SOME RELATIONS AMONG ARITHMETICAL FUNCTIONS

Imre Kátai and Bui Minh Phong
(Budapest, Hungary)

Communicated by Jean-Marie De Koninck
(Received January 1, 2015; accepted April 16, 2015)

Abstract

We consider some possible relations among q-additive and completely multiplicative functions. We proved that if f is completely multiplicative and q-additive function, then either $f(n)=n$ for every $n \in \mathbb{N}$ or $f(n)$ is the Dirichlet character $\left(\bmod q_{0}\right)$, where $q_{0} \mid q$.

1. Notation and some notions

Let, as usual, $\mathcal{P}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{C}$ be the set of primes, positive integers, integers, rational numbers and complex numbers, respectively. Let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ be the set of non-negative integers.

Let \mathcal{A} (resp. \mathcal{A}^{*}) be the class of additive (completely additive) functions, \mathcal{M} (resp. \mathcal{M}^{*}) be the class of multiplicative (completely multiplicative) functions.

For some integer $q \geq 2$ let \mathcal{A}_{q} be the set of q-additive function. Every $n \in \mathbb{N}_{0}$ can be uniquely represented in the form

$$
n=\sum_{r=0}^{\infty} a_{r}(n) q^{r} \text { with } a_{r}(n) \in\{0,1, \ldots, q-1\}\left(=A_{q}\right)
$$

Key words and phrases: Completely additive functions, completely multiplicative group, q-additive function, set of uniqueness, set of uniqueness $(\bmod 1)$. 2010 Mathematics Subject Classification: 11A07, 11A25, 11K65, 11N37, 11N64.
and $a_{r}(n)=0$ if $q^{r}>n$. We say that $f \in \mathcal{A}_{q}$, if $f: \mathbb{N}_{0} \rightarrow \mathbb{C}$

$$
f(0)=0 \quad \text { and } \quad f(n)=\sum_{r=0}^{\infty} f\left(\epsilon_{r}(n) q^{r}\right) \quad \text { for every } \quad n \in \mathbb{N} .
$$

These functions were first introduced and studied by A. O. Gelfond [6].
Definition 1. (Set of uniqueness for completely additive functions.) We say that $A \subseteq \mathbb{N}$ is a set of uniqueness for completely additive functions if $f \in \mathcal{A}^{*}$, $f(a)=0$ for every $a \in A$ implies that $f(n)=0$ for all $n \in \mathbb{N}$.
Definition 2. (Set of uniqueness for completely additive functions (mod 1).) We say that $B \subseteq \mathbb{N}$ is a set of uniqueness for completely additive functions $(\bmod 1)$ if $f \in \mathcal{A}^{*}, f(b) \equiv 0(\bmod 1)$ for all $b \in B$ implies that $f(n) \equiv 0(\bmod 1)$ for every $n \in \mathbb{N}$.
D. Wolke [16] proved that A is a set of uniqueness if and only if every $n \in \mathbb{N}$ can be written as $n=\prod_{i=1}^{k} a_{i}^{r_{i}}$, where $a_{i} \in A$ and $r_{i} \in \mathbb{Q}$.
K.-H. Indlekofer [8, [9, P. Hoffman [7, F. Dress and B. Volkmann [2] proved independently that B is a set of uniqueness for completely additive functions $(\bmod 1)$ if and only if every $n \in \mathbb{N}$ can be written as

$$
n=\prod_{j=1}^{k} b_{j}^{\ell_{j}}, \quad \text { where } \quad \ell_{j} \in \mathbb{Z}, b_{j} \in B
$$

I. Kátai [11, [12] formulated the conjecture in 1969 that

$$
\mathcal{P}_{+1}=\{p+1 \mid p \in \mathcal{P}\}
$$

is a set of uniqueness for additive functions, and proved that there exists such a finite set Q of primes for which $\mathcal{P}_{+1} \cup Q$ is a set of uniqueness $(\bmod 1)$. P. D. T. A. Elliott 3 proved that $Q=\left\{p \mid p \leq 10^{387}, p \in \mathcal{P}\right\}$ is an appropriate choice, that is every $n \in \mathbb{N}$ can be written as

$$
n=t \cdot \prod_{i=1}^{k}\left(p_{i}+1\right)^{\epsilon_{i}}, \quad \epsilon_{i} \in\{-1,1\}
$$

and t is such a rational number the largest prime factor of which does not exceed 10^{387}.

