COEFFICIENT INEQUALITY FOR TRANSFORMS OF RECIPROCAL OF BOUNDED TURNING FUNCTIONS

D. Vamshee Krishna and B. Venkateswarlu

(Visakhapatnam, India)

T. RamReddy (Warangal, India)

Communicated by Ferenc Schipp

(Received March 11, 2015; accepted April 15, 2015)

Abstract. In the present paper we introduce a new subclass of analytic functions. We prove a sharp upper bound to the second Hankel determinant associated with the k^{th} root transform $\left[f(z^k)\right]^{\frac{1}{k}}$ of the normalized analytic function f(z), when it belongs to this class, using Toeplitz determinants.

1. Introduction

Let A denote the class of all functions f(z) of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

in the open unit disc $E = \{z : |z| < 1\}$. Let S be the subclass of A consisting of univalent functions. In 1985, Louis de Branges de Bourcia proved the Bieberbach conjecture, i.e.: for a univalent function its n^{th} coefficient is bounded

Key words and phrases: Analytic function, upper bound, reciprocal of bounded turning function, second Hankel functional, positive real function, Toeplitz determinants. 2010 Mathematics Subject Classification: 30C45; 30C50.

by n (see [3]). The bounds for the coefficients give information about the geometric properties of these functions. In particular, the growth and distortion properties of a normalized univalent function are determined by the bound of its second coefficient. The Hankel determinant of f for $q \ge 1$ and $n \ge 1$ was defined by Pommerenke [14] as

$$H_q(n) = \begin{vmatrix} a_n & a_{n+1} & \cdots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2} \end{vmatrix}, \quad (a_1 = 1).$$

This determinant has been considered by many authors in the literature. For example, Noor [12] determined the rate of growth of $H_q(n)$ as $n \to \infty$ for the functions in S with bounded boundary. Ehrenborg [5] studied the Hankel determinant of exponential polynomials. The Hankel transform of an integer sequence and some of its properties were discussed by Layman [8]. In the recent years several authors have investigated bounds for the Hankel determinant of functions belonging to various subclasses of univalent and multivalent analytic functions in the literature. In particular for q=2, n=1, n=1 and n=1, the Hankel determinant simplifies respectively to

$$H_2(1) = \begin{vmatrix} a_1 & a_2 \\ a_2 & a_3 \end{vmatrix} = a_3 - a_2^2,$$
and
$$H_2(2) = \begin{vmatrix} a_2 & a_3 \\ a_3 & a_4 \end{vmatrix} = a_2 a_4 - a_3^2.$$

We refer to $H_2(2)$ as the second Hankel determinant. A familiar result is that for the univalent function given in (1.1) the sharp inequality $H_2(1) = |a_3 - a_2^2| \le 1$ holds true [4]. For a family \mathcal{T} of functions in S, the more general problem of finding sharp estimates for the functional $|a_3 - \mu a_2^2| (\mu \in \mathbb{R} \text{ or } \mu \in \mathbb{C})$ in popularly known as the Fekete-Szegő problem for \mathcal{T} . Ali [2] found sharp bounds for the first four coefficients and sharp estimate for the Fekete-Szegő functional $|\gamma_3 - t\gamma_2^2|$, where t is real for the inverse function of f defined as $f^{-1}(w) = w + \sum_{n=2}^{\infty} \gamma_n w^n \in \widetilde{ST}(\alpha)$, the class of strongly starlike functions of order α (0 < $\alpha \le 1$). Janteng, Halim and Darus [7] have considered the functional $|a_2a_4 - a_3^2|$ and found sharp upper bound for the function f in the subclass RT of S, consisting of functions whose derivative have a positive real part (also called bounded turning functions) studied by Mac Gregor [10] and have shown that if $f \in RT$ then $|a_2a_4 - a_3^2| \le \frac{4}{9}$. R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam [1] obtained sharp bounds for the Fekete-Szegő coefficient functional denoted by $|b_{2k+1} - \mu b_{k+1}^2|$ associated with the k^{th} root transform $[f(z^k)]^{\frac{1}{k}}$ of the function given in (1.1), belonging to certain

subclasses of S. The k^{th} root transform for the function f given in (1.1) is defined as

(1.2)
$$F(z) := \left[f(z^k) \right]^{\frac{1}{k}} = z + \sum_{n=1}^{\infty} b_{kn+1} z^{kn+1}$$

Motivated by the results obtained by R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam [1], in the present paper, we introduce a new subclass denoted by \widehat{RT} and obtain sharp upper bound to the functional $|b_{k+1}b_{3k+1} - b_{2k+1}^2|$ for the k^{th} root transform of the function f when it belongs to this class, defined as follows.

