ON THE EQUATION
 $$
f\left(n^{2}+D m^{2}\right)=f(n)^{2}+D f(m)^{2}
$$

Bui Minh Mai Khanh (Budapest, Hungary)

Communicated by Imre Kátai
(Received January 15, 2015; accepted March 30, 2015)

Abstract. Let $D=2$ or $3, E:=\left\{n^{2}+D m^{2} \mid n, m \in \mathbb{N}\right\}, \epsilon(n)=1$ if $n \in E$
and $\epsilon(n) \in\{-1,1\}$ if $n \in \mathbb{N} \backslash E$. Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be such a function for
which

$$
f\left(n^{2}+D m^{2}\right)=f(n)^{2}+D f(m)^{2} \text { for every } n, m \in \mathbb{N} .
$$

Then either $f(n)=0$, or $f(n)=\frac{\epsilon(n)}{D+1}$, or $f(n)=\epsilon(n) n$ for every $n \in \mathbb{N}$.

$$
f\left(n^{2}+D m^{2}\right)=f(n)^{2}+D f(m)^{2} \quad \text { for every } \quad n, m \in \mathbb{N} .
$$

1. Introduction

Let, as usual, $\mathcal{P}, \mathbb{N}, \mathbb{C}$ be the set of primes, positive integers and complex numbers, respectively.

Let us consider an arithmetical function $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfying the Cauchy's functional equation

$$
f(n+m)=f(n)+f(m) \quad \text { for every } \quad n, m \in \mathbb{N} .
$$

It is obvious that $f(n)=n f(1)$ holds for all $n \in \mathbb{N}$.

In 1992, C. Spiro 9 proved that if a multiplicative function $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfies the relations

$$
f\left(p_{0}\right) \neq 0 \quad \text { for some } \quad p_{0} \in \mathcal{P}
$$

and

$$
f(p+q)=f(p)+f(q) \quad \text { for every } \quad p, q \in \mathcal{P},
$$

then $f(n)=n$ for all $n \in \mathbb{N}$.
In 1997 J.-M. De Koninck, I. Kátai and B. M. Phong [4] proved that if a multiplicative function $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfies the relation

$$
f\left(p+n^{2}\right)=f(p)+f\left(n^{2}\right) \quad \text { for every } \quad p \in \mathcal{P}, n \in \mathbb{N},
$$

then f is the identity function. K.-H. Indlekofer and B. M. Phong [5] proved that if $k \in \mathbb{N}, f \in \mathcal{M}$ satisfy $f(2) f(5) \neq 0$ and $f\left(n^{2}+m^{2}+k+1\right)=f\left(n^{2}+\right.$ $+1)+f\left(m^{2}+k\right)$ for all $n, m \in \mathbb{N}$, then $f(n)=n$ for all $n \in \mathbb{N},(n, 2)=1$.

For some generalizations of the above results, we refer the other works of P. V. Chung [2], B. M. Phong [6, [7], 8].

Let $D \in \mathbb{N}$. We are interested in all solutions of those $f: \mathbb{N} \rightarrow \mathbb{C}$ for which

$$
\begin{equation*}
f\left(n^{2}+D m^{2}\right)=f(n)^{2}+D f(m)^{2} \quad \text { for every } \quad n, m \in \mathbb{N} . \tag{1.1}
\end{equation*}
$$

In the case $D=1$, the solutions of (1.1) were given in (1). I. Kátai and B. M. Phong posed the following conjecture:

Conjecture. (I. Kátai and B. M. Phong [3) Assume that the arithmetical function $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfies (1.1). Then one of the following assertions holds:
a) $f(n)=0$ for every $n \in \mathbb{N}$,
b) $f(n)=\frac{\epsilon(n)}{D+1} \quad$ for every $\quad n \in \mathbb{N}$,
c) $f(n)=\epsilon(n) n \quad$ for every $n \in \mathbb{N}$,
where $E:=\left\{n^{2}+D m^{2} \mid n, m \in \mathbb{N}\right\}, \epsilon(n)=1$ if $n \in E$ and $\epsilon(n) \in\{-1,1\}$ if $n \in \mathbb{N} \backslash E$.

Our purpose in this note is to prove this conjecture for $D=2$ and $D=3$.
Theorem 1. The conjecture is true for $D=2$.
Theorem 2. The conjecture is true for $D=3$.