Furthermore, in 4$]$ he proved that for every rational number r, we can find such primes p_{1}, \cdots, p_{k} and $\epsilon_{j} \in\{-1,1\} \quad(j=1,2, \cdots, k)$, for which

$$
\begin{equation*}
r^{g}=\prod_{i=1}^{k}\left(p_{i}+1\right)^{\epsilon_{i}} . \tag{1.1}
\end{equation*}
$$

Here g is a constant, $g \in\{1,2,3\}$.

A direct consequence of this assertion is
Theorem 1. Let $f \in \mathcal{M}^{*}, f(p+1)=p+1 \quad(\forall p \in \mathcal{P})$. Then

$$
f(n)=n H(n), \quad H \in \mathcal{M}^{*}, \quad H(n)^{g}=1 \quad \text { for every } \quad n \in \mathbb{N}
$$

Especially, if $f(n)$ is a positive real number for every $n \in \mathbb{N}$, then

$$
f(n)=n \quad \text { for every } \quad n \in \mathbb{N}
$$

Proof. Since, for every $q \in \mathcal{P}$ there is at least one $p \in \mathcal{P}$ such that $q \mid p+1$, therefore $f(q) \neq 0$, and so $f(n) \neq 0 \quad(n \in \mathbb{N})$. From (1.1) we obtain that

$$
f(r)^{g}=\prod_{i=1}^{k} f\left(p_{i}+1\right)^{\epsilon_{i}}=\prod_{i=1}^{k}\left(p_{i}+1\right)^{\epsilon_{i}}=r^{g}
$$

Thus

$$
1=\left(\frac{f(r)}{r}\right)^{g}=H(r)^{g} \text { for every positive rational number. }
$$

The proof of Theorem 1 is complete.
The conjecture that \mathcal{P}_{+1} is a set of uniqueness $(\bmod 1)$ is formulated by several mathematicians. It would follow from the conjecture of A. Schinzel and W. Sierpinnski [14, namely that every positive integer has infinitely many representations of the form $\frac{p+1}{q+1} \quad(p, q \in \mathcal{P})$.
T. Csajbók, A. Járai and J. Kasza [1] proved that every prime $Q \in\left[2,10^{14}\right]$ can be written as $\frac{p+1}{q+1}(p, q \in \mathcal{P})$, and every $n \in\left[2,10^{11}\right]$ can be written also as $\frac{p+1}{q+1} \quad(p, q \in \mathcal{P})$.

2. On q-additive functions

Definition 3. (Set of uniqueness for q-additive functions.) We say that $D \subseteq \mathbb{N}_{0}$ is a set of uniqueness for the set of q-additive functions, if $f \in \mathcal{A}_{q}$, $f(d)=0$ for all $d \in D$ implies that $f(n)=0$ for all $n \in \mathbb{N}_{0}$.

The functions $f(n)=c n$ belong to \mathcal{A}_{q} for every $q \geq 2$. J. C. Puchta and J. Spilker [13] gave all the functions belonging to $\mathcal{A}_{q_{1}} \cap \mathcal{A}_{q_{2}}$.

The following question seems to be interesting. Let $\left(q_{1}, q_{2}\right)=1, q_{1}, q_{2} \geq 2$. Let \mathcal{K} be such a subset of \mathbb{N}_{0} for which the following assertion holds:

$$
f_{1} \in \mathcal{A}_{q_{1}}, f_{2} \in \mathcal{A}_{q_{2}} \quad \text { and } \quad f_{1}(k)=f_{2}(k) \quad \text { for every } \quad k \in \mathcal{K},
$$

then

$$
f_{1}(n)=f_{2}(n)=c n \quad \text { for every } \quad n \in \mathbb{N}_{0},
$$

where $c \in \mathbb{C}$ is a suitable number.
Assume that $q_{2}>q_{1} \geq 2$,

$$
E_{1}=\left\{a q_{1}^{n} \mid a=1, \cdots, q_{1}-1, n=0,1, \cdots\right\}
$$

and

$$
E_{2}=\left\{b q_{2}^{m} \mid b=1, \cdots, q_{2}-1, m=0,1, \cdots\right\} .
$$

Let $b q_{2}^{m} \in E_{2}$ with $m \geq 1$. Let $L\left(b q_{2}^{m}\right)=a q_{1}^{n}$ be the largest element of E_{1}, for which

$$
a q_{1}^{n}<b q_{2}^{m} .
$$

Observe that $a q_{1}^{n}=b q_{2}^{m}$ or $(a+1) q_{1}^{n}=b q_{2}^{m}$ cannot occur. Let

$$
J_{b q_{2}^{m}}=\left(b q_{2}^{m},(a+1) q_{1}^{n}\right), \quad \text { where } \quad L\left(b q_{2}^{m}\right)=a q_{1}^{n} .
$$

