SOME RELATIONS AMONG ARITHMETICAL FUNCTIONS

Imre Kátai and Bui Minh Phong

(Budapest, Hungary)

Communicated by Jean-Marie De Koninck (Received January 1, 2015; accepted April 16, 2015)

Abstract. We consider some possible relations among q-additive and completely multiplicative functions. We proved that if f is completely multiplicative and q-additive function, then either f(n) = n for every $n \in \mathbb{N}$ or f(n) is the Dirichlet character (mod q_0), where $q_0|q$.

1. Notation and some notions

Let, as usual, \mathcal{P} , \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{C} be the set of primes, positive integers, integers, rational numbers and complex numbers, respectively. Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ be the set of non-negative integers.

Let \mathcal{A} (resp. \mathcal{A}^*) be the class of additive (completely additive) functions, \mathcal{M} (resp. \mathcal{M}^*) be the class of multiplicative (completely multiplicative) functions.

For some integer $q \geq 2$ let \mathcal{A}_q be the set of q-additive function. Every $n \in \mathbb{N}_0$ can be uniquely represented in the form

$$n = \sum_{r=0}^{\infty} a_r(n)q^r \text{ with } a_r(n) \in \{0, 1, ..., q-1\} (= A_q)$$

Key words and phrases: Completely additive functions, completely multiplicative group, *q*-additive function, set of uniqueness, set of uniqueness (mod 1).

²⁰¹⁰ Mathematics Subject Classification: 11A07, 11A25, 11K65, 11N37, 11N64.

and $a_r(n) = 0$ if $q^r > n$. We say that $f \in \mathcal{A}_q$, if $f : \mathbb{N}_0 \to \mathbb{C}$

$$f(0) = 0$$
 and $f(n) = \sum_{r=0}^{\infty} f(\epsilon_r(n)q^r)$ for every $n \in \mathbb{N}$

These functions were first introduced and studied by A. O. Gelfond [6].

Definition 1. (Set of uniqueness for completely additive functions.) We say that $A \subseteq \mathbb{N}$ is a set of uniqueness for completely additive functions if $f \in \mathcal{A}^*$, f(a) = 0 for every $a \in A$ implies that f(n) = 0 for all $n \in \mathbb{N}$.

Definition 2. (Set of uniqueness for completely additive functions (mod 1).) We say that $B \subseteq \mathbb{N}$ is a set of uniqueness for completely additive functions (mod 1) if $f \in \mathcal{A}^*$, $f(b) \equiv 0 \pmod{1}$ for all $b \in B$ implies that $f(n) \equiv 0 \pmod{1}$ for every $n \in \mathbb{N}$.

D. Wolke [16] proved that A is a set of uniqueness if and only if every $n \in \mathbb{N}$ can be written as $n = \prod_{i=1}^{k} a_i^{r_i}$, where $a_i \in A$ and $r_i \in \mathbb{Q}$.

K.-H. Indlekofer [8], [9], P. Hoffman [7], F. Dress and B. Volkmann [2] proved independently that B is a set of uniqueness for completely additive functions (mod 1) if and only if every $n \in \mathbb{N}$ can be written as

$$n = \prod_{j=1}^{k} b_{j}^{\ell_{j}}, \text{ where } \ell_{j} \in \mathbb{Z}, \ b_{j} \in B$$

I. Kátai [11], [12] formulated the conjecture in 1969 that

$$\mathcal{P}_{+1} = \{ p+1 \mid p \in \mathcal{P} \}$$

is a set of uniqueness for additive functions, and proved that there exists such a finite set Q of primes for which $\mathcal{P}_{+1} \cup Q$ is a set of uniqueness (mod 1). P. D. T. A. Elliott [3] proved that $Q = \{p \mid p \leq 10^{387}, p \in \mathcal{P}\}$ is an appropriate choice, that is every $n \in \mathbb{N}$ can be written as

$$n = t \cdot \prod_{i=1}^{k} (p_i + 1)^{\epsilon_i}, \ \epsilon_i \in \{-1, 1\}$$

and t is such a rational number the largest prime factor of which does not exceed 10^{387} .

Furthermore, in [4] he proved that for every rational number r, we can find such primes p_1, \dots, p_k and $\epsilon_j \in \{-1, 1\}$ $(j = 1, 2, \dots, k)$, for which

(1.1)
$$r^{g} = \prod_{i=1}^{k} (p_{i}+1)^{\epsilon_{i}}.$$

Here g is a constant, $g \in \{1, 2, 3\}$.

