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Abstract. We examine the uniform distribution of certain sequences in-
volving the Euler totient function and the sum of divisors function.

1. Introduction and notation

Let us denote by ¢(n) the well known Euler totient function and by o(n)
the sum of the positive divisors of n.

Let also M (resp. A) be the set of multiplicative (resp. additive) functions
and M the set of those f € M such that |f(n)| = 1 for all positive integers
n. For each y € R, we set e(y) 1= 2™,

A famous result of H. Daboussi (see Daboussi and Delange [2], [3]) asserts
that

(1.1) fb»‘eg\l/)ll % Z fn)e(na)| — 0 as T — 0o

n<zx

for every a € R\ Q.
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The proof of (1.1 is based on the large sieve inequality. Another proof
follows from a general form of the Turan-Kubilius inequality.

Here, we examine the uniform distribution of certain sequences involving
the Euler totient function and the sum of divisors function.

From here on, we let o stand for the set of all primes and we let {y} be the
fractional part of y. We also let P(n) stand for the largest prime factor of n.

2. Background results

The following result was obtained by the second author [7].

Theorem A. Let t: N — R. Assume that for every real number K > 0, there
exists a finite set py of primes p1 < ps < --- < py such that

k

(2.1) A=Y > K

i=1 4"
and that, given any pair i # j, i,j € {1,2,...,k}, the corresponding sequence
ni,j(m) = t(pim) — t(pym) ~ (m €N)

satisfies the relation
1
- Z e(n;;(m)) =0 as x — oo.
T

Then there exists a function p, for which p, — 0 as x — oo and such that

sup =[S Fm)e(tn)] < po-

femy T

n<z

Observe that Theorem A holds in particular if one chooses t(n) := a,n" +
+---+ ain, a polynomial with real coefficients where at least one the «;’s is
irrational.

Recall that the discrepancy of a set of N real numbers x1,...,zy is the
quantity

1
D(zy,...,zy):= sup |— Z 1—(b—a)l.
[a,0)C[0,1) {z, }€[a,b)
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We now consider the set 7 of all those real valued arithmetic functions ¢ for
which the sequence

n(F) := F(n) + t(n) (n € N)
satisfies
D((m(F),m2(F),...,nn(F)) =0 as N — o0
for every arithmetic function F.

The following result is then a consequence of Theorem A.

Corollary 1. Assume that for every real number K > 0, one can choose a set

of primes o = {p1,p2,...,pr} for which holds, and lett : N — R be a
function such that the sequence (t(p;m) — t(p;m))m>1 is uniformly distributed
modulo 1 for every pair of integers i £ j, i,5 € {1,2,...,k}. Thente T.

Remark 1. Observe that it is clear that if ¢ € 7, then the sequence (t(n))n>1
is uniformly distributed modulo 1.

Note also that, letting ||z|| stand for the distance between 2 and the nearest
integer, we proved in [4] the following.

Theorem B. Ifa is a positive irrational number such that for each real number
k > 1 there exists a positive constant ¢ = ¢(k, ) for which the inequality

llag|| > q% holds for every positive integer q,

and let Q(z) = a,a” + -+ + ap € R[z], where a, > 0. Assume that h Is an
integer valued function belonging to My such that h(p) = Q(p) for every p € p
and that for some fixed d > 0 we have h(p®) = O(p?®) for every prime power
p®. Then the function t(n) = ah(n) belongs to 7.

It follows from Theorem B and Remark [1] that the sequence ({ao(n)})n>1
is uniformly distributed modulo 1.

