) = g(p) + h(n4) + h(m4) for all p ∈ P, n,m ∈ N.

If every positive number of the form 32640n is the difference of two primes,
then there are complex numbers A,B,C such that

h(n4) = An4 +B, g(p) = Ap+ C

and
f(p+ n4 +m4) = A(p+ n4 +m4) + 2B + C

holds for p ∈ P and n,m ∈ N.

2. Lemmas

In the following assume that the arithmetical functions f, g, h satisfy (1).
Let

Sn := h(n4), A :=
S2 − S1

15
, B := S1 −A and C := g(2)− 2A.

Let
T (g) := {p ∈ P | g(p) = Ap+ C}

and
T (h) := {n ∈ Z | Sn = An4 +B}

Lemma 1. We have

(2) n ∈ T (h)

for every n ∈ N, n ≤ 20 and

(3) p ∈ T (g)

for every p ∈ P, p ≤ 73.
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Proof. We shall prove that (2) holds for every n ≤ 20 and (3) is satisfied for
every p ∈ B, where

B = {p ∈ P, p ≤ 73}∪{83, 97, 101, 103, 107, 109, 113, 127,
131, 151, 157, 163, 193, 229, 293, 353}.

For numbers a, b, c, d ∈ N and p, q ∈ P, we define I as follows:

I := {(p, a, b, q, c, d)| p+ a4 + b4 = q + c4 + d4}.

It is obvious from (1) that

(4) g(p) + Sa + Sb = g(q) + Sc + Sd if (p, a, b, q, c, d) ∈ I.

With the help of computer, we computed that the following 54 elements (p, a,
b, q, c, d) are in I:

(2, 2, 3, 97, 1, 1), (2, 7, 7, 83, 5, 8), (2, 10, 13, 131, 2, 14), (3, 1, 3, 83, 1, 1),
(3, 3, 3, 163, 1, 1), (3, 6, 6, 113, 3, 7), (3, 10, 13, 67, 3, 14), (5, 8, 9, 37, 5, 10),
(5, 11, 11, 101, 5, 13), (7, 2, 2, 37, 1, 1), (11, 8, 9, 43, 5, 10), (13, 2, 2, 43, 1,
1), (13, 10, 13, 157, 1, 14), (13, 11, 11, 109, 5, 13), (17, 2, 2, 47, 1, 1), (17, 11,
11, 113, 5, 13), (19, 10, 13, 163, 1, 14), (23, 1, 3, 103, 1, 1), (23, 2, 2, 53, 1, 1),
(29, 1, 3, 109, 1, 1), (29, 2, 2, 59, 1, 1), (29, 8, 9, 61, 5, 10), (31, 2, 2, 61, 1, 1),
(31, 11, 11, 127, 5, 13), (37, 2, 2, 67, 1, 1), (41, 2, 2, 71, 1, 1), (43, 2, 2, 73, 1,
1), (47, 1, 3, 127, 1, 1), (67, 2, 2, 2, 2, 3), (67, 2, 2, 17, 1, 3), (67, 5, 5, 5, 2, 6),
(67, 6, 6, 2, 4, 7), (67, 7, 8, 2, 1, 9), (67, 13, 13, 3, 9, 15), (71, 2, 2, 101, 1, 1),
(71, 8, 9, 103, 5, 10), (73, 2, 2, 103, 1, 1), (83, 2, 2, 113, 1, 1), (107, 5, 13, 11,
11, 11), (107, 18, 17, 43, 13, 20), (127, 4, 4, 13, 1, 5), (131, 4, 4, 2, 2, 5), (131,
8, 9, 163, 5, 10), (131, 19, 5, 5, 16, 16), (151, 2, 2, 101, 1, 3), (193, 1, 3, 3, 2,
4), (193, 10, 11, 2, 8, 12), (229, 4, 12, 19, 9, 11), (229, 10, 12, 3, 7, 13), (229,
20, 12, 19, 15, 19) (293, 10, 12, 67, 7, 13), (293, 11, 15, 7, 2, 16), (353, 11, 15,
2, 3, 16), (353, 17, 7, 3, 12, 16).

Thus, from these values of I and from (4), we obtain the system of 54
equations with 57 unknowns, namely Sn, n ∈ N, n ≤ 20 and g(p) (p ∈ B) are
unknowns. We solve this linear system and with computer one can check that
(2) and (3) are true.

Lemma 1 is proved. �

Lemma 2. We have

{p1 = 2, . . . , p620 = 4583} ⊆ T (g),

where pi is the i-th prime number.
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Proof. First we note from Lemma 1 that pi ∈ T (g) for every i ≤ 21.
One can check that the following elements belong to I:

(5)

