ON THE UNIFORM DISTRIBUTION OF CERTAIN SEQUENCES INVOLVING THE EULER TOTIENT
 FUNCTION AND THE SUM OF DIVISORS FUNCTION

Jean-Marie De Koninck ${ }^{1}$ (Québec, Canada)

Imre Kátai (Budapest, Hungary)

Communicated by Bui Minh Phong
(Received March 8, 2015; accepted May 18, 2015)

Abstract

We examine the uniform distribution of certain sequences involving the Euler totient function and the sum of divisors function.

1. Introduction and notation

Let us denote by $\phi(n)$ the well known Euler totient function and by $\sigma(n)$ the sum of the positive divisors of n.

Let also \mathcal{M} (resp. \mathcal{A}) be the set of multiplicative (resp. additive) functions and \mathcal{M}_{1} the set of those $f \in \mathcal{M}$ such that $|f(n)|=1$ for all positive integers n. For each $y \in \mathbb{R}$, we set $e(y):=e^{2 \pi i y}$.

A famous result of H. Daboussi (see Daboussi and Delange [2], 3]) asserts that

$$
\begin{equation*}
\sup _{f \in \mathcal{M}_{1}} \frac{1}{x}\left|\sum_{n \leq x} f(n) e(n \alpha)\right| \rightarrow 0 \quad \text { as } x \rightarrow \infty \tag{1.1}
\end{equation*}
$$

for every $\alpha \in \mathbb{R} \backslash \mathbb{Q}$.
Key words and phrases: Euler totient function, sum of divisors function, uniform distribution modulo 1.
2010 Mathematics Subject Classification: 11K16, 11K38, 11L07, 11N60.
${ }^{1}$ Research supported in part by a grant from NSERC.

The proof of (1.1) is based on the large sieve inequality. Another proof follows from a general form of the Turán-Kubilius inequality.

Here, we examine the uniform distribution of certain sequences involving the Euler totient function and the sum of divisors function.

From here on, we let \wp stand for the set of all primes and we let $\{y\}$ be the fractional part of y. We also let $P(n)$ stand for the largest prime factor of n.

2. Background results

The following result was obtained by the second author [7].
Theorem A. Let $t: \mathbb{N} \rightarrow \mathbb{R}$. Assume that for every real number $K>0$, there exists a finite set \wp_{K} of primes $p_{1}<p_{2}<\cdots<p_{k}$ such that

$$
\begin{equation*}
A_{K}:=\sum_{i=1}^{k} \frac{1}{p_{i}}>K \tag{2.1}
\end{equation*}
$$

and that, given any pair $i \neq j, i, j \in\{1,2, \ldots, k\}$, the corresponding sequence

$$
\eta_{i, j}(m)=t\left(p_{i} m\right)-t\left(p_{j} m\right) \quad(m \in \mathbb{N})
$$

satisfies the relation

$$
\frac{1}{x} \sum_{m \leq x} e\left(\eta_{i, j}(m)\right) \rightarrow 0 \quad \text { as } x \rightarrow \infty
$$

Then there exists a function ρ_{x} for which $\rho_{x} \rightarrow 0$ as $x \rightarrow \infty$ and such that

$$
\sup _{f \in \mathcal{M}_{1}} \frac{1}{x}\left|\sum_{n \leq x} f(n) e(t(n))\right| \leq \rho_{x}
$$

Observe that Theorem A holds in particular if one chooses $t(n):=\alpha_{r} n^{r}+$ $+\cdots+\alpha_{1} n$, a polynomial with real coefficients where at least one the α_{i} 's is irrational.