It is obvious that $a+1=q_{1}$ can be occur.
We know that the interval $J_{b q_{2}^{m}}$ is quite a large interval. This follows from an important theorem of R . Tijdeman [15], which is stated now as

Theorem A. Let p be a prime, $p \geq 3$ and let $1=n_{1}<n_{2}<\cdots$ be the sequence of all positive integers composed of primes $\leq p$. Then there exists an effectively computable constant $C=C(p)$ such that

$$
n_{i+1}-n_{i}>\frac{n_{i}}{\left(\log n_{i}\right)^{C}} \quad \text { for every } \quad n_{i} \geq 3
$$

Corollary. Let p be the largest prime factor of q_{2} !, $\quad C=C(p)$ (defined in Theorem A). Let \mathcal{K} be such a set for which

$$
\mathcal{K} \cap J_{b q_{2}^{m}} \neq \emptyset \quad \text { if } \quad b q_{2}^{m}>K
$$

Assume that $g_{1} \in \mathcal{A}_{q_{1}}, g_{2} \in \mathcal{A}_{q_{2}}$,

$$
g_{1}(n)=g_{2}(n) \quad \text { if } \quad n \in \mathcal{K}
$$

and

$$
g_{1}(n)=g_{2}(n)=c n \quad \text { for every } \quad n \leq K \quad\left(K>q_{2}\right) .
$$

Then

$$
g_{1}(n)=g_{2}(n)=c n \quad \text { for every } \quad n \in \mathbb{N}_{0}
$$

Proof. We can see it by using induction.
Assume that $g_{1}(k)=g_{2}(k)=c k$ holds for every $k<b q_{2}^{m}$. Let $k<(a+1) q_{1}^{n}$. Since

$$
g_{1}\left(u q_{1}^{\nu}\right)= \begin{cases}c u q_{1}^{\nu} & \text { for } \nu<n \text { and } u \in\left\{1, \cdots, q_{1}-1\right\} \\ c u q_{1}^{n} & \text { for every } u \leq a\end{cases}
$$

therefore

$$
g_{1}(k)=c k \quad \text { if } \quad k<(a+1) q_{1}^{n} .
$$

Let $\kappa \in \mathcal{K} \cap J_{b q_{2}^{m}}$. Thus

$$
g_{1}(\kappa)=g_{2}(\kappa)=c \kappa, \kappa=b q_{2}^{m}+h, h<q_{2}^{m},
$$

and so

$$
g_{2}(\kappa)=g_{2}\left(b q_{2}^{m}\right)+g_{2}(h)=g_{2}\left(b q_{2}^{m}\right)+c h .
$$

Consequently

$$
g_{2}\left(b q_{2}^{m}\right)=c b q_{2}^{m} .
$$

Remark. Let $\mathcal{E}=\left\{a_{1}<a_{2}<\cdots\right\}$ be such a sequence of integers for which $a_{n+1}-a_{n}<a_{n}^{1-\epsilon}$ for some $\epsilon>0$. Then \mathcal{E} is a \mathcal{K}-sequence, that is, if K is a suitable constant, $f_{1} \in \mathcal{A}_{q_{1}}, f_{2} \in \mathcal{A}_{q_{2}}$, and

$$
f_{1}(n)=f_{2}(n) \quad(\forall n<K) \quad \text { and } \quad f_{1}\left(a_{j}\right)=f_{2}\left(a_{j}\right) \quad(j=1,2, \cdots),
$$

then

$$
f_{1}(n)=f_{2}(n)=c \cdot n \quad \text { for every } \quad n \in \mathbb{N}_{0} .
$$

Specially, if $Q(x) \in \mathbb{Z}[x]$,

$$
\mathcal{E}_{1}=\{Q(n) \mid n=1,2, \cdots\} \quad \text { and } \quad \mathcal{E}_{2}=\{Q(p) \mid p \in \mathcal{P}\}
$$

then both of \mathcal{E}_{1} and \mathcal{E}_{2} are \mathcal{K}-sequences.