(3, 30, 6, 17, 23, 27), 304 + 64 − 234 − 274 = 17− 3 = 14,
(3, 86, 34, 19, 50, 84), 864 + 344 − 504 − 844 = 19− 3 = 16,
(7, 2, 2, 37, 1, 1), 24 + 24 − 14 − 14 = 37− 7 = 30,
(5, 8, 9, 37, 5, 10), 84 + 94 − 54 − 104 = 37− 5 = 32,
(3, 49, 5, 37, 26, 48, ), 494 + 54 − 264 − 484 = 37− 3 = 34,
(17, 1, 3, 67, 2, 2), 14 + 34 − 24 − 24 = 67− 17 = 50,
(5, 2, 6, 67, 5, 5), 24 + 64 − 54 − 54 = 67− 5 = 62,
(3, 10, 13, 67, 3, 14), 104 + 134 − 34 − 144 = 67− 3 = 64,
(3, 1, 3, 83, 1, 1), 14 + 34 − 14 − 14 = 83− 3 = 80
(5, 58, 61, 101, 52, 65), 584 + 614 − 524 − 654 = 101− 5 = 96,
(5, 106, 146, 131, 155, 43), 1064 + 1464 − 1554 − 434 = 131− 5 = 126,
(7, 71, 47, 137, 58, 66), 714 + 474 − 584 − 664 = 137− 7 = 130,
(5, 35, 19, 149, 29, 31), 354 + 194 − 294 − 314 = 149− 5 = 144,
(3, 114, 134, 193, 99, 141), 1144 + 1344 − 994 − 1414 = 193− 3 = 190.

Let U := {14, 16, 30, 32, 34, 50, 62, 64, 80, 96, 126, 130, 144, 190}. It follows
easily from (4), (5) and Lemma 1 that

g(p) = g(q) + (p− q)A, if p, q ∈ P and p− q ∈ U ,

consequently

(6) p ∈ T (g), if q ∈ T (g) and p− q ∈ U .

Assume that pj ∈ T (g) for all j < i, where 21 < i ≤ 620. If pi − pj ∈ U for
some j < i, then we shall write i ∈ T . It is obvious from (6) that if i ∈ T , then
pi ∈ T (g).

With the help of computer, among pi, i ≤ 620 only 526 6∈ T . We prove that
p526 = 3779 ∈ T (g). Indeed, since p527 − p516 = 3793 − 3697 = 96 ∈ U and
p527 − p526 = 3793− 3779 = 14 ∈ U , we have p526 = 3779 ∈ T (g).

Lemma 2 is proved. �

Lemma 3. We have

(7) {1, 2, · · · , 256} ⊆ T (h).

Proof. Assume that a ∈ {1, 2, · · · , 256}, a > 21 and n ∈ T (h) holds for every
n < a. We shall prove that a ∈ T (h).
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We consider the following 11 equations

(8) |a4 + x4 − y4 − z4| = pi − 2, 0 ≤ x, y, z ≤ a− 1, 1 ≤ i ≤ 620,

(9) |a4 + x4 − y4 − z4| = pi − 3, 0 ≤ x, y, z ≤ a− 1, 1 ≤ i ≤ 620,

(10) |a4 + x4 − y4 − z4| = pi − 5, 0 ≤ x, y, z ≤ a− 1, 1 ≤ i ≤ 620,

(11) |a4 + x4 − y4 − z4| = pi − 7, 0 ≤ x, y, z ≤ a− 1, 1 ≤ i ≤ 620,

(12) |a4 + x4 − y4 − z4| = pi − 11, 0 ≤ x, y, z ≤ a− 1, 1 ≤ i ≤ 620,

(13) |a4 + x4 − y4 − z4| = pi − 13, 0 ≤ x, y, z ≤ a− 1, 1 ≤ i ≤ 620,

(14) |a4 + x4 − y4 − z4| = pi − 17, 0 ≤ x, y, z ≤ a− 1, 1 ≤ i ≤ 620,

(15) |a4 + x4 − y4 − z4| = pi − 19, 0 ≤ x, y, z ≤ a− 1, 1 ≤ i ≤ 620,

(16) |a4 + x4 − y4 − z4| = pi − 23, 0 ≤ x, y, z ≤ a− 1, 1 ≤ i ≤ 620,

(17) |a4 + x4 − y4 − z4| = pi − 29, 0 ≤ x, y, z ≤ a− 1, 1 ≤ i ≤ 620,

(18) |a4 + x4 − y4 − z4| = pi − 31, 0 ≤ x, y, z ≤ a− 1, 1 ≤ i ≤ 620.

It is clear that if one of (8)-(18) is soluble, then from Lemma 1 and Lemma
2 we have a ∈ T (h). With the help of computer, we obtain that one of (8)–(18)
is soluble, except if a = 62, 186, 205, 232, 238, 254.

Arguing similarly as in the proof of Lemma 2, we can prove that these
values also belong to T (h).

It is clear to see that if (p, a, b, q, c, d) ∈ I, p, q ∈ P, p, q ≤ p620 = 4583 and
three elements of a, b, c, d belong T (h), then the fourth element also belongs to
T (h).

If a = 62, then (3, 63, 13, 563, 53, 53) ∈ I and (487, 34, 63, 7, 39, 62) ∈ I
imply that 62 ∈ T (h).

If a = 186, then (7, 102, 184, 373, 187, 75) ∈ I and (3, 72, 186, 2593, 31, 187) ∈
∈ I imply that 186 ∈ T (h).
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If a = 205, then (2, 39, 209, 1987, 136, 199) and (5, 110, 205, 3413, 46, 209) ∈
∈ I imply that 205 ∈ T (h).