2. Proof of Theorem 1.

In this section, we assume that $D=2$ and $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfies

$$
\begin{equation*}
f\left(n^{2}+2 m^{2}\right)=f(n)^{2}+2 f(m)^{2} \quad \text { for every } \quad n, m \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

First we prove the following
Lemma 1. Let

$$
S_{n}:=f(n)^{2} \quad \text { for every } \quad n \in \mathbb{N}
$$

Then

$$
\begin{equation*}
S_{k}=A k^{2}+B k+C(k) \quad \text { for every } \quad k \in \mathbb{N} \tag{2.2}
\end{equation*}
$$

where

$$
A:=\frac{1}{4}\left(S_{4}-S_{3}-S_{2}+S_{1}\right), B:=\frac{1}{2}\left(-2 S_{4}+3 S_{3}+2 S_{2}-3 S_{1}\right)
$$

and

$$
C(k):=\frac{1}{8}\left[\left(7 S_{4}-13 S_{3}-3 S_{2}+17 S_{1}\right)+\left(S_{4}-3 S_{3}+3 S_{2}-S_{1}\right)(-1)^{k}\right]
$$

Proof. Since

$$
(n+4)^{2}+2(n+1)^{2}=n^{2}+2(n+3)^{2} \quad \text { for every } \quad n \in \mathbb{N}
$$

we infer from (2.1) that

$$
\begin{equation*}
S_{n+4}=2 S_{n+3}-2 S_{n+1}+S_{n} \quad \text { for every } \quad n \in \mathbb{N} \tag{2.3}
\end{equation*}
$$

Assume that A, B and $C(k)$ are defined in Lemma 1. Then we have

$$
C(k)= \begin{cases}\frac{1}{4}\left(3 S_{4}-5 S_{3}-3 S_{2}+9 S_{1}\right) & \text { if } 2 \nmid k \tag{2.4}\\ S_{4}-2 S_{3}+2 S_{1} & \text { if } 2 \mid k\end{cases}
$$

and it is easy to check that

$$
A+B+C(1)=S_{1}, 4 A+2 B+C(2)=S_{2}
$$

and

$$
9 A+3 B+C(3)=S_{3}, 16 A+4 B+C(4)=S_{4}
$$

These prove that 2.2 holds for $k \leq 4$.

Assume that (2.2) holds for $k=n, n+1, n+2, n+3$, where $n \geq 1$. Then we get from 2.3 and our assumptions that

$$
\begin{aligned}
& S_{n+4}=2 S_{n+3}-2 S_{n+1}+S_{n}=2\left[A \cdot(n+3)^{2}+B \cdot(n+3)+C(n+3)\right]- \\
& -2\left[A \cdot(n+1)^{2}+B \cdot(n+1)+C(n+1)\right]+\left[A n^{2}+B n+C(n)\right]= \\
& =A\left[2(n+3)^{2}-2(n+1)^{2}+n^{2}\right]+B[2(n+3)-2(n+1)+n]+C(n+4)= \\
& =A \cdot(n+4)^{2}+B \cdot(n+4)+C(n+4)
\end{aligned}
$$

Here, we have used $\sqrt{2.4}$ to get $C(n+3)=C(n+1)$ and $C(n)=C(n+4)$. Thus, we proved that $\sqrt{2.2)}$ is true for $k=n+4$ and the proof of Lemma 1 is complete.

Lemma 2. One of the following holds:

$$
\begin{gather*}
f(n)=0 \quad \text { for every } \quad n \in \mathbb{N} \tag{2.5}\\
S_{n}=f(n)^{2}=\frac{1}{9} \quad \text { for every } \quad n \in \mathbb{N} \tag{2.6}\\
S_{n}=f(n)^{2}=n^{2} \quad \text { for every } \quad n \in \mathbb{N} . \tag{2.7}
\end{gather*}
$$

Proof. Let $S_{1}=f(1)^{2}:=a$ and $S_{2}=f(2)^{2}:=b$.
It follows from 2.1 that if $n=u^{2}+2 v^{2}$, then

$$
f(n)=f\left(u^{2}+2 v^{2}\right)=f(u)^{2}+2 f(v)^{2}=S_{u}+2 S_{v}
$$

consequently

$$
\begin{equation*}
S_{n}=\left(S_{u}+2 S_{v}\right)^{2} \quad \text { if } \quad n=u^{2}+2 v^{2} \tag{2.8}
\end{equation*}
$$

