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ON THE EQUATION
f(n* + Dm?) = f(n)* + Df(m)*
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Abstract. Let D =2or 3, E := {n®> + Dm?*ln,m €N}, e¢(n) =1ifnc E
and €(n) € {-1,1} if n € N\ E. Let f : N — C be such a function for
which

f(n* + Dm?) = f(n)>+ Df(m)* for every n,m e N.

Then either f(n) =0, or f(n) = 5(1)17 or f(n) =e(n)n for every n € N.

1. Introduction

Let, as usual, P, N, C be the set of primes, positive integers and complex
numbers, respectively.

Let us consider an arithmetical function f : N — C satisfying the Cauchy’s
functional equation

f(n+m)=f(n)+ f(m) for every n,m €N.
It is obvious that f(n) = nf(1) holds for all n € N.
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In 1992, C. Spiro [9] proved that if a multiplicative function f : N — C
satisfies the relations

f(po) #0 for some pg € P

and
fp+q) = fp) + flq) forevery p,qecP,

then f(n) =n for all n € N.

In 1997 J.-M. De Koninck, I. Kétai and B. M. Phong [4] proved that if a
multiplicative function f : N — C satisfies the relation

flo+n?) = f(p) + f(n®) forevery peP, neN,

then f is the identity function. K.-H. Indlekofer and B. M. Phong [5] proved
that if £k € N, f € M satisfy f(2)f(5) # 0 and f (n2 +m?+k+ 1) = f(n®+
+1) + f(m? + k) for all n,m € N, then f(n) =n for alln € N, (n,2) = 1.

For some generalizations of the above results, we refer the other works of
P. V. Chung [2], B. M. Phong [6], [1], [8].

Let D € N. We are interested in all solutions of those f : N — C for which
(1.1) f(n?* +Dm?) = f(n)> 4+ Df(m)*> for every n,m € N.

In the case D = 1, the solutions of (|1.1)) were given in [I]. I. Katai and B. M.
Phong posed the following conjecture:

Conjecture. (I. Katai and B. M. Phong [3]) Assume that the arithmetical
function f: N — C satisfies (1.1)). Then one of the following assertions holds:

a) f(n)=0 forevery néeN,

i) = 5

¢) f(n)=en)n forevery n €N,

for every mn eN,

where E := {n? + Dm?n,m € N}, e(n) = 1 ifn € E and e(n) € {-1,1} if
neN\E.

Our purpose in this note is to prove this conjecture for D =2 and D = 3.
Theorem 1. The conjecture is true for D = 2.

Theorem 2. The conjecture is true for D = 3.
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2. Proof of Theorem [1l

In this section, we assume that D = 2 and f : N — C satisfies
(2.1) f(n?+2m?) = f(n)> +2f(m)?* for every n,m € N.
First we prove the following

Lemma 1. Let
S, = f(n)*> for every neN.

Then
(2.2) Sy = Ak* + Bk + C(k) for every k€N,
where
A= %(54 —S3— 5,4 51),B:= %(—254 + 353+ 255 — 351)
and

1
C(k) = g[(751 = 1385 — 38> +1751) + (4 — 385 + 38> — S)(—1)].

Proof. Since
(n+4)2+2n+1)*=n*>+2(n+3)? forevery necN,
we infer from (2.1)) that

(2.3) Snta =28,43 — 25,41+ S, forevery neN.

Assume that A, B and C(k) are defined in Lemma/[l] Then we have

(2.4) C(k) = {411(354 — 583 — 352 +9951) if 21k

Sy — 2853+ 25; if 2]k
and it is easy to check that
A+ B+ C(1)=51,444+2B+ C(2) = 99,

and
9A+ 3B+ C(3) = S3,16A+4B + C(4) = S;.

These prove that (2.2) holds for k < 4.
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Assume that (2.2)) holds for k =n,n+ 1,n+ 2,n + 3, where n > 1. Then
we get from (2.3) and our assumptions that
Spia=2813 281+ S, =2[A-(n+3)*+B-(n+3)+C(n+3)-
—2[A-(n+1)*+B-(n+1)+C(n+1)] +[An* + Bn+ C(n)] =
=AR2Mn+3)2-2n+1)2+n?|+B2n+3)—2n+1)+n]+C(n+4) =
=A-(n+4%*4+B-(n+4)+C(n+4).
Here, we have used (2.4) to get C(n+3) = C(n+1) and C(n) = C(n+4).