Recall that the discrepancy of a set of N real numbers x_{1}, \ldots, x_{N} is the quantity

$$
D\left(x_{1}, \ldots, x_{N}\right):=\sup _{[a, b) \subseteq[0,1)}\left|\frac{1}{N} \sum_{\left\{x_{\nu}\right\} \in[a, b)} 1-(b-a)\right|
$$

We now consider the set \mathcal{T} of all those real valued arithmetic functions t for which the sequence

$$
\eta_{n}(F):=F(n)+t(n) \quad(n \in \mathbb{N})
$$

satisfies

$$
D\left(\left(\eta_{1}(F), \eta_{2}(F), \ldots, \eta_{N}(F)\right) \rightarrow 0 \quad \text { as } N \rightarrow \infty\right.
$$

for every arithmetic function F.
The following result is then a consequence of Theorem A.
Corollary 1. Assume that for every real number $K>0$, one can choose a set of primes $\wp_{K}=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ for which (2.1) holds, and let $t: \mathbb{N} \rightarrow \mathbb{R}$ be a function such that the sequence $\left(t\left(p_{i} m\right)-t\left(p_{j} m\right)\right)_{m \geq 1}$ is uniformly distributed modulo 1 for every pair of integers $i \neq j, i, j \in\{1,2, \ldots, k\}$. Then $t \in \mathcal{T}$.
Remark 1. Observe that it is clear that if $t \in \mathcal{T}$, then the sequence $(t(n))_{n \geq 1}$ is uniformly distributed modulo 1 .

Note also that, letting $\|x\|$ stand for the distance between x and the nearest integer, we proved in [4] the following.

Theorem B. If α is a positive irrational number such that for each real number $\kappa>1$ there exists a positive constant $c=c(\kappa, \alpha)$ for which the inequality

$$
\|\alpha q\|>\frac{c}{q^{\kappa}} \quad \text { holds for every positive integer } q,
$$

and let $Q(x)=a_{r} x^{r}+\cdots+a_{0} \in \mathbb{R}[x]$, where $a_{r}>0$. Assume that h is an integer valued function belonging to \mathcal{M}_{1} such that $h(p)=Q(p)$ for every $p \in \wp$ and that for some fixed $d>0$ we have $h\left(p^{a}\right)=O\left(p^{d a}\right)$ for every prime power p^{a}. Then the function $t(n)=\alpha h(n)$ belongs to \mathcal{T}.

It follows from Theorem B and Remark 1 that the sequence $(\{\alpha \sigma(n)\})_{n \geq 1}$ is uniformly distributed modulo 1.

Remark 2. Observe that one can construct an irrational number α for which the corresponding sequence $(\{\alpha \sigma(n)\})_{n \geq 1}$ is not uniformly distributed modulo 1. Indeed, consider the sequence of integers $\left(\ell_{k}\right)_{k \geq 1}$ defined by $\ell_{1}=1$ and $\ell_{k+1}=2^{2^{2^{k_{k}}}}$ for each integer $k \geq 1$. Then consider the number

$$
\alpha:=\sum_{i=1}^{\infty} \frac{1}{2^{\ell_{i}}} .
$$

It is clear that, letting $A_{k}:=\sum_{i=1}^{k} 1 / 2^{\ell_{i}}$ for each integer $k \geq 1$, we have

$$
\left|\alpha-\frac{A_{k}}{2^{\ell_{k}}}\right|<\frac{2}{2^{\ell_{k+1}}} \quad(k \geq 1) .
$$

For each integer $k \geq 1$, define $Y_{k}:=2^{\frac{1}{2} \cdot \ell_{k+1}}$. With a technique used by Wijsmuller [11], one can prove that, for any fixed $\varepsilon>0$, setting $T_{x}:=\lfloor(2-$ $-\varepsilon) \log \log x\rfloor$, then

$$
\begin{equation*}
\frac{1}{x} \#\left\{n \leq x: \sigma(n) \equiv 0 \quad\left(\bmod 2^{T_{x}}\right)\right\} \rightarrow 1 \quad \text { as } x \rightarrow \infty \tag{2.2}
\end{equation*}
$$

It follows from 2.2 that, for every fixed $\delta>0$,

$$
\frac{1}{Y_{k}} \#\left\{n \leq Y_{k}:\|\alpha \sigma(n)\|<\delta\right\} \rightarrow 1 \quad \text { as } k \rightarrow \infty
$$