Since $(n, u, v) \in\{3,1,1),(6,2,1),(9,1,2),(11,3,1)\}$ satisfies the equation $n=u^{2}+2 v^{2}$, we get from 2.8 that

$$
\left\{\begin{array}{l}
S_{3}=\left(S_{1}+2 S_{1}\right)^{2}=9 a^{2} \tag{2.9}\\
S_{6}=\left(S_{2}+2 S_{1}\right)^{2}=(b+2 a)^{2} \\
S_{9}=\left(S_{1}+2 S_{2}\right)^{2}=(a+2 b)^{2} \\
S_{11}=\left(S_{3}+2 S_{1}\right)^{2}=\left(9 a^{2}+2 a\right)^{2}
\end{array}\right.
$$

It is obvious from 2.1 that if $x^{2}+2 y^{2}=z^{2}+2 t^{2}$ then

$$
S_{x}+2 S_{y}=S_{z}+2 S_{t}
$$

Consequently, the relations $5^{2}+2 \cdot 1^{2}=3^{2}+2 \cdot 3^{2}, 5^{2}+2 \cdot 2^{2}=1^{2}+2 \cdot 4^{2}$ and $7^{2}+2 \cdot 1^{2}=1^{1}+2 \cdot 5^{2}$ imply

$$
\left\{\begin{array}{l}
S_{5}=S_{3}+2 S_{3}-2 S_{1}=27 a^{2}-2 a \tag{2.10}\\
S_{4}=\frac{S_{5}+2 S_{2}-S_{1}}{2}=\frac{27}{2} a^{2}-\frac{3}{2} a+b \\
S_{7}=-S_{1}+2 S_{5}=54 a^{2}-5 a
\end{array}\right.
$$

Thus, by using $2.9-2.10$, we infer from the relations $6^{2}+2 \cdot 3^{2}=2^{2}+2 \cdot 5^{2}$, $9^{2}+2 \cdot 3^{2}=1^{1}+2 \cdot 7^{2}$ and $1^{2}+2 \cdot 11^{2}=9^{2}+2 \cdot 9^{2}$ that

$$
\begin{gather*}
(8 a+b-1)(4 a-b)=S_{6}+2 S_{3}-\left(S_{2}+2 S_{5}\right)=0 \tag{2.11}\\
-89 a^{2}+9 a+4 b a+4 b^{2}=S_{9}+2 S_{3}-\left(S_{7}+2 S_{5}\right)=0 \tag{2.12}
\end{gather*}
$$

and

$$
\begin{equation*}
a(a-1)(9 a-1)(9 a+14)=S_{11}+2 S_{1}-\left(S_{5}+2 S_{7}\right)=0 \tag{2.13}
\end{equation*}
$$

From 2.11 we have

$$
b \in\{1-8 a, 4 a\}
$$

Case I: $\quad b=1-8 a$
First we prove that $a=b=\frac{1}{9}$. From 2.12, we have
$-89 a^{2}+9 a+4 b a+4 b^{2}=-89 a^{2}+9 a+4(1-8 a) a+4(1-8 a)^{2}=(9 a-1)(15 a-4)=0$.
This relation with 2.13 proves that $a=\frac{1}{9}$ and $b=1-8 a=1-\frac{8}{9}=\frac{1}{9}$.
Finally, the above relations imply

$$
S_{1}=a=\frac{1}{9}, S_{2}=b=\frac{1}{9}, S_{3}=9 a^{2}=\frac{1}{9}, S_{4}=\frac{1}{2}\left(7 a^{2}-3 a+2 b\right)=\frac{1}{9} .
$$

It is easy to check that in this case we have

$$
A=B=0
$$

and

$$
\begin{aligned}
C(k)= & \frac{1}{8}\left[\left(7 S_{4}-13 S_{3}-3 S_{2}+17 S_{1}\right)+\left(S_{4}-3 S_{3}+3 S_{2}-S_{1}\right)(-1)^{k}\right]= \\
& =\frac{1}{72}\left[(7-13-3+17)+(1-3+3-1)(-1)^{k}\right]=\frac{1}{9}
\end{aligned}
$$

