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Abstract. We examine the uniform distribution of certain sequences in-
volving the Euler totient function and the sum of divisors function.

1. Introduction and notation

Let us denote by φ(n) the well known Euler totient function and by σ(n)
the sum of the positive divisors of n.

Let alsoM (resp. A) be the set of multiplicative (resp. additive) functions
and M1 the set of those f ∈ M such that |f(n)| = 1 for all positive integers
n. For each y ∈ R, we set e(y) := e2πiy.

A famous result of H. Daboussi (see Daboussi and Delange [2], [3]) asserts
that

(1.1) sup
f∈M1

1
x

∣∣∣∣∣∣
∑
n≤x

f(n)e(nα)

∣∣∣∣∣∣→ 0 as x→∞

for every α ∈ R \Q.

Key words and phrases: Euler totient function, sum of divisors function, uniform distribution
modulo 1.
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The proof of (1.1) is based on the large sieve inequality. Another proof
follows from a general form of the Turán-Kubilius inequality.

Here, we examine the uniform distribution of certain sequences involving
the Euler totient function and the sum of divisors function.

From here on, we let ℘ stand for the set of all primes and we let {y} be the
fractional part of y. We also let P (n) stand for the largest prime factor of n.

2. Background results

The following result was obtained by the second author [7].

Theorem A. Let t : N→ R. Assume that for every real number K > 0, there
exists a finite set ℘K of primes p1 < p2 < · · · < pk such that

(2.1) AK :=
k∑
i=1

1
pi
> K

and that, given any pair i 6= j, i, j ∈ {1, 2, . . . , k}, the corresponding sequence

ηi,j(m) = t(pim)− t(pjm) (m ∈ N)

satisfies the relation

1
x

∑
m≤x

e(ηi,j(m))→ 0 as x→∞.

Then there exists a function ρx for which ρx → 0 as x→∞ and such that

sup
f∈M1

1
x

∣∣∣∣∣∣
∑
n≤x

f(n)e(t(n))

∣∣∣∣∣∣ ≤ ρx.
Observe that Theorem A holds in particular if one chooses t(n) := αrn

r +
+ · · · + α1n, a polynomial with real coefficients where at least one the αi’s is
irrational.

Recall that the discrepancy of a set of N real numbers x1, . . . , xN is the
quantity

D(x1, . . . , xN ) := sup
[a,b)⊆[0,1)

∣∣∣∣∣∣ 1
N

∑
{xν}∈[a,b)

1− (b− a)

∣∣∣∣∣∣ .
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We now consider the set T of all those real valued arithmetic functions t for
which the sequence

ηn(F ) := F (n) + t(n) (n ∈ N)

satisfies
D((η1(F ), η2(F ), . . . , ηN (F ))→ 0 as N →∞

for every arithmetic function F .
The following result is then a consequence of Theorem A.

Corollary 1. Assume that for every real number K > 0, one can choose a set
of primes ℘K = {p1, p2, . . . , pk} for which (2.1) holds, and let t : N → R be a
function such that the sequence (t(pim)− t(pjm))m≥1 is uniformly distributed
modulo 1 for every pair of integers i 6= j, i, j ∈ {1, 2, . . . , k}. Then t ∈ T .

Remark 1. Observe that it is clear that if t ∈ T , then the sequence (t(n))n≥1

is uniformly distributed modulo 1.

Note also that, letting ‖x‖ stand for the distance between x and the nearest
integer, we proved in [4] the following.

Theorem B. If α is a positive irrational number such that for each real number
κ > 1 there exists a positive constant c = c(κ, α) for which the inequality

‖αq‖ > c

qκ
holds for every positive integer q,

and let Q(x) = arx
r + · · · + a0 ∈ R[x], where ar > 0. Assume that h is an

integer valued function belonging toM1 such that h(p) = Q(p) for every p ∈ ℘
and that for some fixed d > 0 we have h(pa) = O(pda) for every prime power
pa. Then the function t(n) = αh(n) belongs to T .