Definition 1.1. A function $f(z) \in A$ is said to be function whose reciprocal derivative has a positive real part (also called reciprocal of bounded turning function), denoted by $f \in \widehat{RT}$, if and only if

$$\operatorname{Re} \frac{1}{f'(z)} > 0, \quad \forall z \in E.$$

2. Preliminary results

Let \mathcal{P} denote the class of functions consisting of p, such that

(2.1)
$$p(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \dots = 1 + \sum_{n=1}^{\infty} c_n z^n,$$

which are regular in the open unit disc E and satisfy Re p(z) > 0 for any $z \in E$. Here p(z) is called the Carathéodory function [4].

Lemma 2.1. ([13], [15]) If $p \in \mathcal{P}$, then $|c_k| \leq 2$, for each $k \geq 1$ and the inequality is sharp for the function $\frac{1+z}{1-z}$.

Lemma 2.2. ([6]) The power series for $p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$ given in (2.1) converges in the open unit disc E to a function in \mathcal{P} if and only if the Toeplitz determinants

$$D_n = \begin{vmatrix} 2 & c_1 & c_2 & \cdots & c_n \\ c_{-1} & 2 & c_1 & \cdots & c_{n-1} \\ c_{-2} & c_{-1} & 2 & \cdots & c_{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2 \end{vmatrix}, \qquad n = 1, 2, 3, \dots$$

and $c_{-k} = \overline{c}_k$, are all non-negative. They are strictly positive except for $p(z) = \sum_{k=1}^{m} \rho_k p_0(e^{it_k}z)$, $\rho_k > 0$, t_k real and $t_k \neq t_j$, for $k \neq j$, where $p_0(z) = \frac{1+z}{1-z}$; in this case $D_n > 0$ for n < (m-1) and $D_n \doteq 0$ for $n \geq m$.

This necessary and sufficient condition found in [6] is due to Carathéodory and Toeplitz. We may assume without restriction that $c_1 > 0$. On using Lemma 2.2, for n = 2, we have

$$D_2 = \begin{vmatrix} 2 & c_1 & c_2 \\ \overline{c}_1 & 2 & c_1 \\ \overline{c}_2 & \overline{c}_1 & 2 \end{vmatrix} = [8 + 2\operatorname{Re}\{c_1^2c_2\} - 2 \mid c_2 \mid^2 - 4|c_1|^2] \ge 0,$$

which is equivalent to

(2.2)
$$2c_2 = c_1^2 + x(4 - c_1^2)$$
, for some $x, |x| \le 1$.

For n=3,

$$D_3 = \begin{vmatrix} 2 & c_1 & c_2 & c_3 \\ \overline{c}_1 & 2 & c_1 & c_2 \\ \overline{c}_2 & \overline{c}_1 & 2 & c_1 \\ \overline{c}_3 & \overline{c}_2 & \overline{c}_1 & 2 \end{vmatrix} \ge 0$$

and is equivalent to

$$(2.3) |(4c_3 - 4c_1c_2 + c_1^3)(4 - c_1^2) + c_1(2c_2 - c_1^2)^2| \le 2(4 - c_1^2)^2 - 2|(2c_2 - c_1^2)|^2.$$

Simplifying the expressions (2.2) and (2.3), we get

(2.4)
$$4c_3 = \{c_1^3 + 2c_1(4 - c_1^2)x - c_1(4 - c_1^2)x^2 + 2(4 - c_1^2)(1 - |x|^2)z\}, \text{ with } |z| \le 1.$$

To obtain our result, we refer to the classical method initiated by Libera and Zlotkiewicz [9] and used by several authors in the literature.