The proof of 2.6 follows from 2.2 of Lemma 1
Case II: $\quad b=4 a$
We obtain from 2.12 that

$$
-89 a^{2}+9 a+4 b a+4 b^{2}=-89 a^{2}+9 a+4(4 a) a+4(4 a)^{2}=-9 a(a-1)=0
$$

This implies

$$
a \in\{0,1\}
$$

If $a=0$, then $b=4 a=0$. Then $S_{1}=a=0, S_{2}=b=0, S_{3}=9 a^{2}=0$. By 2.10 we have $S_{4}=\frac{1}{2}\left(27 a^{2}-3 a+2 b\right)=0$, and so

$$
A=B=C(k)=0 \quad \text { for every } \quad k \in \mathbb{N} .
$$

It follows from 2.2 that $S_{n}=f(n)^{2}=0$ for all $n \in \mathbb{N}$, which proves 2.5.
Finally we consider the case $a=1$. Then we have

$$
S_{1}=a=1^{2}, S_{2}=b=4 a=2^{2}, S_{3}=9 a^{2}=3^{2}, S_{4}=\frac{1}{2}(27-3+8)=4^{2}
$$

and

$$
\begin{gathered}
A=\frac{1}{4}\left(S_{4}-S_{3}-S_{2}+S_{1}\right)=\frac{1}{4}\left(4^{2}-3^{2}-2^{2}+1\right)=1 \\
B:=\frac{1}{2}\left(-2 S_{4}+3 S_{3}+2 S_{2}-3 S_{1}\right)=\frac{1}{2}\left(-2 \cdot 4^{2}+3 \cdot 3^{2}+2 \cdot 2^{2}-3\right)=0
\end{gathered}
$$

and

$$
\begin{aligned}
& C(k):=\frac{1}{8}\left[\left(7 S_{4}-13 S_{3}-3 S_{2}+17 S_{1}\right)+\left(S_{4}-3 S_{3}+3 S_{2}-S_{1}\right)(-1)^{k}\right]= \\
& =\frac{1}{8}\left[\left(7 \cdot 4^{2}-13 \cdot 3^{2}-3 \cdot 2^{2}+17\right)+\left(4^{2}-3 \cdot 3^{2}+3 \cdot 2^{2}-1\right)(-1)^{k}\right]=0
\end{aligned}
$$

for all $k \in \mathbb{N}$.
Thus we get from 2.2 that

$$
S_{k}=A k^{2}+B k+C(k)=k^{2} \quad \text { for every } \quad k \in \mathbb{N}
$$

The proof of 2.7) and of Lemma 2 is complete.
Theorem 1 follows from Lemma 2, because from 2.6 -2.7) it follows that

$$
f\left(n^{2}+2 m^{2}\right)=f(n)^{2}+2 f(m)^{2}= \begin{cases}\frac{1}{3} & \text { if } \quad f(k)^{2}=\frac{1}{9}(\forall k \in \mathbb{N}) \\ n^{2}+2 m^{2} & \text { if } \quad f(k)^{2}=k^{2}(\forall k \in \mathbb{N})\end{cases}
$$

3. Proof of Theorem 2.

In this section, we assume that $D=3$ and $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfies

$$
\begin{equation*}
f\left(n^{2}+3 m^{2}\right)=f(n)^{2}+3 f(m)^{2} \quad \text { for every } \quad n, m \in \mathbb{N} \tag{3.1}
\end{equation*}
$$

First we prove the following
Lemma 3. Let

$$
S_{n}:=f(n)^{2} \quad \text { for every } \quad n \in \mathbb{N}
$$

Then

$$
\left\{\begin{align*}
S_{2} & =\frac{4}{5} S_{1}+\frac{16}{5} S_{1}^{2} \tag{3.2}\\
S_{3} & =\frac{7}{15} S_{1}+\frac{128}{15} S_{1}^{2} \\
S_{4} & =16 S_{1}^{2} \\
S_{5} & =-\frac{3}{5} S_{1}+\frac{128}{5} S_{1}^{2} \\
S_{6} & =-\frac{4}{3} S_{1}+\frac{112}{3} S_{1}^{2}
\end{align*}\right.
$$

and

$$
\begin{equation*}
S_{1} \in\left\{0, \frac{1}{16}, 1\right\} \tag{3.3}
\end{equation*}
$$