It follows from Theorem B and Remark 1 that the sequence ({ασ(n)})n≥1

is uniformly distributed modulo 1.

Remark 2. Observe that one can construct an irrational number α for which
the corresponding sequence ({ασ(n)})n≥1 is not uniformly distributed modulo
1. Indeed, consider the sequence of integers (`k)k≥1 defined by `1 = 1 and

`k+1 = 222`k

for each integer k ≥ 1. Then consider the number

α :=
∞∑
i=1

1
2`i

.

It is clear that, letting Ak :=
∑k
i=1 1/2`i for each integer k ≥ 1, we have∣∣∣∣α− Ak

2`k

∣∣∣∣ < 2
2`k+1

(k ≥ 1).
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For each integer k ≥ 1, define Yk := 2
1
2 ·`k+1 . With a technique used by Wi-

jsmuller [11], one can prove that, for any fixed ε > 0, setting Tx := b(2 −
−ε) log log xc, then

(2.2)
1
x

#{n ≤ x : σ(n) ≡ 0 (mod 2Tx)} → 1 as x→∞.

It follows from (2.2) that, for every fixed δ > 0,

1
Yk

#{n ≤ Yk : ‖ασ(n)‖ < δ} → 1 as k →∞.

Indeed, if for some integer n ≤ Yk, we have σ(n) ≡ 0 (mod 2Tx), then TYk > `k,
in which case we have

‖ασ(n)‖ < 2σ(n)
2`k+1

≤ 2Yk log Yk
2`k+1

,

which tends to 0 as k →∞. Hence, for every δ > 0, we have

1
x

#{n ≤ x : ‖ασ(n)‖ < δ} → 1 as x→∞,

thus proving our claim.
Further such constructions are given in Kátai [8]. Finally, observe that the

same is also true for the sequence ({αφ(n)})n≥1.

Now, let φk(n) (resp. σk(n)) stand for the k-th iterate of the φ (resp. σ)
function. We first state two conjectures regarding these functions.

Conjecture 1. Let k ∈ N be fixed. Then, for almost all real numbers α ∈ [0, 1),

sup
f∈M1

1
x

∣∣∣∣∣∣
∑
n≤x

f(n)e(αφk(n))

∣∣∣∣∣∣→ 0 as x→∞,(2.3)

sup
f∈M1

1
x

∣∣∣∣∣∣
∑
n≤x

f(n)e(ασk(n))

∣∣∣∣∣∣→ 0 as x→∞,(2.4)

and in particular, for almost all α ∈ [0, 1), both sequences (αφk(n))n≥1 and
(ασk(n))n≥1 are in T .

Unfortunately this conjecture is still out of reach when k ≥ 2. The main
difficulty is that we cannot obtain a good upper bound for the quantities

Ak(n) := #{m ∈ N : φk(m) = n},
Bk(n) := #{m ∈ N : σk(m) = n},
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when k ≥ 2. Observe that, in the case k = 1, it is known (see Pomerance [10])
that

(2.5) A1(n) ≤ n exp{−(1 + o(1))L(n)} (n→∞),

where

L(n) =
(log n)(log log log n)

log log n
.

Conjecture 2. Let k ≥ 2 be a fixed integer. There exists a positive constant
ck such that, for all integers n ≥ 2,

Ak(n) ≤ ck
n

log9 n
,(2.6)

Bk(n) ≤ ck
n

log9 n
.(2.7)

Remark 3. Observe that (2.6) holds in the case k = 1, since it is a consequence
of (2.5). On the other hand, (2.7) is also true in the case k = 1, as it can be
proved using the same technique developed by Pomerance [10].

3. Main results

Theorem 1. Conjecture 2 implies Conjecture 1.

