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Abstract. In the present paper we introduce a new subclass of analytic
functions. We prove a sharp upper bound to the second Hankel determi-

1
nant associated with the k" root transform [f(z*)]* of the normalized
analytic function f(z), when it belongs to this class, using Toeplitz deter-

minants.

1. Introduction

Let A denote the class of all functions f(z) of the form

(1.1) f(2) :z—l—Zanz"

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting of
univalent functions. In 1985, Louis de Branges de Bourcia proved the Bieber-
bach conjecture, i.e.: for a univalent function its n'” coefficient is bounded
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by n (see [3]). The bounds for the coefficients give information about the ge-
ometric properties of these functions. In particular, the growth and distortion
properties of a normalized univalent function are determined by the bound of
its second coefficient. The Hankel determinant of f for ¢ > 1 and n > 1 was
defined by Pommerenke [14] as

(07 Ap+1 e an+q—1
Ap+1 Qpy2 -0 An+q
Hq(’n,) = . . . . 5 (a1 = 1)
a/nJrqfl anJrq et an+2q72

This determinant has been considered by many authors in the literature. For
example, Noor [12] determined the rate of growth of H,(n) as n — oo for
the functions in S with bounded boundary. Ehrenborg [5] studied the Hankel
determinant of exponential polynomials. The Hankel transform of an integer
sequence and some of its properties were discussed by Layman [8]. In the recent
years several authors have investigated bounds for the Hankel determinant of
functions belonging to various subclasses of univalent and multivalent analytic
functions in the literature. In particular for ¢ =2, n =1, a; = 1 and ¢ = 2,
n =2, a; = 1, the Hankel determinant simplifies respectively to

ap a2 2
H5(1) = =a3—a
2( ) as as 3 2
as a
and Hs(2) = 3= agay — as
az a4

We refer to H>(2) as the second Hankel determinant. A familiar result is that
for the univalent function given in (1.1) the sharp inequality Hs(1) = |az—a3| <
<1 holds true [4]. For a family 7 of functions in S, the more general problem
of finding sharp estimates for the functional |a3 — pa|(u € R or u € C)
in popularly known as the Fekete-Szeg6 problem for 7. Ali [2] found sharp
bounds for the first four coefficients and sharp estimate for the Fekete-Szeg6
functional |y3 — ty3|, where ¢ is real for the inverse function of f defined as
FHw) = w+ Y0, yauw™ € Sﬁ“(a), the class of strongly starlike functions
of order a (0 < a < 1). Janteng, Halim and Darus [7] have considered the
functional |agas — a3| and found sharp upper bound for the function f in the
subclass RT of S, consisting of functions whose derivative have a positive real
part (also called bounded turning functions) studied by Mac Gregor [10] and
have shown that if f € RT then |agas — a3| < 5. R. M. Ali, S. K. Lee, V.
Ravichandran and S. Supramaniam [1] obtained sharp bounds for the Fekete-
Szegb coefficient functional denoted by |boy1 — ub? 41| associated with the Kth
1
k

root transform [f(z*)]* of the function given in (1.1), belonging to certain
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subclasses of S. The k*" root transform for the function f given in (1.1) is
defined as

(1.2) Fz) = [fE)]F =24 3 brngr 2t

n=1

Motivated by the results obtained by R. M. Ali, S. K. Lee, V. Ravichandran
and S. Supramaniam [1], in the present paper, we introduce a new subclass

denoted by RT and obtain sharp upper bound to the functional |bgi1b3k+1 —
—b3, .| for the k** root transform of the function f when it belongs to this
class, defined as follows.

Definition 1.1. A function f(z) € A is said to be function whose reciprocal
derivative has a positive real part (also called reciprocal of bounded turning
function), denoted by f € RT, if and only if

1
Re —— >0, Vz e FE.
f'(2)

2. Preliminary results

Let P denote the class of functions consisting of p, such that
o0
(2.1) p(z) = l4ciz+ce22+e32+...= 1+chz”,
n=1
which are regular in the open unit disc E and satisfy Re p(z) > 0 for any

z € E. Here p(z) is called the Carathéodory function [4].