Proof. It is obvious from (3.1) that if $x^{2}+3 y^{2}=z^{2}+3 t^{2}$ then

$$
S_{x}+3 S_{y}=S_{z}+3 S_{t}
$$

Consequently, the relations $4^{2}+3 \cdot 2^{2}=1^{2}+3 \cdot 3^{2}, 5^{2}+3 \cdot 1^{2}=1^{2}+3 \cdot 3^{2}$ and $6^{2}+3 \cdot 4^{2}=3^{2}+3 \cdot 5^{2}$ imply

$$
\begin{cases}S_{4} & =S_{1}-3 S_{2}+3 S_{3} \tag{3.4}\\ S_{5} & =-2 S_{1}+3 S_{3} \\ S_{6} & =-3 S_{4}+S_{3}+3 S_{5}=-9 S_{1}+9 S_{2}+S_{3}\end{cases}
$$

From (3.4 and from $5^{2}+3 \cdot 3^{2}=2^{2}+3 \cdot 4^{2}$, we get

$$
\begin{aligned}
0 & =S_{5}+3 S_{3}-S_{2}-3 S_{4}=\left(-2 S_{1}+3 S_{3}\right)+3 S_{3}-S_{2}-3\left(S_{1}-3 S_{2}+3 S_{3}\right)= \\
& =-5 S_{1}+8 S_{2}-3 S_{3}
\end{aligned}
$$

which gives

$$
\begin{equation*}
S_{3}=\frac{-5 S_{1}+8 S_{2}}{3} \quad \text { and } \quad S_{4}=S_{1}-3 S_{2}+3 S_{3}=-4 S_{1}+5 S_{2} \tag{3.5}
\end{equation*}
$$

Finally, we infer from (3.5) and from the fact $f(4)=f\left(1^{2}+3 \cdot 1^{2}\right)=4 S_{1}$ that

$$
S_{4}=(f(4))^{2}=16 S_{1}^{2} \quad \text { and } \quad 16 S_{1}^{2}+4 S_{1}-5 S_{2}=0
$$

This implies

$$
\begin{equation*}
S_{2}=\frac{4 S_{1}+16 S_{1}^{2}}{5} . \tag{3.6}
\end{equation*}
$$

Therefore the proof of (3.2) follows from (3.4)-(3.6).
Now we prove 3.3. It follows from the relations $7^{2}+3 \cdot 3^{2}=1^{2}+3 \cdot 5^{2}$, $12^{2}+3 \cdot 2^{2}=3^{2}+3 \cdot 7^{2}$ that

$$
S_{7}=S_{1}-3 S_{3}+3 S_{5}=-\frac{11}{5} S_{1}+\frac{256}{5} S_{1}^{2}
$$

and

$$
S_{12}=-3 S_{2}+S_{3}+3 S_{7}=-\frac{128}{15} S_{1}+\frac{2288}{15} S_{1}^{2}
$$

But

$$
f(7)=f\left(2^{2}+3 \cdot 1^{2}\right)=S_{2}+3 S_{1}=\frac{19}{5} S_{1}+\frac{16}{5} S_{1}^{2}
$$

and

$$
f(12)=f\left(3^{2}+3 \cdot 1^{2}\right)=S_{3}+3 S_{1}=\frac{52}{15} S_{1}+\frac{128}{15} S_{1}^{2}
$$

We get the following two equations

$$
-\frac{1}{25} S_{1}\left(S_{1}-1\right)\left(16 S_{1}-1\right)\left(16 S_{1}+55\right)=S_{7}-\left(\frac{19}{5} S_{1}+\frac{16}{5} S_{1}^{2}\right)^{2}=0
$$

and

$$
-\frac{128}{225} S_{1}\left(S_{1}-1\right)\left(16 S_{1}-1\right)\left(8 S_{1}+15\right)=S_{12}-\left(\frac{52}{15} S_{1}+\frac{128}{15} S_{1}^{2}\right)^{2}=0
$$

These show that 3.3 is true. Lemma 3 is proved.

Proof of Theorem 2.