If a = 232, then (23, 234, 63, 4423, 168, 217) and (13, 110, 232, 1277, 82, 234) ∈
∈ I imply that 232 ∈ T (h).

If a = 238, then (11, 242, 108, 1801, 169, 229) and (7, 242, 107, 3607, 137, 238) ∈
∈ I imply that 238 ∈ T (h).

Finally, if a = 254, then we infer from

(23, 255, 117, 3847, 199, 231), (2, 254, 203, 4513, 201, 255) ∈ I

that 254 ∈ T (h).

Lemma 3 is proved. �

Lemma 4. If

(19) 32640Z ⊆ P − P,

then

(20)
S16n+m − S16n−m − S8n+8m + S8n−8m =
= S2n+2m − S2n−2m − Sn+16m + Sn−16m

holds for all n,m ∈ N.

Proof. It is easy to check that

(16n+m)4 − (16n−m)4 − (8n+ 8m)4 + (8n− 8m)4 = −32640nm3

and

(2n+ 2m)4 − (2n− 2m)4 − (n+ 16m)4 + (n− 16m)4 = −32640nm3

which, using (19), there are primes p, q such that −32640nm3 = p − q, conse-
quently

S16n+m − S16n−m − S8n+8m + S8n−8m = g(p)− g(q)

and
S2n+2m − S2n−2m − Sn+16m + Sn−16m = g(p)− g(q).

These imply (20).

Lemma 4 is proved. �
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3. Proof of the Theorem 1.

Assume that n ∈ T (h) for every n ∈ Z, |n| < N . From Lemma 3, we have
N > 256. Let N = 16n + m, where n > 16 and m ∈ {1, 2, · · · , 16}. We get
from (20) that

SN = S16n+m =
= S16n−m + S8n+8m − S8n−8m + S2n+2m − S2n−2m − Sn+16m + Sn−16m =

= A
(

(16n−m)4 + (8n+ 8m)4 − (8n− 8m)4 + (2n+ 2m)4 − (2n− 2m)4−

− (n+ 16m)4 + (n− 16m)4
)

+B = A(16n+m)4 +B = AN4 +B.

Thus we proved that n ∈ T (h) for every n ∈ N.
Now we prove T (g) = P.
We check easily that

(21) (2n− 1)4 + (n+ 8)4 − (2n+ 1)4 − (n− 8)4 = 4080n

and

(22) (3n− 1)4 + (n+ 27)4 − (3n+ 1)4 − (n− 27)4 = 157440n.

Let U := 4080 = 24 · 3 · 5 · 17 and V := 157440 = 28 · 3 · 5 · 41. It is obvious that
(U, V ) = 240 and these relations with the fact T (h) = N imply that

(23) g(p)− g(q) = A(p− q) if p, q ∈ P, p ≡ q (mod U)

and

(24) g(r)− g(π) = A(r − π) if r, π ∈ P, r ≡ π (mod V ).

Indeed, if p, q ∈ P, p > q, p ≡ q (mod U), then p − q = Un for some n ∈ N.
Then from (21) we have

(2n− 1)4 + (n+ 8)4 − (2n+ 1)4 − (n− 8)4 = p− q,

consequently

g(p)− g(q) = S2n−1 + Sn+8 − S2n+1 − Sn−8 =

= A
(

(2n− 1)4 + (n+ 8)4 − (2n+ 1)4 − (n− 8)4
)

= A(p− q).

Thus, (23) is proved. The proof of (24) is similar as the proof of (23).
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Let M denote the reduced residue system modulo 240 for which every ele-
ment of M is a prime number and coprime to V , i.e.

M :={241, 7, 11, 13, 17, 19, 23, 29, 31, 37, 281, 43, 47, 769, 53, 59, 61, 67, 71, 73, 317,
79, 83, 89, 331, 97, 101, 103, 107, 109, 113, 359, 601, 127, 131, 373, 137, 139,
383, 149, 151, 157, 401, 163, 167, 409, 173, 179, 181, 907, 191, 193, 197, 199,
443, 449, 211, 457, 461, 223, 227, 229, 233, 239}.

It follows from Lemma 2 that M ⊆ T (g).

Let p ∈ P and p > p620 = 4583. We shall prove that p ∈ T (g).

First, we note that there is a prime r ∈ M such that p ≡ r (mod 240).
Since (U, V ) = 240, therefore there exists a n1 ∈ N such that

(25) Un1 + p ≡ r (mod V ).

We infer from (25), by using the fact p > 4583 and from definitions of U, V,M
that

(UV,Un1 + p) = (V,Un1 + p) = (V, r) = 1.

From Dirichlet’s theorem on arithmetic progressions, there is a prime P =
= UV n2 + Un1 + p for some n2 ∈ N. Since

P ≡ r (mod V ) and P ≡ p (mod U),

we get from (23) and (24) that

g(P )− g(r) = A(P − r) and g(P )− g(p) = A(P − p).

This shows that g(p) = Ap − Ar + g(r) = Ap + C, and so the proof of the
theorem is finished.

The theorem is proved. �
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