Lemma 2.1. ([13], [15]) If p € P, then |ck| < 2, for each k > 1 and the

inequality is sharp for the function {==.

Lemma 2.2. ([6]) The power series for p(z) =1+ >, ¢,2" given in (2.1)
converges in the open unit disc E to a function in P if and only if the Toeplitz
determinants

2 c1 Co Cn
C_1 2 C1 Cn—1
D, =|¢2 ¢ 2 2| =123,
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and c_j = €k, are all non-negative. They are strictly positive except for p(z) =
=3 e prpo(€2), pp > 0, ty, real and ty, # t;, for k # j, where po(z) = 152;
in this case Dy, > 0 forn < (m —1) and D,, =0 for n > m.

This necessary and sufficient condition found in [6] is due to Carathéodory
and Toeplitz. We may assume without restriction that ¢; > 0. On using
Lemma 2.2, for n = 2, we have

2 ¢ ¢y
Dy=|& 2 ¢ |=[8+2Re{cfe} —2]c2|*—4|er|’] >0,
Ccy ¢ 2

which is equivalent to
(2.2) 2cy = ¢ +x(4 —¢3), for some z,|z| < 1.

For n =3,

2 ¢ ¢y c3
1 2 ¢ e
Co €1 2
C3 Cy €1 2

D3

Il
v
o

and is equivalent to

(2.3) |(dez —4ciea + ) (4 —3) +c1(2c0 — c1)?| < 2(4 — )% —2|(2¢co — c3)|2.
Simplifying the expressions (2.2) and (2.3), we get

(2.4) des = {3 +2c1(4—A)x —c1(4 — &)+

' +2(4—c)(1 —|z[*)z}, with |z] < 1.

To obtain our result, we refer to the classical method initiated by Libera and
Zlotkiewicz [9] and used by several authors in the literature.

3. Main result

Theorem 3.1. If f(2) € RT, then |bjyibes — b} o] < oo with k € N =
={1,2,3,...} and the inequality is sharp.

Proof. For f(z) = 24+ > " ya,2" € RT, by virtue of Definition 1.1, there
exists an analytic function p € P in the open unit disc F with p(0) = 1 and
Re p(z) > 0 such that

(3.1) =p(z) <= 1=[f(2)p(2).
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Replacing f'(z) and p(z) with their equivalent series expressions in (3.1), we

have
oo (oo}
1= {1 + Znanzn_l} {1 + chz”} .
n=2 n=1

Upon simplification, we obtain

1=14 (c1 +2a2)z + (c2 + 2a2¢1 + 3a3)z2+

(3.2) 3
+ (e3 4 2ascs + 3azer +4aq)z” + -+ - .

Equating the coefficients of like powers of z, 22 and 23 respectively on both
sides of (3.2), after simplifying, we get

—C1 1

(3.3) az = —5; a3:§(c%702); a4:71(03720162+c?).
For a function f given by (1.1), a computation shows that
(3.4)
~ ¥
1
[f(zk)} E o Zk + Zanznk] _
n=2
Lo k1 1 L=k 9\ ort1
- [’H%agz +{E“3+ 2k? GQ}Z +
1 1-k (1—Fk)(1—2k) 3\ 3041
L R e TERE] CHAE
The equations (1.2) and (3.4) yield,;
1 1-k
(3.5) brin = a2 i b = pas+ pan
' 1 1—k (1—k)(1—2k)
baky1 = Ft e+ o ay.

Simplifying the equations (3.3) and (3.5), we get

—C

1 2
b1 = o bok+1 = W[(% +3)cy — 8keal;

(3.6)
1
gkl = fM[mk%g — 8k(1 + 2k)crea + (14 2k)(1 + 3k)c3].

Substituting the values of byt 1, bog41 and bzgy1 from (3.6) in the second Hankel

determinant |by11b3gt1 — b§k+1| for the k" transform of the function f € ]/%T,
which simplifies to

|72k c103— 16kt e — 64k c3 4+ (11k% —3) i .