Since

$$
(n+6)^{2}+3(n+2)^{2}=n^{2}+3(n+4)^{2} \quad \text { for every } \quad n \in \mathbb{N}
$$

we infer from (3.1) that

$$
\begin{equation*}
S_{n+6}=3 S_{n+4}-3 S_{n+2}+S_{n} \quad \text { for every } \quad n \in \mathbb{N} \tag{3.7}
\end{equation*}
$$

We shall prove that

$$
\begin{equation*}
S_{n}=\frac{1}{15} S_{1}\left(16 S_{1}-1\right) n^{2}-\frac{16}{15} S_{1}\left(S_{1}-1\right) \quad \text { for every } \quad n \in \mathbb{N} \tag{3.8}
\end{equation*}
$$

By using (3.2), one can check that 3.8 holds for $n \in\{1,2, \cdots, 6\}$. Let

$$
\begin{equation*}
A:=\frac{1}{15} S_{1}\left(16 S_{1}-1\right) \quad \text { and } \quad B:=-\frac{16}{15} S_{1}\left(S_{1}-1\right) \tag{3.9}
\end{equation*}
$$

Assume that $S_{n}=A n^{2}+B$ holds for $k=n, n+1, n+2, n+3, n+4, n+5$, where $n \geq 1$. Then we get from (3.7) and our assumptions that

$$
\begin{aligned}
S_{n+6} & =3 S_{n+4}-3 S_{n+2}+S_{n}= \\
& =3\left[A \cdot(n+4)^{2}+B\right]-3\left[A \cdot(n+2)^{2}+B\right]+\left[A \cdot n^{2}+B\right]= \\
& =A \cdot(n+6)^{2}+B
\end{aligned}
$$

Thus, 3.8 is proved.
From (3.3), we have $S_{1} \in\left\{0, \frac{1}{16}, 1\right\}$.
If $S_{1}=0$, then from $(3.8)-(\sqrt{3.9})$ we have $A=B=0$ and $S_{n}=0$ for all $n \in \mathbb{N}$. Consequently $f(n)=0$ for all $n \in \mathbb{N}$.

If $S_{1}=\frac{1}{16}$, then from 3.8)-3.9 we have $A=0, B=\frac{1}{16}$ and $S_{n}=\frac{1}{16}$ for all $n \in \mathbb{N}$. Therefore $f(n)^{2}=\frac{1}{16}$ and

$$
f\left(n^{2}+3 m^{2}\right)=f(n)^{2}+3 f(m)^{2}=\frac{1}{4}
$$

for all $n, m \in \mathbb{N}$, which proves Theorem 2 .
If $S_{1}=1$, then from $(3.8)-\sqrt{3.9}$ we have $A=1, B=0$ and $S_{n}=n^{2}$ for all $n \in \mathbb{N}$. In this case we also have $f(n)^{2}=n^{2}$ and

$$
f\left(n^{2}+3 m^{2}\right)=f(n)^{2}+3 f(m)^{2}=n^{2}+3 m^{2}
$$

for all $n, m \in \mathbb{N}$, from which the proof of Theorem 2 is completed.

References

[1] Bojan, Basic, Characterization of arithmetic functions that preserve the sum-of-squares operation, Acta Mathematica Sinica, English Series, 30 (2014), Issue 4, 689-695.
[2] Chung, P. V., Multiplicative functions satisfying the equation $f\left(m^{2}+\right.$ $\left.+n^{2}\right)=f\left(m^{2}\right)+f\left(n^{2}\right)$, Math. Slovaca, 46 (1996), 165-171.
[3] Kátai, I. and B. M. Phong, Some unsolved problems on arithmetical functions, Ann. Univ. Sci. Budapest., Sect. Comp., 44 (2015), 233-235.
[4] De Koninck, J.-M. , I. Kátai and B. M. Phong, A new characteristic of the identity function, Journal of Number Theory, 63 (1997), 325-338.
[5] Indlekofer, K.-H. and B. M. Phong, Additive uniqueness sets for multiplicative functions, Ann. Univ. Sci. Budapest., Sect. Comp., 26 (2006), 65-77.
[6] Phong, B. M., A characterization of the identity function, Acta Acad. Paedag. Agriensis (Eger), Sec. Matematicae, (1997), 1-9.
[7] Phong, B. M., On sets characterizing the identity function, Ann. Univ. Sci. Budapest., Sect. Comp., 24 (2004), 295-306.
[8] Phong, B. M., A characterization of the identity function with functional equations, Annales Univ. Sci. Budapest., Sect. Comp., 32 (2010), 247-252.
[9] Spiro, C., Additive uniqueness set for arithmetic functions, J. Number Theory, 42 (1992), 232-246.

Bui Minh Mai Khanh

Department of Computer Algebra
Faculty of Informatics
Eötvös Loránd University
H-1117 Budapest
Pázmány Péter sétány $1 / C$
Hungary
mbuiminh@yahoo.com