Theorem 2. Given a real number α and a prime p, let ξp := {αφ(p + a)}.
Then, for almost all real numbers α, the corresponding sequence (ξp)p∈℘ is
uniformly distributed modulo 1.

Theorem 3. Let α be a positive irrational number such that for each real
number κ > 1 there exists a positive constant c = c(κ, α) for which the inequality

‖αq‖ > c

qκ
holds for every positive integer q.

Then, the sequence ({αφ(n)}, {ασ(n)})n≥1 is uniformly distributed modulo [0, 1)2.

4. Proof of Theorems 1 and 2

We begin with Theorem 1. We shall consider only the case of φk since the
case of σk can be handled in a similar way.
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Let N ≥ 1 be a fixed integer. Set

uN = eN , yh,N = yh = eN +
heN

N
(h = 1, 2, . . . , beNc)

and, for α ∈ R,

KN,h(α) =
∑

uN≤n≤yh

e(αφk(n)).

Let S = S(N,h) = {φk(n) : n ∈ (uN , yh)}. Given s ∈ S, let

U(s) = #{n ∈ (uN , yh) : φk(n) = s}.

It is clear that U(s) ≤ Ak(s) for s ≤ yh. Hence, using (2.6), we have

1∫
0

|KN,h(α)|2 dα =
∑
s∈S

U2(s) ≤ max
s∈S

Ak(s)
∑
s∈S

U(s) ≤

≤ max
s∈S

Ak(s)
∑

n∈[uN ,yh]

1 ≤

≤ ck
eN

N9
(yh − uN ) ≤ 3ck

e2N

N9
.

(4.1)

Let

AN,h :=
{
α ∈ [0, 1) :

∣∣∣∣KN,h(α)
yh − uN

∣∣∣∣ > 1
N3

}
.

It follows from (4.1) that, letting λ(S) stand for the Lebesgue measure of a real
set S,

λ(AN,h) ≤ 3ck
N3

,

so that

(4.2) λ

beNc⋃
h=1

AN,h

 ≤ 5ck
N2

.

Therefore, since
∑
N≥1

5ck
N2

<∞, it follows from (4.2) that

∞∑
N=1

λ

beNc⋃
h=1

AN,h

 <∞.
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Hence, using the well known Borel-Cantelli lemma, we have that if E is the

set of all those real α which belong to
beNc⋃
h=1

AN,h for infinitely many N , then

λ(E) = 0.
Now, let α 6∈ E. Then, for every N > N0(α), we have

|KN,h(α)| ≤ 1
N3(yh − uN )

.

We shall use this to prove that

(4.3)
1
x

∑
n≤x

e(αφk(n))→ 0 as x→∞.

For x ∈ [yh,N , yh+1,N ), letting TN be a function tending to infinity arbitrarily
slowly with N , we have∑

n≤x

e(αφk(n)) =
∑

n≤eN−TN

e(αφk(n)) +
∑

eN−TN<n≤eN
e(αφk(n)) +

+
∑

eN<n≤yh,N

e(αφk(n)) +
∑

yh,N<n≤x

e(αφk(n)) =

= S1 + S2 + S3 + S4,

say. Trivially we have

(4.4) |S1| ≤
x

eTN
.

From (4.2), we have

(4.5) |S2| ≤
∑

N−TN≤M≤N

5ckeM

M2
≤ dkx

N − TN

for some constants dk. Finally,

(4.6) |S3| ≤
5ckx
N

,

and

(4.7) |S4| ≤ yh+1,N − yh,N ≤
eN

N
≤ x

N
.

Gathering (4.4), (4.5), (4.6) and (4.7), estimate (4.3) follows.
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On the other hand, letting E` be the set of those α for which {α`} ∈ E,
then λ(E`) = 0, while if α 6∈ E`, then

1
x

∑
n≤x

e(α`φk(n))→ 0 as x→∞.

Let q(n) be the smallest prime Q such that Q - n. In order to complete the
proof of the Theorem 1, we need the following result.