Thus, we proved that (2.2)) is true for k = n + 4 and the proof of Lemma [1| is
complete.

Lemma 2. One of the following holds:

(2.5) f(n) =0 for every meN,
(2.6) S, = f(n)* = % for every n €N,
(2.7) S, = f(n)> =n* for every ne€N.

Proof. Let S; = f(1)? :=a and Sy = f(2)? :=b.
It follows from ({2.1)) that if n = u? + 20?2, then
f(n) = f(u? +20*) = f(u)® +2f(v)? = Sy + 25,
consequently

(2.8) Sp = (Su +25,)% if n=u+ 2%

Since (n,u,v) € {3,1,1),(6,2,1),(9,1,2),(11,3,1)} satisfies the equation
n = u? + 2v?%, we get from ({2.8)) that

Sy = (81 +251)% = 9a2,

Se = (So +251)? = (b+2a)?,

So = (S1 +252)% = (a -+ 2b)2,
S11 = (S5 +281)% = (9a® + 2a)?.

(2.9)

It is obvious from (2.1)) that if 22 + 2y? = 22 + 2¢? then

S, + 28, = 8. + 2.
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Consequently, the relations 52 +2-12 =32 4+2-32 52 4+2.22 =12 +2-42 and
7?2 4+2-12 =1 +2-5% imply

S5 = S3+ 253 — 25, = 27a% — 2a,
(2.10) Sy = SaA28=5 = 212 3q 4 p,

57 = —Sl + 2S5 = 54@2 — ba.

Thus, by using (2.9)-(2.10)), we infer from the relations 62 +2-32 = 22 +2-52,
9242-32=1'4+2.72and 124+ 2-112 = 92 + 2. 92 that

(2.11) (8a+b—1)(4a — b) = Sg + 253 — (Sa + 2S55) = 0,
(2.12) —89a% + 9a + 4ba + 4b* = Sg + 253 — (S7 +255) = 0
and

(2.13) ala —1)(9a — 1)(9a + 14) = Sy, +25; — (S5 +2S7) = 0.
From we have

be {1-8a, da}.

CaseI: b=1-8a
First we prove that a = b = %. From 1D we have

—89a%+9a+4ba+4b* = —89a’+9a+4(1—8a)a+4(1-8a)* = (9a—1)(15a—4) = 0.

This relation with |D proves thata:%andbzl—Sazl—%zé.
Finally, the above relations imply

1 1 1 1 1

Si=a=—,8=b=—,5 =9a=—,5 = ~(7a* — 3a +2b) = —.

1= 4= 5,92 9,3a9,42(a a+)9

It is easy to check that in this case we have
A=B=0
and

1
C (k) :5[(754 — 1383 — 385 +175;) + (S4 — 3583 + 355 — S1)(—1)*] =

1 1
:5[(7—13—3+17)+(1—3+3—1)(-1)’“]:§.
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The proof of (2.6) follows from (2.2)) of Lemmall]
Case II: b=4a

We obtain from (2.12)) that

—89a% + 9a + 4ba + 4b* = —89a® + 9a + 4(4a)a + 4(4a)* = —9a(a — 1) = 0.

ae{o,l}.
Ifa=0,thenb=4a=0. Then $; =a =0, S =b=0, S3 =92 =0. By
(2.10) we have Sy = 1(27a® — 3a + 2b) = 0, and so

This implies

A=B=C(k)=0 forevery keN.

It follows from (2.2) that S,, = f(n)? = 0 for all n € N, which proves (2.5).
Finally we consider the case a = 1. Then we have

1
51:a:12,52:b=4a=22,53=9a2=32,s4=5(27—3+8)=42
and ) )
A:1(54—53—524-51):1(42—32—224—1):1,

1 1
B:= 5(—254+353+252—351):5(—2-4%3-3%2-22—3):o

and

1
C(k):= §[(754 — 1383 — 385 +1751) + (S4 — 3595 + 355 — S1)(—1)F] =
= %[(7-42—13-32—3-22+17)+(42—3~32+3-22—1)(—1)k] =0
for all £ € N.

Thus we get from that

Sy = Ak* + Bk + C(k) = k* for every k€ N.