Indeed, if for some integer $n \leq Y_{k}$, we have $\sigma(n) \equiv 0\left(\bmod 2^{T_{x}}\right)$, then $T_{Y_{k}}>\ell_{k}$, in which case we have

$$
\|\alpha \sigma(n)\|<\frac{2 \sigma(n)}{2^{\ell_{k+1}}} \leq \frac{2 Y_{k} \log Y_{k}}{2^{\ell_{k+1}}}
$$

which tends to 0 as $k \rightarrow \infty$. Hence, for every $\delta>0$, we have

$$
\frac{1}{x} \#\{n \leq x:\|\alpha \sigma(n)\|<\delta\} \rightarrow 1 \quad \text { as } x \rightarrow \infty
$$

thus proving our claim.
Further such constructions are given in Kátai 8]. Finally, observe that the same is also true for the sequence $(\{\alpha \phi(n)\})_{n \geq 1}$.

Now, let $\phi_{k}(n)$ (resp. $\sigma_{k}(n)$) stand for the k-th iterate of the ϕ (resp. σ) function. We first state two conjectures regarding these functions.

Conjecture 1. Let $k \in \mathbb{N}$ be fixed. Then, for almost all real numbers $\alpha \in[0,1)$,

$$
\begin{align*}
& \sup _{f \in \mathcal{M}_{1}} \frac{1}{x}\left|\sum_{n \leq x} f(n) e\left(\alpha \phi_{k}(n)\right)\right| \rightarrow 0 \quad \text { as } x \rightarrow \infty \tag{2.3}\\
& \sup _{f \in \mathcal{M}_{1}} \frac{1}{x}\left|\sum_{n \leq x} f(n) e\left(\alpha \sigma_{k}(n)\right)\right| \rightarrow 0 \quad \text { as } x \rightarrow \infty \tag{2.4}
\end{align*}
$$

and in particular, for almost all $\alpha \in[0,1)$, both sequences $\left(\alpha \phi_{k}(n)\right)_{n \geq 1}$ and $\left(\alpha \sigma_{k}(n)\right)_{n \geq 1}$ are in \mathcal{T}.

Unfortunately this conjecture is still out of reach when $k \geq 2$. The main difficulty is that we cannot obtain a good upper bound for the quantities

$$
\begin{aligned}
& A_{k}(n):=\#\left\{m \in \mathbb{N}: \phi_{k}(m)=n\right\} \\
& B_{k}(n):=\#\left\{m \in \mathbb{N}: \sigma_{k}(m)=n\right\}
\end{aligned}
$$

when $k \geq 2$. Observe that, in the case $k=1$, it is known (see Pomerance [10]) that

$$
\begin{equation*}
A_{1}(n) \leq n \exp \{-(1+o(1)) L(n)\} \quad(n \rightarrow \infty), \tag{2.5}
\end{equation*}
$$

where

$$
L(n)=\frac{(\log n)(\log \log \log n)}{\log \log n} .
$$

Conjecture 2. Let $k \geq 2$ be a fixed integer. There exists a positive constant c_{k} such that, for all integers $n \geq 2$,

$$
\begin{align*}
& A_{k}(n) \leq c_{k} \frac{n}{\log ^{9} n}, \tag{2.6}\\
& B_{k}(n) \leq c_{k} \frac{n}{\log ^{9} n} . \tag{2.7}
\end{align*}
$$

Remark 3. Observe that (2.6) holds in the case $k=1$, since it is a consequence of (2.5). On the other hand, (2.7) is also true in the case $k=1$, as it can be proved using the same technique developed by Pomerance [10].

3. Main results

Theorem 1. Conjecture 2 implies Conjecture 1.
Theorem 2. Given a real number α and a prime p, let $\xi_{p}:=\{\alpha \phi(p+a)\}$. Then, for almost all real numbers α, the corresponding sequence $\left(\xi_{p}\right)_{p \in_{\beta}}$ is uniformly distributed modulo 1 .