Remark 2. Observe that one can construct an irrational number « for which
the corresponding sequence ({ao(n)}),>1 is not uniformly distributed modulo
1. Indeed, consider the sequence of integers ({x)i>1 defined by ¢ = 1 and

Ly
U1 = 92”" for each integer k > 1. Then consider the number

=1
a= Z 2&;.
i=1

It is clear that, letting Ay := Zle 1/2% for each integer k > 1, we have

Ay
-

2

a 241

(k>1).
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For each integer k > 1, define Yy := 22°0:+1 With a technique used by Wi-
jsmuller [IT], one can prove that, for any fixed ¢ > 0, setting T, := [(2 —
—¢)loglog x|, then

1
(2.2) —#{n<z:0(n)=0 (mod2™)} =1 as r — 00.
x
It follows from (2.2)) that, for every fixed § > 0,
1
7#{71 <Yy :l|lac(n)|| <o} —1 as k — oo.
k

Indeed, if for some integer n < Y, we have o(n) =0 (mod 27%), then Ty, > /y,
in which case we have

20(n) 2Yk log Yk

W1 — W1

lac(n)[| <
which tends to 0 as k — oco. Hence, for every ¢ > 0, we have
1
—#{n<z:|acn)|| <} -1 as T — 00,
x

thus proving our claim.

Further such constructions are given in Kétai [8]. Finally, observe that the
same is also true for the sequence ({a@(n)})n>1-

Now, let ¢r(n) (resp. ox(n)) stand for the k-th iterate of the ¢ (resp. o)
function. We first state two conjectures regarding these functions.

Conjecture 1. Let k € N be fized. Then, for almost all real numbers o € [0, 1),

1
(2.3) S T;f(n)e(a%(n)) —0  asz— oo,
(2.4) fselj\gl - gf(n)e(aok(n)) —0 as T — o0,

and in particular, for almost all o € [0,1), both sequences (adr(n))n>1 and
(aok(n))n>1 are in T.

Unfortunately this conjecture is still out of reach when k > 2. The main
difficulty is that we cannot obtain a good upper bound for the quantities

Ay(n) = #{meN: gy(m) =n},
Bi(n) = #{meN:ogr(m)=n},
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when k > 2. Observe that, in the case k = 1, it is known (see Pomerance [10])
that

(2.5) Ai(n) < mexp{—(1+o())L()}  (n— o),

where

L(n) = (logn)(logloglogn)
loglogn

Conjecture 2. Let k > 2 be a fized integer. There exists a positive constant
¢k such that, for all integers n > 2,
n

(26) Ak:(n) S Ck 9
log” n

n
(27) Bk(n) S CkT.
log”"n

Remark 3. Observe that (2.6)) holds in the case k = 1, since it is a consequence
of (2.5). On the other hand, (2.7)) is also true in the case k = 1, as it can be
proved using the same technique developed by Pomerance [10].

3. Main results

Theorem 1. Conjecture 2] implies Conjecture [I}

Theorem 2. Given a real number o and a prime p, let &, := {ap(p + a)}.
Then, for almost all real numbers «, the corresponding sequence (§p)pee 15
uniformly distributed modulo 1.

Theorem 3. Let o be a positive irrational number such that for each real
number k > 1 there exists a positive constant ¢ = ¢(k, «) for which the inequality

lag| > % holds for every positive integer q.
Then, the sequence ({ad(n)}, {ac(n)})n>1 is uniformly distributed modulo [0,1)2.

4. Proof of Theorems [1] and [2]

We begin with Theorem [I} We shall consider only the case of ¢ since the
case of o, can be handled in a similar way.
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Let N > 1 be a fixed integer. Set

heN
UNZGN, yh,NthzeN-FT

and, for a € R,

Kynp(a) = Z e(agr(n)).

un <n<yp

Let S = S(N,h) ={¢x(n):n € (un,yn)}. Given s € S, let

U(s) = #{n € (un,yn) : ¢x(n) = s}.

It is clear that U(s) < Ag(s) for s < y,. Hence, using (2.6]), we have

1
/‘KN,h da—ZU2 <maxAk ZU
0

seS ses
(4.1) <
< max Ay (s) DI
nelun,yn]
eN 2N
= Ckﬁ(yh - UN) < 3ckﬁ-
Let
Ky p(a) 1
Anp = 0,1): |————= — ¢
N,h {O{E[,) Un — un >N3

It follows from (4.1)) that, letting A(S) stand for the Lebesgue measure of a real
set S,

301C
MANy) < 3
so that
leN] 5cs

N>1

5
Therefore, since Z % < 00, it follows from 1) that

00 leN]

Z A U AN,h < 0.