3. Main result

Theorem 3.1. If $f(z) \in \widehat{RT}$, then $|b_{k+1}b_{k+3} - b_{k+2}^2| \le \frac{4}{9k^2}$ with $k \in \mathbb{N} = \{1, 2, 3, \ldots\}$ and the inequality is sharp.

Proof. For $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \widehat{RT}$, by virtue of Definition 1.1, there exists an analytic function $p \in \mathcal{P}$ in the open unit disc E with p(0) = 1 and Re p(z) > 0 such that

(3.1)
$$\frac{1}{f'(z)} = p(z) \iff 1 = f'(z)p(z).$$

73

Replacing f'(z) and p(z) with their equivalent series expressions in (3.1), we have

$$1 = \left\{ 1 + \sum_{n=2}^{\infty} n a_n z^{n-1} \right\} \left\{ 1 + \sum_{n=1}^{\infty} c_n z^n \right\}.$$

Upon simplification, we obtain

(3.2)
$$1 = 1 + (c_1 + 2a_2)z + (c_2 + 2a_2c_1 + 3a_3)z^2 + (c_3 + 2a_2c_2 + 3a_3c_1 + 4a_4)z^3 + \cdots$$

Equating the coefficients of like powers of z, z^2 and z^3 respectively on both sides of (3.2), after simplifying, we get

(3.3)
$$a_2 = \frac{-c_1}{2}; \quad a_3 = \frac{1}{3}(c_1^2 - c_2); \quad a_4 = -\frac{1}{4}(c_3 - 2c_1c_2 + c_1^3).$$

For a function f given by (1.1), a computation shows that

(3.4)

$$\begin{aligned} \left[f(z^k)\right]^{\frac{1}{k}} &= \left[z^k + \sum_{n=2}^{\infty} a_n z^{nk}\right]^{\frac{1}{k}} = \\ &= \left[z + \frac{1}{k} a_2 z^{k+1} + \left\{\frac{1}{k} a_3 + \frac{1-k}{2k^2} a_2^2\right\} z^{2k+1} + \right. \\ &\quad + \left\{\frac{1}{k} a_4 + \frac{1-k}{k^2} a_2 a_3 + \frac{(1-k)(1-2k)}{6k^3} a_2^3\right\} z^{3k+1} + \cdots\right]. \end{aligned}$$

The equations (1.2) and (3.4) yield;

(3.5)
$$b_{k+1} = \frac{1}{k}a_2 \; ; \quad b_{2k+1} = \frac{1}{k}a_3 + \frac{1-k}{2k^2}a_2^2 \; ;$$
$$b_{3k+1} = \frac{1}{k}a_4 + \frac{1-k}{k^2}a_2a_3 + \frac{(1-k)(1-2k)}{6k^3}a_2^3.$$

Simplifying the equations (3.3) and (3.5), we get

(3.6)
$$b_{k+1} = \frac{-c_1}{2k}; \quad b_{2k+1} = \frac{1}{24k^2} [(5k+3)c_1^2 - 8kc_2];$$
$$b_{3k+1} = -\frac{1}{48k^3} [12k^2c_3 - 8k(1+2k)c_1c_2 + (1+2k)(1+3k)c_1^3].$$

Substituting the values of b_{k+1}, b_{2k+1} and b_{3k+1} from (3.6) in the second Hankel determinant $|b_{k+1}b_{3k+1} - b_{2k+1}^2|$ for the k^{th} transform of the function $f \in \widehat{RT}$, which simplifies to

$$(3.7) |b_{k+1}b_{3k+1} - b_{2k+1}^2| = \frac{1}{576k^4} |72k^2c_1c_3 - 16k^2c_1^2c_2 - 64k^2c_2^2 + (11k^2 - 3)c_1^4|.$$