The proof of (2.7) and of Lemma [2|is complete. |
Theorem 1 follows from Lemma [2| because from (2.6)—(2.7) it follows that

(Vk € N)
(Vk € N).

1 if f(k)?2=1
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3. Proof of Theorem [2.

In this section, we assume that D = 3 and f : N — C satisfies
(3.1) f(n?® +3m?) = f(n)® +3f(m)* for every n,m € N.
First we prove the following

Lemma 3. Let
S, = f(n)* for every neN.

Then
Sy = %51 =+ 1??5%>
S3 = %Sl + %5%7
S5 = _%Sl + %S%a
S = —%Sl + %512

and

(3.3) Sy € {0, 4,1}

. 1 ) 16’ .

Proof. It is obvious from (3.1)) that if 22 + 3y? = 22 + 3t2 then
Sg +35, =85, + 35

Consequently, the relations 42 +3-22 =12 +3-32, 52 +3-12 =12 +3-3% and
62 +3-4% =32+ 352 imply

Sy =51 —35 +35;3
(3.4) Sy = —251 + 35,

S = —354+4+ 53+ 355 =—-951 +955 + 53

From (3.4) and from 52 + 3 - 3% = 22 + 3 - 42, we get

0=055+353—5,—35, = (*251 + 353) + 353 — Sy — 3(51 — 35y + 353) =
= —5S51 + 855 — 3853,

which gives

(3.5) Sy = w and S; =) — 35y 4 353 = —4S; + 55..



66 B. M. M. Khanh

Finally, we infer from (3.5) and from the fact f(4) = f(12 +3-12) = 45,
that
Sy = (f(4))> =165 and 1657 +4S; — 55, = 0.

This implies

4S8 + 1657
—

Therefore the proof of (3.2)) follows from (3.4))-(3.6]).
Now we prove (3.3). It follows from the relations 72 + 3 -3% = 12 + 3 . 52,
12243-22 =32+ 372 that

(3.6) Sy =

2
S7 =51 —353 4+ 355 = 51+ 265
. 128 2288
S1z = =353 + 53 + 357 = —*51 15 5 o
But o y
J@)=F(2+3-1°) =S +351 = =51 + =5
and
2 2 128
f2) = f(3+3-1%) = S3 435, = 7SI+ =55

We get the following two equations

1 3 19 16 5\%
— 5 51(S1 = 1)(1651 — 1)(168) +55) = 57 — (gsl + ESl) —0

and
128 52 128
— 57 S1(S1 = (1681 — 1)(881 +15) = Sy - (BS —Sl> —0.
These show that (3.3]) is true. Lemma is proved. |

Proof of Theorem 2.

Since
(n+6)>+3(n+2)> =n>+3(n+4)* forevery neN,
we infer from (3.1]) that

(3.7) Snt6 = 3Snt+4 —3Sn42 + 5, for every neN.
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We shall prove that
1 , 16
(3.8) Sp = 581(1651 —1)n” — ESl(Sl —1) forevery neN.
By using (3.2)), one can check that (3.8) holds for n € {1,2,--- ,6}. Let
1 16
(39) A= 351(1651 — 1) and B := —ESl(Sl — 1)

Assume that S, = An? + B holds for k =n,n+ 1,n+2,n+3,n+4,n+ 5,
where n > 1. Then we get from (3.7)) and our assumptions that
Sn+6 = 3Sn+4 - 35n+2 + Sn =
=3[A-(n+4)*+B]-3[A-(n+2)*+B]+[A-n*+B] =
=A-(n+6)*+B.

Thus, 1) is proved

From , we have 51 € {0, &,1}.
If 5 = O7 then from —- we have A = B = 0 and S,, = 0 for all
n € N. Consequently f(n) = 0 for all n € N.

If 5, = 16,thenfromWehaweAfOBf—andSnf—for
all n € N. Therefore f(n)? = {5 and

Fln? +3m%) = fn)? + 37 (m)? = |

for all n,m € N, which proves Theorem 2.

If S; = 1, then from (3.8)-(3.9) we have A =1, B = 0 and S,, = n? for all
n € N. In this case we also have f(n)? = n? and

f(n*+3m®) = f(n)? +3f(m)* = n* + 3m®

for all n,m € N, from which the proof of Theorem 2 is completed. |
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