N=1 h=1



On the Euler totient function 85

Hence, using the well known Borel-Cantelli lemma, we have that if E is the
leN]

set of all those real a which belong to U An,p, for infinitely many N, then

h=1
A(E) = 0.

Now, let a ¢ E. Then, for every N > Ny(«), we have

Kypla)] £ 7.
Ko@) < s

We shall use this to prove that

(4.3) i Z e(agr(n)) — 0 as & — 0o.

n<zx

For = € [yn N, Yn+1,nv), letting Ty be a function tending to infinity arbitrarily
slowly with NV, we have

doelagi(n) = Y elagk(n)+ D elagi(n)) +
+ Y elagm)+ Y elagr(n)) =

= S1+ 5 + 83+ 54,

say. Trivially we have

T
(4.4) 151 < -
From (4.2)), we have

5¢peM drx
(45) sl< Y el d

N-Ty<M<N

for some constants dy. Finally,

Sepx
(4.6) |S5] < ]\Ij. )
and
N
(4.7) |S4] < yht1,n —ynN < ~ < N

Gathering (4.4), (4.5), (4.6) and (4.7), estimate (4.3) follows.
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On the other hand, letting E; be the set of those « for which {af} € E,
then A(Ey) = 0, while if o € Ey, then

i Z e(alor(n)) — 0 as T — 00.

n<z

Let ¢(n) be the smallest prime @ such that @ t n. In order to complete the
proof of the Theorem |1} we need the following result.

Lemma 1. Let k € N. There exists a function y, which tends to infinity with
x such that

(4.8) %#{n <z:q(dr(n)) <y} —0 as T — 0o.

Proof. By choosing y, = (loglogz)*(*=¢) for a fixed small ¢ > 0, and by
using the same techniques as in Erdés, Granville, Pomerance and Spiro [5] or
as in Bassily and Katai [I], one can easily obtain (4.8)). [ ]

We may now complete the proof of Theorem Let px = {p1,p2,...,Dk} be
a set of primes satisfying and let t(m) = ady(m). Observe that in general
we have that if u | ¢(v), then ¢p(ud(v)) = up(¢p(v)). Using this observation and
Lemma [1} we have that t(p;m) = ap;dr(m), so that

ni,j(m) = t(pim) — t(p;m) = a(p; — p;)Pr(m).

Hence, the sequence (1; ;(m))m>1 is uniformly distributed modulo 1 if a(p; —
—p;) € E. We can drop those a which belong to the set

o0
F= U EK(Pi—pj)a
K=1 ij=1,....Rg
i#£]

where Rx = #pk, since A(F) = 0. On the other hand, if o ¢ F', then the

statement of Theorem [I] certainly holds. Thus, the proof of Theorem [I] is
complete.

We will omit the proof of Theorem [2] since it can be obtained by repeating
the arguments used in the proof of Theorem [I| and the techniques used in the

proof of (2.5]).

5. Proof of Theorem [3|

In order to prove that a given sequence ((p,vn))n>1 is uniformly dis-
tributed mod [0,1)?, it is clear that we only need to prove that the sequence
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(kup, + lvy)p>1 is uniformly distributed modulo 1 for all (k,¢) € Z x Z with
(k,0) # (0,0).
Given a fixed (k,¢) € Z x Z with (k,£) # (0,0), consider the functions
A(n) = a(ko(n) + p(n)), B(n) = a(ko(n) — Ld(n)).
To prove the theorem, it is sufficient to establish that
1

1 - A :

(5.1) wge( (n)) =0 as r — 0o

One can easily establish that, for each € > 0, there exists ¢ = ¢(¢) such that
lim. ¢ c(¢) = 0 and such that

é#{n <z:Pn)<z}+ %#{n <x:P(n)>2'7} <c(e).