3. What are the q-additive multiplicative functions?

In this section let $I(n)$ be the identity function and $\chi_{q}(n)$ be a Dirichlet character function. It is clear that

$$
\left\{I, \chi_{q}\right\} \subseteq \mathcal{M}^{*} \cap \mathcal{A}_{q}
$$

We shall prove the following
Theorem 2. Let \mathcal{M}^{*} the set of all completely multiplicative functions f with $f(1)=1$. Then there exists a $q_{0} \mid q$ such that

$$
\mathcal{M}^{*} \cap \mathcal{A}_{q} \subseteq\left\{I, \chi_{q_{0}}\right\}
$$

Proof. Let $f \in \mathcal{M}^{*} \cap \mathcal{A}_{q}$. First we consider the case $f(q)=0$. Let $q=q_{0} q_{1}$, where $f\left(q_{1}\right) \neq 0$ and $f(p)=0$ for all primes $p, p \mid q_{0}$. It is clear that

$$
f\left(q_{1}\right) f\left(q_{0} m+1\right)=f\left(q m+q_{1}\right)=f\left(q_{1}\right)+f(q m)=f\left(q_{1}\right)+f(q) f(m)=f\left(q_{1}\right)
$$

for every $m \in \mathbb{N}$. This implies that $f\left(q_{0} m+1\right)=1$, which with Lemma 19.3 of [5] proves that $f=\chi_{q_{0}}$.

Now we assume that $\xi:=f(q) \neq 0$. For each $a \in\{0,1, \cdots q-2\}$, we have

$$
f(q+1)=f(1)+f(q)=1+\xi, \quad f(q+a)=f(a)+f(q)=f(a)+\xi
$$

and

$$
(q+1)(q+a)=q^{2}+(a+1) q+a
$$

Thus, we infer that

$$
\begin{gathered}
f((q+1)(q+a))=f\left(q^{2}+(a+1) q+a\right)= \\
=f\left(q^{2}\right)+f((a+1) q)+f(a)=\xi^{2}+f(a+1) \xi+f(a),
\end{gathered}
$$

consequently

$$
(1+\xi)(f(a)+\xi)=\xi^{2}+f(a+1) \xi+f(a)
$$

This shows that

$$
f(a+1)=f(a)+1 \quad \text { for } \quad a \in\{0,1, \cdots q-2\}
$$

and so

$$
f(m)=m \quad \text { for } \quad m \in\{0,1, \cdots q-1\} .
$$

Since $f \in \mathcal{A}_{q^{2}}$, therefore the above result shows that

$$
f(M)=M \quad \text { for every } \quad M<q^{2},
$$

and so $\xi=f(q)=q$, because $q<q^{2}$.
Theorem 2 is proved.
The following problem seems to be interesting. Characterize those subsets \mathcal{D} of \mathbb{N}_{0} for which if $f \in \mathcal{M}^{*}, g \in \mathcal{A}_{q}$, and

$$
f(d)=g(d) \quad(\forall d \in \mathcal{D})
$$

then

$$
f(n)=g(n) \quad \text { for every } \quad n \in \mathbb{N}
$$

Theorem 3. Let c, N_{0} be given numbers, $J_{N}=\left(2^{N}, 2^{N+1}\right)$. Let $\mathcal{D} \subseteq \mathbb{N}_{0}$ be such a set of integers for which if $N>N_{0}$, then there exist $m_{1}, m_{2} \in J_{N} \cap \mathcal{D}$, $m_{1} \neq m_{2}$ such that

$$
\frac{m_{1}}{m_{2}}=\frac{A}{B}, \quad A, B<c, A, B \in \mathbb{N}
$$

Assume that

$$
f \in \mathcal{M}^{*}, \quad g \in \mathcal{A}_{2}, \quad f(n)=g(n)=n \quad \text { if } \quad n \leq \max \left(c, 2^{N_{0}}\right)
$$

Then

$$
f(d)=g(d) \quad \text { for every } \quad d \in \mathcal{D}
$$

implies that

$$
f(n)=n \quad \text { for every } \quad n \in \mathcal{D}
$$

Proof. We shall use induction. Assume that

$$
g\left(2^{n}\right)=2^{n} \quad \text { for every } \quad n=0,1, \cdots, N-1
$$