Theorem 3. Let α be a positive irrational number such that for each real number $\kappa>1$ there exists a positive constant $c=c(\kappa, \alpha)$ for which the inequality

$$
\|\alpha q\|>\frac{c}{q^{\kappa}} \quad \text { holds for every positive integer } q \text {. }
$$

Then, the sequence $(\{\alpha \phi(n)\},\{\alpha \sigma(n)\})_{n \geq 1}$ is uniformly distributed modulo $[0,1)^{2}$.

4. Proof of Theorems 1 and 2

We begin with Theorem 1. We shall consider only the case of ϕ_{k} since the case of σ_{k} can be handled in a similar way.

Let $N \geq 1$ be a fixed integer. Set

$$
u_{N}=e^{N}, \quad y_{h, N}=y_{h}=e^{N}+\frac{h e^{N}}{N} \quad(h=1,2, \ldots,\lfloor e N\rfloor)
$$

and, for $\alpha \in \mathbb{R}$,

$$
K_{N, h}(\alpha)=\sum_{u_{N} \leq n \leq y_{h}} e\left(\alpha \phi_{k}(n)\right)
$$

Let $S=S(N, h)=\left\{\phi_{k}(n): n \in\left(u_{N}, y_{h}\right)\right\}$. Given $s \in S$, let

$$
U(s)=\#\left\{n \in\left(u_{N}, y_{h}\right): \phi_{k}(n)=s\right\}
$$

It is clear that $U(s) \leq A_{k}(s)$ for $s \leq y_{h}$. Hence, using 2.6, we have

$$
\begin{align*}
\int_{0}^{1}\left|K_{N, h}(\alpha)\right|^{2} d \alpha & =\sum_{s \in S} U^{2}(s) \leq \max _{s \in S} A_{k}(s) \sum_{s \in S} U(s) \leq \\
& \leq \max _{s \in S} A_{k}(s) \sum_{n \in\left[u_{N}, y_{h}\right]} 1 \leq \tag{4.1}\\
& \leq c_{k} \frac{e^{N}}{N^{9}}\left(y_{h}-u_{N}\right) \leq 3 c_{k} \frac{e^{2 N}}{N^{9}}
\end{align*}
$$

Let

$$
A_{N, h}:=\left\{\alpha \in[0,1):\left|\frac{K_{N, h}(\alpha)}{y_{h}-u_{N}}\right|>\frac{1}{N^{3}}\right\} .
$$

It follows from 4.1 that, letting $\lambda(S)$ stand for the Lebesgue measure of a real set S,

$$
\lambda\left(A_{N, h}\right) \leq \frac{3 c_{k}}{N^{3}}
$$

so that

$$
\begin{equation*}
\lambda\left(\bigcup_{h=1}^{\lfloor e N\rfloor} A_{N, h}\right) \leq \frac{5 c_{k}}{N^{2}} \tag{4.2}
\end{equation*}
$$

Therefore, since $\sum_{N \geq 1} \frac{5 c_{k}}{N^{2}}<\infty$, it follows from 4.2 that

$$
\sum_{N=1}^{\infty} \lambda\left(\bigcup_{h=1}^{\lfloor e N\rfloor} A_{N, h}\right)<\infty
$$

Hence, using the well known Borel-Cantelli lemma, we have that if E is the set of all those real α which belong to $\bigcup_{h=1}^{\lfloor e N\rfloor} A_{N, h}$ for infinitely many N, then $\lambda(E)=0$.