Substituting the values of c_2 and c_3 from (2.2) and (2.4) respectively from Lemma 2.2 on the right-hand side of (3.7), we have

$$\begin{aligned} (3.8) \quad & \left| 72k^2c_1c_3 - 16k^2c_1^2c_2 - 64k^2c_2^2 + (11k^2 - 3)c_1^4 \right| = \\ & = \left| 72k^2c_1 \times \frac{1}{4}\{c_1^3 + 2c_1(4 - c_1^2)x - c_1(4 - c_1^2)x^2 + 2(4 - c_1^2)(1 - |x|^2)z\} - \right. \\ & \quad \left. - 16k^2c_1^2 \times \frac{1}{2}\{c_1^2 + x(4 - c_1^2)\} - 64k^2 \times \frac{1}{4}\{c_1^2 + x(4 - c_1^2)\}^2 + \right. \\ & \quad \left. + (11k^2 - 3)c_1^4 \right|. \end{aligned}$$

Using the triangle inequality and the fact |z| < 1, upon simplification, we get

$$|72k^{2}c_{1}c_{3} - 16k^{2}c_{1}^{2}c_{2} - 64k^{2}c_{2}^{2} + (11k^{2} - 3)c_{1}^{4}| \leq$$

$$\leq |(5k^{2} - 3)c_{1}^{4} + 36k^{2}c_{1}(4 - c_{1}^{2}) + 4k^{2}c_{1}^{2}(4 - c_{1}^{2})|x| +$$

$$+2k^{2}(c_{1} + 2)(c_{1} + 16)(4 - c_{1}^{2})|x|^{2}|.$$

Since $c_1 \in [0,2]$, noting that $(c_1 + a)(c_1 + b) \ge (c_1 - a)(c_1 - b)$, where $a, b \ge 0$ on the right hand side of (3.9), we have

$$|72k^{2}c_{1}c_{3} - 16k^{2}c_{1}^{2}c_{2} - 64k^{2}c_{2}^{2} + (11k^{2} - 3)c_{1}^{4}| \leq$$

$$\leq |(5k^{2} - 3)c_{1}^{4} + 36k^{2}c_{1}(4 - c_{1}^{2}) + 4k^{2}c_{1}^{2}(4 - c_{1}^{2})|x| +$$

$$+2k^{2}(c_{1} - 2)(c_{1} - 16)(4 - c_{1}^{2})|x|^{2}|.$$

Choosing $c_1 = c \in [0, 2]$, applying triangle inequality and replacing |x| by μ on the right-hand side of the above inequality, we have

$$|72k^{2}c_{1}c_{3} - 16k^{2}c_{1}^{2}c_{2} - 64k^{2}c_{2}^{2} + (11k^{2} - 3)c_{1}^{4}| \le$$

$$(3.11) \le \left[(5k^{2} - 3)c^{4} + 2k^{2} \left\{ 18c + 2c^{2}\mu + (c - 2)(c - 16)\mu^{2} \right\} \times (4 - c^{2}) \right] =$$

$$= F(c, \mu), \quad \text{for } 0 \le \mu = |x| \le 1.$$

We next maximize the function $F(c, \mu)$ on the closed region $[0, 2] \times [0, 1]$. Differentiating $F(c, \mu)$ partially with respect to μ , we get

(3.12)
$$\frac{\partial F}{\partial \mu} = 4k^2 \left[c^2 + (c-2)(c-16)\mu \right] \times (4-c^2).$$

For $0 < \mu < 1$, for fixed c with 0 < c < 2 and for every $k \in \mathbb{N}$, from (3.12), we observe that $\frac{\partial F}{\partial \mu} > 0$. Therefore, $F(c, \mu)$ is an increasing function of μ and hence it cannot have maximum value at any point in the interior of the closed region $[0, 2] \times [0, 1]$. Moreover, for fixed $c \in [0, 2]$, we have

(3.13)
$$\max_{0 \le \mu \le 1} F(c, \mu) = F(c, 1) = G(c).$$

Therefore, replacing μ by 1 in $F(c, \mu)$, upon simplification, we obtain

(3.14)
$$G(c) = -(k^2 + 3)c^4 - 40k^2c^2 + 256k^2,$$

(3.15)
$$G'(c) = -4(k^2 + 3)c^3 - 80k^2c.$$

From (3.15), we observe that $G'(c) \leq 0$, for every $c \in [0,2]$ and for every k. Therefore, G(c) becomes a decreasing function of c in the interval [0,2], whose maximum value occurs at c=0 only. From (3.14), the maximum value of G(c) is given by