1
3.7) |bpi1d — 2 =
(3.7) Ibrsabans —b3pa| = 2oy
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Substituting the values of ¢z and c3 from (2.2) and (2.4) respectively from
Lemma 2.2 on the right-hand side of (3.7), we have

(3.8) |72k’cics — 16k>cier — 64k%c3 + (11K° — 3)cf| =

= [1282es x Tl + 2014~ ) — ea(d — D)a? 424 — )1 — faf?)2} -

— 16k%c? x {cl + (4 — )} — 64k* x i{c% + (4 —A)V2+
+ (11k% — 3)ct|.
Using the triangle inequality and the fact |z| < 1, upon simplification, we get
|72k2cres — 16k> ey — 64k°c3 + (11K — 3)cy| <
(3.9) < |(5k* — 3)ct + 36k%ci (4 — 2) + 4k2E (4 — ) ||+
+2k%(c1 + 2)(c1 + 16) (4 — ¢})|=]?| .

Since ¢; € [0, 2], noting that (¢1 + a)(c1 +b) > (e1 — a)(¢1 — b), where a,b >0
on the right hand side of (3.9), we have

|72k c1e3 — 16k% ey — 64k%c3 + (11K% — 3)cf| <
(3.10) < |(5k* — 3)ct + 36k%cy (4 — f) + 4k>ci (4 — )|z |+
+2k*(c1 — 2)(c1 — 16)(4 — ¢})|z|?| .

Choosing ¢; = ¢ € [0, 2], applying triangle inequality and replacing |z| by p on
the right-hand side of the above inequality, we have

|72k2c1es — 16k> ey — 64k°c3 + (11K — 3)cy| <
(3.11) < [(5k* —3)c* + 2k {18c + 2% + (c — 2)(c — 16)p®} x (4 — ?)] =
= F(ec, ), for 0 <p=lz| <1
We next maximize the function F(c, i) on the closed region [0,2] x [0, 1]. Dif-
ferentiating F'(c, u) partially with respect to u, we get
oF
Em

For 0 < p < 1, for fixed ¢ with 0 < ¢ < 2 and for every k € N, from (3.12),
we observe that %i > 0. Therefore, F'(c, 1) is an increasing function of p and
hence it cannot have maximum value at any point in the interior of the closed
region [0,2] x [0, 1]. Moreover, for fixed ¢ € [0, 2], we have

(3.13) jnax, F(e, 1) = F(e,1) = G(e).

(3.12) =4k* [ + (¢ — 2)(c — 16)u] x (4 — c?).
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Therefore, replacing p by 1 in F'(c, ), upon simplification, we obtain

(3.14) G(c) = —(k* 4 3)c* — 40K%c* + 256k2,

(3.15) G'(c) = —4(k* + 3)c® — 80k?c.

From (3.15), we observe that G'(c) < 0, for every ¢ € [0,2] and for every k.
Therefore, G(c) becomes a decreasing function of ¢ in the interval [0, 2], whose
maximum value occurs at ¢ = 0 only. From (3.14), the maximum value of G(¢)
is given by

(3.16) Grmaz = G(0) = 256k2.

From the relations (3.11) and (3.16), we get

(3.17) |72k c1c3 — 16k% ey — 64k%c5 + (11K — 3)cf| < 256k°.
Simplifying the expressions (3.7) and (3.17), we obtain

4
(3.18) |brt1b3k41 — D3pyn| < TR
By setting ¢; = ¢ = 0 and selecting = 1 in the expressions (2.2) and (2.4),
we find that c; = 2 and c3 = 0 respectively. Using these values in (3.17), we
observe that equality is attained, which shows that our result is sharp. For
these values, we derive the extremal function, given by

1 1+ 22
3.19 =142 42204 = —2.
(3.19) 70 + 227 +22% + .2
This completes the proof of our Theorem. |

Remark 3.1. Choosing k¥ = 1 in (3.18), the result coincides with that of
Janteng, Halim and Darus [7]. From this, we conclude that the upper bound
to the second Hankel determinant of a function whose derivative has a positive
real part and a function whose reciprocal derivative has a positive real part is
the same.
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