Therefore, in order to prove (5.1)), it is sufficient to prove that
1
5.2 — e(A(n)) — 0 as x — oo.
(52) S DEEI)
z5<P(717)<z1*5
Now, given an integer n < x, we write n = mp, where p = P(n). Since

#{ngm:P(n)>mEandp|m}§xZ%:0(33),

p>xe p

in order to prove (5.2)), we only need to prove that

1
5.3 — A 0 .
(5.3) . ; e(A(n)) — as r — o0
P(n)gzlfi
Now, observe that if (p,m) = 1, then clearly,
A(pm) = pA(m) + B(m),

so that

YooeAn) = Y eBm)q Y elpAm)— Y e(pA(m))

P(TLT)L<S:175 m<at e p<a/m p<P(m)
(5.4) = SA(m) +SB(m),
say.

We consider the two cases:
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o(m) _ 14
o(m) k'

In case (a), we have that ko(m) + £p(m) = 0, so that

We will prove that
1 o 14
. - 2y, —~ =—— 7% — — 0.
(5.5) y#{me{y, yl, m k} 0 asy— oo

Now, according to a result of Lévy [0], if ¢ is an additive function for which
the three series

> g(p)7 T gQ(p)7 T 1
lg(p)|<1

o<t P p g1 P

are convergent, then if (§,)pe, is a sequence of independent random variables
such that

(5.6) Ple =gt = (1-7) & =12,

p) p*
then, the distribution F, of n =Y §, is everywhere continuous if and only if

(5.7) > P& #0) =

PEYP

) o(m)
Choosing g(n) := log , we then have
() =108 )
g(p) = log P+ 1 and g(pa) = IOg M
p—1 p*~Hp—1)

For this function g and &, as in ([5.6)), one can see that condition (5.7)) is satisfied.
Hence, using Lévy’s result, we may conclude that (5.5)) is satisfied.

l
o(m) = —— and let
¢(m)  k
us estimate the right hand side of (5.4) as m running over D. We have that

Let D be the set of those positive integers m for which
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the right hand side of (5.4) is

< Z m(x/m) <

m<zl—e

meD

< Z Z m(x/m) <

2v<gl-c/logx zl—¢ zl—c
= /log SUTT <m< oy

meD

CeT 1
< Z Z <
log x m
2v<zl=¢/logw zloc o, xlze

v F1 2
meD

Ce

IA

o(1) logz = o(1),

log

1—¢

where we use lb withy = - Hence, the contribution of those n = pm < x

for which m € D to the sum in (5.3) is o(x) as x — oo.

It remains to consider case (b), that is when A(m) # 0. First, we set
7 = z/(log x)3°. Then, there exists a sequence of rational numbers (@, /¢m )m>1
such that

(5.8) ‘ Om | 1

Alm) — —| < — m=12,....),
( ) gm | QmT ( )

where 1 < ¢,,, < 7 for each integer m > 1.

If ¢, > log® z, arguing as in [1], we obtain that

x/m

S L —F5—7,
Alm) < o wfm)
so that

(5.9) > e(B(m))Sa(m) = o(x).

m<azl—¢

mgD
On the other hand,
P(m)
m<zl=e mP(m)<e
mgD m<zl—e

where the fact that this last sum is o(x) was proved in our 2005 paper [4]). Thus,
combining (5.9) and (5.10)) shows that the contribution of those n = pm < z
for which m ¢ D to the sum in (5.3) is o(x) as x — 0.
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On the other hand, if ¢,, < log®® z, then it follows from 1) that

Ay, 1
g (ko (n) + €0(n)) | ~ qm(ko(n) + lo(n))r

(07

Setting

am

A
gm(ko(n) +Lo(n)) — Q’ (4,Q) =1,

it is clear that

Q < (logx)* (|k|logx + |¢]) a1 ~= < a'=%/2,

provided z is large enough. Using this and (5.8), we may conclude that, for
some function §, — 0 as x — 0o, we have

1Qal| @/ < §(x),

thus contradicting our assumption ([2.3)). This fully establishes (5.3)) and thereby
completes the proof of Theorem

1]
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