(3.16)
$$G_{max} = G(0) = 256k^2.$$

From the relations (3.11) and (3.16), we get

$$(3.17) |72k^2c_1c_3 - 16k^2c_1^2c_2 - 64k^2c_2^2 + (11k^2 - 3)c_1^4| \le 256k^2.$$

Simplifying the expressions (3.7) and (3.17), we obtain

$$\left| b_{k+1}b_{3k+1} - b_{2k+1}^2 \right| \le \frac{4}{9k^2}.$$

By setting $c_1 = c = 0$ and selecting x = 1 in the expressions (2.2) and (2.4), we find that $c_2 = 2$ and $c_3 = 0$ respectively. Using these values in (3.17), we observe that equality is attained, which shows that our result is sharp. For these values, we derive the extremal function, given by

$$\frac{1}{f'(z)} = 1 + 2z^2 + 2z^4 + \dots = \frac{1+z^2}{1-z^2}.$$

This completes the proof of our Theorem.

Remark 3.1. Choosing k = 1 in (3.18), the result coincides with that of Janteng, Halim and Darus [7]. From this, we conclude that the upper bound to the second Hankel determinant of a function whose derivative has a positive real part and a function whose reciprocal derivative has a positive real part is the same.

Acknowledgements. The authors express their sincere thanks to the esteemed Referee(s) for their careful reading, valuable suggestions and comments, which helped them to improve the presentation of the paper.

References

- [1] Ali, R. M. Lee, S. K. Ravichandran. V and Supramaniam. S, The Fekete-Szegő coefficient functional for transforms of analytic functions, *Bull. Iranian Math. Soc.*, **35**(2) (2009), 119–142.
- [2] Ali, R. M., Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc. (second series), 26 (2003), 63–71.
- [3] de Branges de Bourcia, Louis, A proof of Bieberbach conjecture, *Acta Mathematica*, **154** (1985), 137–152.
- [4] **Duren, P. L.,** *Univalent Functions*, Vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 1983.
- [5] Ehrenborg, R., The Hankel determinant of exponential polynomials, Amer. Math. Monthly, 107 (2000), 557–560.
- [6] **Grenander**, **U. and Szegő**, **G.**, *Toeplitz Forms and their Applications*, Second edition. Chelsea Publishing Co., New York, 1984.
- [7] Janteng, A. Halim, S. A. and Darus, M., Coefficient inequality for a function whose derivative has a positive real part, *J. Inequal. Pure Appl. Math.*, 7 (2006), 1–5.
- [8] Layman, J. W., The Hankel transform and some of its properties, J. Integer Seq., 4 (2001), 1–11.
- [9] Libera, R. J. and Zlotkiewicz, E. J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87 (1983), 251–257
- [10] Mac Gregor, T. H., Functions whose derivative have a positive real part, *Trans. Amer. Math. Soc.*, **104** (1962), 532–537.
- [11] **Noonan, J. W. and Thomas, D. K.,** On the second Hankel determinant of areally mean p valent functions, *Trans. Amer. Math. Soc.*, **223** (1976), 337–346.
- [12] Noor, K. I., Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roumaine Math. Pures Appl., 28 (1983), 731–739.
- [13] **Pommerenke, Ch.,** *Univalent Functions*, Vandenhoeck and Ruprecht, Gottingen, 1975.
- [14] **Pommerenke, Ch.,** On the coefficients and Hankel determinants of univalent functions, *J. Lond. Math. Soc.*, **41** (1966), 111–122.
- [15] Simon. B., Orthogonal Polynomials on the Unit Circle, Part 1. Classical Theory, Vol. 54, American Mathematical Society Colloquium Publications, Providence (RI), American Mathematical Society, 2005.

D. Vamshee Krishna and B. Venkateswarlu

Department of Mathematics GIT, GITAM University Visakhapatnam Andhra Pradesh, India vamsheekrishna1972@gmail.com bvlmaths@gmail.com

T. RamReddy

Department of Mathematics KAKATIYA University Warangal Telangana State, India reddytr2@gmail.com