Now, let $\alpha \notin E$. Then, for every $N>N_{0}(\alpha)$, we have

$$
\left|K_{N, h}(\alpha)\right| \leq \frac{1}{N^{3}\left(y_{h}-u_{N}\right)}
$$

We shall use this to prove that

$$
\begin{equation*}
\frac{1}{x} \sum_{n \leq x} e\left(\alpha \phi_{k}(n)\right) \rightarrow 0 \quad \text { as } x \rightarrow \infty \tag{4.3}
\end{equation*}
$$

For $x \in\left[y_{h, N}, y_{h+1, N}\right)$, letting T_{N} be a function tending to infinity arbitrarily slowly with N, we have

$$
\begin{aligned}
\sum_{n \leq x} e\left(\alpha \phi_{k}(n)\right)= & \sum_{n \leq e^{N-T_{N}}} e\left(\alpha \phi_{k}(n)\right)+\sum_{e^{N-T_{N}<n \leq e^{N}}} e\left(\alpha \phi_{k}(n)\right)+ \\
& \quad+\sum_{e^{N}<n \leq y_{h, N}} e\left(\alpha \phi_{k}(n)\right)+\sum_{y_{h, N}<n \leq x} e\left(\alpha \phi_{k}(n)\right)= \\
= & S_{1}+S_{2}+S_{3}+S_{4}
\end{aligned}
$$

say. Trivially we have

$$
\begin{equation*}
\left|S_{1}\right| \leq \frac{x}{e^{T_{N}}} \tag{4.4}
\end{equation*}
$$

From (4.2), we have

$$
\begin{equation*}
\left|S_{2}\right| \leq \sum_{N-T_{N} \leq M \leq N} \frac{5 c_{k} e^{M}}{M^{2}} \leq \frac{d_{k} x}{N-T_{N}} \tag{4.5}
\end{equation*}
$$

for some constants d_{k}. Finally,

$$
\begin{equation*}
\left|S_{3}\right| \leq \frac{5 c_{k} x}{N} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|S_{4}\right| \leq y_{h+1, N}-y_{h, N} \leq \frac{e^{N}}{N} \leq \frac{x}{N} \tag{4.7}
\end{equation*}
$$

Gathering (4.4), 4.5), 4.6) and 4.7, estimate (4.3) follows.

On the other hand, letting E_{ℓ} be the set of those α for which $\{\alpha \ell\} \in E$, then $\lambda\left(E_{\ell}\right)=0$, while if $\alpha \notin E_{\ell}$, then

$$
\frac{1}{x} \sum_{n \leq x} e\left(\alpha \ell \phi_{k}(n)\right) \rightarrow 0 \quad \text { as } x \rightarrow \infty
$$

Let $q(n)$ be the smallest prime Q such that $Q \nmid n$. In order to complete the proof of the Theorem 1. we need the following result.
Lemma 1. Let $k \in \mathbb{N}$. There exists a function y_{x} which tends to infinity with x such that

$$
\begin{equation*}
\frac{1}{x} \#\left\{n \leq x: q\left(\phi_{k}(n)\right) \leq y_{x}\right\} \rightarrow 0 \quad \text { as } x \rightarrow \infty \tag{4.8}
\end{equation*}
$$

Proof. By choosing $y_{x}=(\log \log x)^{k(1-\varepsilon)}$ for a fixed small $\varepsilon>0$, and by using the same techniques as in Erdős, Granville, Pomerance and Spiro 5] or as in Bassily and Kátai [1, one can easily obtain (4.8).

We may now complete the proof of Theorem 1 . Let $\wp_{K}=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ be a set of primes satisfying (2.1) and let $t(m)=\alpha \phi_{k}(m)$. Observe that in general we have that if $u \mid \phi(v)$, then $\phi(u \phi(v))=u \phi(\phi(v))$. Using this observation and Lemma 1. we have that $t\left(p_{j} m\right)=\alpha p_{j} \phi_{k}(m)$, so that

$$
\eta_{i, j}(m)=t\left(p_{i} m\right)-t\left(p_{j} m\right)=\alpha\left(p_{i}-p_{j}\right) \phi_{k}(m)
$$

Hence, the sequence $\left(\eta_{i, j}(m)\right)_{m \geq 1}$ is uniformly distributed modulo 1 if $\alpha\left(p_{i}-\right.$ $\left.-p_{j}\right) \notin E$. We can drop those α which belong to the set

$$
F=\bigcup_{K=1}^{\infty} \bigcup_{\substack{i, j=1, \ldots, R_{K} \\ i \neq j}} E_{K\left(p_{i}-p_{j}\right)},
$$

where $R_{K}=\# \wp_{k}$, since $\lambda(F)=0$. On the other hand, if $\alpha \notin F$, then the statement of Theorem 1 certainly holds. Thus, the proof of Theorem 1 is complete.