Lemma 1. Let k ∈ N. There exists a function yx which tends to infinity with
x such that

(4.8)
1
x

#{n ≤ x : q(φk(n)) ≤ yx} → 0 as x→∞.

Proof. By choosing yx = (log log x)k(1−ε) for a fixed small ε > 0, and by
using the same techniques as in Erdős, Granville, Pomerance and Spiro [5] or
as in Bassily and Kátai [1], one can easily obtain (4.8). �

We may now complete the proof of Theorem 1. Let ℘K = {p1, p2, . . . , pk} be
a set of primes satisfying (2.1) and let t(m) = αφk(m). Observe that in general
we have that if u | φ(v), then φ(uφ(v)) = uφ(φ(v)). Using this observation and
Lemma 1, we have that t(pjm) = αpjφk(m), so that

ηi,j(m) = t(pim)− t(pjm) = α(pi − pj)φk(m).

Hence, the sequence (ηi,j(m))m≥1 is uniformly distributed modulo 1 if α(pi −
−pj) 6∈ E. We can drop those α which belong to the set

F =
∞⋃
K=1

⋃
i,j=1,...,RK

i6=j

EK(pi−pj),

where RK = #℘k, since λ(F ) = 0. On the other hand, if α 6∈ F , then the
statement of Theorem 1 certainly holds. Thus, the proof of Theorem 1 is
complete.

We will omit the proof of Theorem 2 since it can be obtained by repeating
the arguments used in the proof of Theorem 1 and the techniques used in the
proof of (2.5).

5. Proof of Theorem 3

In order to prove that a given sequence ((un, vn))n≥1 is uniformly dis-
tributed mod [0, 1)2, it is clear that we only need to prove that the sequence
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(kun + `vn)n≥1 is uniformly distributed modulo 1 for all (k, `) ∈ Z × Z with
(k, `) 6= (0, 0).

Given a fixed (k, `) ∈ Z× Z with (k, `) 6= (0, 0), consider the functions

A(n) = α(kσ(n) + `φ(n)), B(n) = α(kσ(n)− `φ(n)).

To prove the theorem, it is sufficient to establish that

(5.1)
1
x

∑
n≤x

e(A(n))→ 0 as x→∞.

One can easily establish that, for each ε > 0, there exists c = c(ε) such that
limε→0 c(ε) = 0 and such that

1
x

#{n ≤ x : P (n) ≤ xε}+
1
x

#{n ≤ x : P (n) ≥ x1−ε} ≤ c(ε).

Therefore, in order to prove (5.1), it is sufficient to prove that

(5.2)
1
x

∑
n≤x

xε<P (n)<x1−ε

e(A(n))→ 0 as x→∞.

Now, given an integer n ≤ x, we write n = mp, where p = P (n). Since

#{n ≤ x : P (n) > xε and p | m} ≤ x
∑
p>xε

1
p2

= o(x),

in order to prove (5.2), we only need to prove that

(5.3)
1
x

∑
n≤x

P (n)<x1−ε

e(A(n))→ 0 as x→∞.

Now, observe that if (p,m) = 1, then clearly,

A(pm) = pA(m) +B(m),

so that

∑
n≤x

P (n)<x1−ε

e(A(n)) =
∑

m≤x1−ε

e(B(m))

 ∑
p<x/m

e(pA(m))−
∑

p≤P (m)

e(pA(m))


= SA(m) + SB(m),(5.4)

say.
We consider the two cases:
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(a) A(m) = 0;

(b) A(m) 6= 0.

In case (a), we have that kσ(m) + `φ(m) = 0, so that
σ(m)
φ(m)

= − `
k

.

We will prove that

(5.5)
1
y

#
{
m ∈ [y, 2y],

σ(m)
φ(m)

= − `
k

}
→ 0 as y →∞.