Then clearly

$$
f(u)=g(u)=u \quad \text { if } \quad u<2^{N}
$$

Let $m_{1}=2^{N}+l, m_{2}=2^{N}+r, 0<l, r<2^{N}, l \neq r$. We have

$$
g\left(m_{1}\right)=g\left(2^{N}\right)+g(l)=g\left(2^{N}\right)+l
$$

similarly

$$
g\left(m_{2}\right)=g\left(2^{N}\right)+g(r)=g\left(2^{N}\right)+r .
$$

We can choose m_{1}, m_{2} such that $\frac{m_{1}}{m_{2}}=\frac{A}{B}, \quad A, B<c$. Thus $m_{1} B=m_{2} A$, $B f\left(m_{1}\right)=A f\left(m_{2}\right), f\left(m_{j}\right)=g\left(m_{j}\right)$, and so

$$
B\left(g\left(2^{N}\right)+l\right)=A\left(g\left(2^{N}\right)+r\right)
$$

Since $B\left(2^{N}+l\right)=A\left(2^{N}+r\right)$, the above relation implies that $g\left(2^{N}\right)=2^{N}$. The proof of Theorem 3 is complete.

We guess that the following conjecture is true.
Conjecture 1. There exist such constants $c>0$ and N_{0} such that if $N \geq N_{0}$, $N \in \mathbb{N}$, then in the interval $\left[2^{N}, 2^{N+1}\right)$ there exist $p-1, q-1 \quad(p, q \in \mathcal{P})$ for which

$$
\frac{p-1}{q-1}=\frac{A}{B}, \quad A, B \in \mathbb{N}, A, B<c
$$

Corollary. Assume that Conjecture 1 is true. Let

$$
f \in \mathcal{M}^{*}, \quad g \in \mathcal{A}_{2}, \quad f(n)=g(n)=n \quad \text { if } \quad n \leq \max \left(c, 2^{N_{0}}\right)
$$

If

$$
f(p-1)=g(p-1) \quad \text { for every } \quad p \in \mathcal{P}
$$

then

$$
f(p-1)=p-1 \quad \text { for every } \quad p \in \mathcal{P}
$$

References

[1] Csajbók, T., A. Járai and J. Kasza, On representing integers as quotients of shifted primes, Ann. Univ. Sci. Budapest., Sect. Comp., $\mathbf{2 8}$ (2008), 157-174.
[2] Dress, F. and B. Volkman, Ensembles d'unicité pour les fonctions arithemtiques additives ou multiplicatives, C. R. Acad. Sci. Paris Ser. A, 287 (1978), 43-46.
[3] Elliott, P.D.T.A., A conjecture of Kátai, Acta Arith., 26 (1974), 11-20.
[4] Elliott, P.D.T.A., On representing integers as products of the $p+1$, Monatshefte für Math., 97 (1984), 85-97.
[5] Elliott, P.D.T.A., Arithmetic Functions and Integer Products, Grund. der Math. Wiss., 272, Springer - Verlag, New York, Berlin, 1985.
[6] Gelfond, A. O., Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., 13 (1968), 259-265.
[7] Hoffmann, P., Note on a problem of Kátai, Acta Math. Hung., 45 (1985), 261-262.
[8] Indlekofer, K.-H., On sets characterizing additive aritmetical functions, Math. Z., 146 (1976), 285-290.
[9] Indlekofer, K.-H., On sets characterizing additive and multiplicative arithmetical functions, Ill. J. Math., 25 (1981), 251-257.
[10] Indlekofer, K.-H., J. Fehér and L.L. Stachó, On sets of uniqueness for completely additive arithmetic functions, Analysis, 16 (1996), 405-415.
[11] Kátai, I., On sets characterizing number-theoretical functions, Acta Arith., 13 (1968), 315-320.
[12] Kátai, I., On sets characterizing number-theoretical functions II., Acta Arith., 16 (1968), 1-4.
[13] Puchta, J.-C. and J. Spilker, Functions that are both g- and h-additive, Arch. Math., 80 (2003), 264-270.
[14] Schinzel, A. and W. Sierpinski, Sur certaines hypothéses concernant les nombres premiers, Acta Arith., 4 (1958), 185-208, erratum 5 (1958), p. 259.
[15] Tijdeman, R., On integers with many small prime factors, Compositio Mathematica., 26 (1973), 319-330.
[16] Wolke, D., Bemerkungen über Eindeutigkeitsmengen additiver Funktionen, Elem. Math., 33 (1978), 14-16.

I. Kátai and B. M. Phong
Department of Computer Algebra
Faculty of Informatics
Eötvös Loránd University
H-1117 Budapest
Pázmány Péter sétány $1 / \mathrm{C}$
Hungary
katai@compalg.inf.elte.hu
bui@compalg.inf.elte.hu