We will omit the proof of Theorem 2 since it can be obtained by repeating the arguments used in the proof of Theorem 1 and the techniques used in the proof of 2.5.

5. Proof of Theorem 3

In order to prove that a given sequence $\left(\left(u_{n}, v_{n}\right)\right)_{n \geq 1}$ is uniformly distributed $\bmod [0,1)^{2}$, it is clear that we only need to prove that the sequence
$\left(k u_{n}+\ell v_{n}\right)_{n \geq 1}$ is uniformly distributed modulo 1 for all $(k, \ell) \in \mathbb{Z} \times \mathbb{Z}$ with $(k, \ell) \neq(0,0)$.

Given a fixed $(k, \ell) \in \mathbb{Z} \times \mathbb{Z}$ with $(k, \ell) \neq(0,0)$, consider the functions

$$
A(n)=\alpha(k \sigma(n)+\ell \phi(n)), \quad B(n)=\alpha(k \sigma(n)-\ell \phi(n))
$$

To prove the theorem, it is sufficient to establish that

$$
\begin{equation*}
\frac{1}{x} \sum_{n \leq x} e(A(n)) \rightarrow 0 \quad \text { as } x \rightarrow \infty \tag{5.1}
\end{equation*}
$$

One can easily establish that, for each $\varepsilon>0$, there exists $c=c(\varepsilon)$ such that $\lim _{\varepsilon \rightarrow 0} c(\varepsilon)=0$ and such that

$$
\frac{1}{x} \#\left\{n \leq x: P(n) \leq x^{\varepsilon}\right\}+\frac{1}{x} \#\left\{n \leq x: P(n) \geq x^{1-\varepsilon}\right\} \leq c(\varepsilon)
$$

Therefore, in order to prove (5.1), it is sufficient to prove that

$$
\begin{equation*}
\frac{1}{x} \sum_{\substack{n \leq x \\ x^{\varepsilon}<P(n)<x^{1-\varepsilon}}} e(A(n)) \rightarrow 0 \quad \text { as } x \rightarrow \infty \tag{5.2}
\end{equation*}
$$

Now, given an integer $n \leq x$, we write $n=m p$, where $p=P(n)$. Since

$$
\#\left\{n \leq x: P(n)>x^{\varepsilon} \text { and } p \mid m\right\} \leq x \sum_{p>x^{\varepsilon}} \frac{1}{p^{2}}=o(x)
$$

in order to prove $\sqrt{5.2}$, we only need to prove that

$$
\begin{equation*}
\frac{1}{x} \sum_{\substack{n \leq x \\ P(n)<x^{1-\varepsilon}}} e(A(n)) \rightarrow 0 \quad \text { as } x \rightarrow \infty \tag{5.3}
\end{equation*}
$$

Now, observe that if $(p, m)=1$, then clearly,

$$
A(p m)=p A(m)+B(m)
$$

so that

$$
\begin{aligned}
\sum_{\substack{n \leq x \\
P(n)<x^{1-\varepsilon}}} e(A(n)) & =\sum_{m \leq x^{1-\varepsilon}} e(B(m))\left\{\sum_{p<x / m} e(p A(m))-\sum_{p \leq P(m)} e(p A(m))\right\} \\
(5.4) & =S_{A}(m)+S_{B}(m)
\end{aligned}
$$

say.
We consider the two cases:
(a) $A(m)=0$;
(b) $A(m) \neq 0$.