Now, according to a result of Lévy [9], if g is an additive function for which
the three series

∑
|g(p)|<1

g(p)
p
,

∑
|g(p)|<1

g2(p)
p

,
∑
|g(p)|≥1

1
p

are convergent, then if (ξp)p∈℘ is a sequence of independent random variables
such that

(5.6) P (ξp = g(pa)) =
(

1− 1
p

)
1
pa

(a = 1, 2, . . .).

then, the distribution Fη of η =
∑
ξp is everywhere continuous if and only if

(5.7)
∑
p∈℘

P (ξp 6= 0) =∞

Choosing g(n) := log
σ(m)
φ(m)

, we then have

g(p) = log
p+ 1
p− 1

and g(pa) = log
1 + p+ · · ·+ pa

pa−1(p− 1)
.

For this function g and ξp as in (5.6), one can see that condition (5.7) is satisfied.
Hence, using Lévy’s result, we may conclude that (5.5) is satisfied.

Let D be the set of those positive integers m for which
σ(m)
φ(m)

= − `
k

and let

us estimate the right hand side of (5.4) as m running over D. We have that
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the right hand side of (5.4) is

�
∑

m≤x1−ε
m∈D

π(x/m) ≤

≤
∑

2ν≤x1−ε/ log x

∑
x1−ε
2ν+1 ≤m<

x1−ε
2ν

m∈D

π(x/m) ≤

≤ cεx

log x

∑
2ν≤x1−ε/ log x

∑
x1−ε
2ν+1 ≤m<

x1−ε
2ν

m∈D

1
m
≤

≤ o(1)
cεx

log x
log x = o(1),

where we use (5.5) with y =
x1−ε

2ν+1
. Hence, the contribution of those n = pm ≤ x

for which m ∈ D to the sum in (5.3) is o(x) as x→∞.
It remains to consider case (b), that is when A(m) 6= 0. First, we set

τ = x/(log x)30. Then, there exists a sequence of rational numbers (am/qm)m≥1

such that

(5.8)
∣∣∣∣A(m)− am

qm

∣∣∣∣ ≤ 1
qmτ

(m = 1, 2, . . . .),

where 1 ≤ qm ≤ τ for each integer m ≥ 1.
If qm > log40 x, arguing as in [1], we obtain that

SA(m)� x/m

log2(x/m)
,

so that

(5.9)
∑

m≤x1−ε
m 6∈D

e(B(m))SA(m) = o(x).

On the other hand,

(5.10)
∑

m≤x1−ε
m6∈D

e(B(m))SB(m)�
∑

mP (m)≤x
m≤x1−ε

P (m)
logP (m)

= o(x),

where the fact that this last sum is o(x) was proved in our 2005 paper [4]). Thus,
combining (5.9) and (5.10) shows that the contribution of those n = pm ≤ x
for which m 6∈ D to the sum in (5.3) is o(x) as x→∞.
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On the other hand, if qm ≤ log40 x, then it follows from (5.8) that∣∣∣∣α− am
qm(kσ(n) + `φ(n))

∣∣∣∣ < 1
qm(kσ(n) + `φ(n))τ

.

Setting
am

qm(kσ(n) + `φ(n))
:=

A

Q
, (A,Q) = 1,

it is clear that

Q < (log x)40 (|k| log x+ |`|)x1−ε < x1−ε/2,

provided x is large enough. Using this and (5.8), we may conclude that, for
some function δx → 0 as x→∞, we have

‖Qα‖Q1+ε/4 ≤ δ(x),

thus contradicting our assumption (2.3). This fully establishes (5.3) and thereby
completes the proof of Theorem 3.
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plicatives de module au plus égal à 1, C. R. Acad. Sci. Paris Sér. A, 278
(1974), 657–660.

[3] Daboussi, H. et H. Delange, On multiplicative arithmetical functions
whose modulus does not exceed one, J. London Math. Soc., 26 (1982),
no. 2, 245–264.
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