In case (a), we have that $k \sigma(m)+\ell \phi(m)=0$, so that $\frac{\sigma(m)}{\phi(m)}=-\frac{\ell}{k}$.
We will prove that

$$
\begin{equation*}
\frac{1}{y} \#\left\{m \in[y, 2 y], \frac{\sigma(m)}{\phi(m)}=-\frac{\ell}{k}\right\} \rightarrow 0 \quad \text { as } y \rightarrow \infty . \tag{5.5}
\end{equation*}
$$

Now, according to a result of Lévy [9, if g is an additive function for which the three series

$$
\sum_{|g(p)|<1} \frac{g(p)}{p}, \quad \sum_{|g(p)|<1} \frac{g^{2}(p)}{p}, \quad \sum_{|g(p)| \geq 1} \frac{1}{p}
$$

are convergent, then if $\left(\xi_{p}\right)_{p \in_{\wp}}$ is a sequence of independent random variables such that

$$
\begin{equation*}
P\left(\xi_{p}=g\left(p^{a}\right)\right)=\left(1-\frac{1}{p}\right) \frac{1}{p^{a}} \quad(a=1,2, \ldots) . \tag{5.6}
\end{equation*}
$$

then, the distribution F_{η} of $\eta=\sum \xi_{p}$ is everywhere continuous if and only if

$$
\begin{equation*}
\sum_{p \in \wp} P\left(\xi_{p} \neq 0\right)=\infty \tag{5.7}
\end{equation*}
$$

Choosing $g(n):=\log \frac{\sigma(m)}{\phi(m)}$, we then have

$$
g(p)=\log \frac{p+1}{p-1} \quad \text { and } \quad g\left(p^{a}\right)=\log \frac{1+p+\cdots+p^{a}}{p^{a-1}(p-1)} .
$$

For this function g and ξ_{p} as in $(\sqrt{5.6})$, one can see that condition $(\sqrt{5.7})$ is satisfied. Hence, using Lévy's result, we may conclude that (5.5) is satisfied.

Let D be the set of those positive integers m for which $\frac{\sigma(m)}{\phi(m)}=-\frac{\ell}{k}$ and let us estimate the right hand side of (5.4) as m running over D. We have that
the right hand side of (5.4) is

$$
\begin{aligned}
& \ll \sum_{\substack{m \leq x^{1-\varepsilon} \\
m \in D}} \pi(x / m) \leq \\
& \quad \leq \sum_{2^{\nu} \leq x^{1-\varepsilon} / \log x} \sum_{\substack{x^{1-\varepsilon} \\
2^{\nu+1} \leq m<\frac{x^{1-\varepsilon}}{2^{\nu}} \\
m \in D}} \pi(x / m) \leq \\
& \quad \leq \frac{c_{\varepsilon} x}{\log x} \sum_{2^{\nu} \leq x^{1-\varepsilon} / \log x} \sum_{\substack{x^{1-\varepsilon} \\
2^{\nu+1} \leq m<\frac{x^{1-\varepsilon}}{2^{\nu}} \\
m \in D}} \frac{1}{m} \leq \\
& \quad \leq o(1) \frac{c_{\varepsilon} x}{\log x} \log x=o(1),
\end{aligned}
$$

where we use 5.5 with $y=\frac{x^{1-\varepsilon}}{2^{\nu+1}}$. Hence, the contribution of those $n=p m \leq x$ for which $m \in D$ to the sum in (5.3) is $o(x)$ as $x \rightarrow \infty$.

It remains to consider case (b), that is when $A(m) \neq 0$. First, we set $\tau=x /(\log x)^{30}$. Then, there exists a sequence of rational numbers $\left(a_{m} / q_{m}\right)_{m \geq 1}$ such that

$$
\begin{equation*}
\left|A(m)-\frac{a_{m}}{q_{m}}\right| \leq \frac{1}{q_{m} \tau} \quad(m=1,2, \ldots) \tag{5.8}
\end{equation*}
$$

where $1 \leq q_{m} \leq \tau$ for each integer $m \geq 1$.
If $q_{m}>\log ^{40} x$, arguing as in [1], we obtain that

$$
S_{A}(m) \ll \frac{x / m}{\log ^{2}(x / m)},
$$

so that

$$
\begin{equation*}
\sum_{\substack{m \leq x^{1-\varepsilon} \\ m \notin D}} e(B(m)) S_{A}(m)=o(x) \tag{5.9}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\sum_{\substack{m \leq x^{1-\varepsilon} \\ m \notin D}} e(B(m)) S_{B}(m) \ll \sum_{\substack{m P(m) \leq x \\ m \leq x^{1-\varepsilon}}} \frac{P(m)}{\log P(m)}=o(x), \tag{5.10}
\end{equation*}
$$

where the fact that this last sum is $o(x)$ was proved in our 2005 paper [4]). Thus, combining $\sqrt{5.9}$ and 5.10 shows that the contribution of those $n=p m \leq x$ for which $m \notin D$ to the sum in (5.3) is $o(x)$ as $x \rightarrow \infty$.

On the other hand, if $q_{m} \leq \log ^{40} x$, then it follows from (5.8) that

$$
\left|\alpha-\frac{a_{m}}{q_{m}(k \sigma(n)+\ell \phi(n))}\right|<\frac{1}{q_{m}(k \sigma(n)+\ell \phi(n)) \tau} .
$$

Setting

$$
\frac{a_{m}}{q_{m}(k \sigma(n)+\ell \phi(n))}:=\frac{A}{Q}, \quad(A, Q)=1
$$

it is clear that

$$
Q<(\log x)^{40}(|k| \log x+|\ell|) x^{1-\varepsilon}<x^{1-\varepsilon / 2}
$$

provided x is large enough. Using this and (5.8), we may conclude that, for some function $\delta_{x} \rightarrow 0$ as $x \rightarrow \infty$, we have

$$
\|Q \alpha\| Q^{1+\varepsilon / 4} \leq \delta(x)
$$

thus contradicting our assumption (2.3). This fully establishes (5.3) and thereby completes the proof of Theorem 3 .

References

[1] Bassily, N.L., I. Kátai and M. Wijsmuller, Number of prime divisors of $\phi_{k}(n)$, where ϕ_{k} is the k-fold iterate of ϕ, J. Number Theory, 65 (1997), no. 2, 226-239.
[2] Daboussi, H. et H. Delange, Quelques propriétés des fonctions multiplicatives de module au plus égal à 1, C. R. Acad. Sci. Paris Sér. A, $\mathbf{2 7 8}$ (1974), 657-660.
[3] Daboussi, H. et H. Delange, On multiplicative arithmetical functions whose modulus does not exceed one, J. London Math. Soc., 26 (1982), no. 2, 245-264.
[4] De Koninck, J.-M. and I. Kátai, On the distribution modulo 1 of the values of $F(n)+\alpha \sigma(n)$, Publ. Math. Debrecen, 66 (2005), 121-128.
[5] Erdős, P., A. Granville, C. Pomerance and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, in: Analytic Number Theory (Allerton Park, IL, 1989), 165-204, Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990.
[6] De Koninck, J.-M. and F. Luca, Analytic Number Theory: Exploring the Anatomy of Integers, Graduate Studies in Mathematics, Vol. 134, American Mathematical Society, Providence, Rhode Island, 2012.
[7] Kátai, I., A remark on a theorem of Daboussi, Acta. Math. Hung., 47 (1986), 223-225.
[8] Kátai, I., On the distribution modulo 1 of $\alpha \sigma(n)$, Publ. Math. Debrecen, 77, no. 1-2 (2010), 1-14.
[9] Lévy, P., Sur les séries dont les termes sont des variables éventuelles indépendantes, Studia Math., 3 (1931), 119-155.
[10] Pomerance, C., Popular values of Euler's function, Mathematika, 27 (1980), no. 1, 84-89.
[11] Wijsmuller, M., The value distribution of an additive function, Annales Univ. Sci. Budapest., Sect. Comp., 14 (1994), 279-291.

J.-M. De Koninck

Dép. math. et statistique
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

I. Kátai

Computer Algebra Department
Eötvös Loránd University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
katai@inf.elte.hu