A direct consequence of this assertion is

Theorem 1. Let $f \in \mathcal{M}^*$, f(p+1) = p+1 ($\forall p \in \mathcal{P}$). Then

$$f(n) = nH(n), \quad H \in \mathcal{M}^*, \quad H(n)^g = 1 \quad for \ every \quad n \in \mathbb{N}.$$

Especially, if f(n) is a positive real number for every $n \in \mathbb{N}$, then

$$f(n) = n$$
 for every $n \in \mathbb{N}$.

Proof. Since, for every $q \in \mathcal{P}$ there is at least one $p \in \mathcal{P}$ such that q|p+1, therefore $f(q) \neq 0$, and so $f(n) \neq 0$ $(n \in \mathbb{N})$. From (1.1) we obtain that

$$f(r)^{g} = \prod_{i=1}^{k} f(p_{i}+1)^{\epsilon_{i}} = \prod_{i=1}^{k} (p_{i}+1)^{\epsilon_{i}} = r^{g}$$

Thus

$$1 = \left(\frac{f(r)}{r}\right)^g = H(r)^g \text{ for every positive rational number.}$$

The proof of Theorem 1 is complete.

The conjecture that \mathcal{P}_{+1} is a set of uniqueness (mod 1) is formulated by several mathematicians. It would follow from the conjecture of A. Schinzel and W. Sierpinnski [14], namely that every positive integer has infinitely many representations of the form $\frac{p+1}{q+1}$ $(p, q \in \mathcal{P})$.

T. Csajbók, A. Járai and J. Kasza [1] proved that every prime $Q \in [2, 10^{14}]$ can be written as $\frac{p+1}{q+1}$ $(p, q \in \mathcal{P})$, and every $n \in [2, 10^{11}]$ can be written also as $\frac{p+1}{q+1}$ $(p, q \in \mathcal{P})$.

2. On *q*-additive functions

Definition 3. (Set of uniqueness for q-additive functions.) We say that $D \subseteq \mathbb{N}_0$ is a set of uniqueness for the set of q-additive functions, if $f \in \mathcal{A}_q$, f(d) = 0 for all $d \in D$ implies that f(n) = 0 for all $n \in \mathbb{N}_0$.

The functions f(n) = cn belong to \mathcal{A}_q for every $q \ge 2$. J. C. Puchta and J. Spilker [13] gave all the functions belonging to $\mathcal{A}_{q_1} \cap \mathcal{A}_{q_2}$.

The following question seems to be interesting. Let $(q_1, q_2) = 1$, $q_1, q_2 \ge 2$. Let \mathcal{K} be such a subset of \mathbb{N}_0 for which the following assertion holds: If

$$f_1 \in \mathcal{A}_{q_1}, f_2 \in \mathcal{A}_{q_2}$$
 and $f_1(k) = f_2(k)$ for every $k \in \mathcal{K}_{q_2}$

then

$$f_1(n) = f_2(n) = cn$$
 for every $n \in \mathbb{N}_0$,

where $c \in \mathbb{C}$ is a suitable number.

Assume that $q_2 > q_1 \ge 2$,

$$E_1 = \{aq_1^n | a = 1, \cdots, q_1 - 1, n = 0, 1, \cdots\}$$

and

$$E_2 = \{ bq_2^m | b = 1, \cdots, q_2 - 1, m = 0, 1, \cdots \}.$$

Let $bq_2^m \in E_2$ with $m \ge 1$. Let $L(bq_2^m) = aq_1^n$ be the largest element of E_1 , for which

 $aq_1^n < bq_2^m$.

Observe that $aq_1^n = bq_2^m$ or $(a+1)q_1^n = bq_2^m$ cannot occur. Let

$$J_{bq_2^m} = (bq_2^m, (a+1)q_1^n), \text{ where } L(bq_2^m) = aq_1^n.$$

It is obvious that $a + 1 = q_1$ can be occur.

We know that the interval $J_{bq_2^m}$ is quite a large interval. This follows from an important theorem of R. Tijdeman [15], which is stated now as

Theorem A. Let p be a prime, $p \ge 3$ and let $1 = n_1 < n_2 < \cdots$ be the sequence of all positive integers composed of primes $\le p$. Then there exists an effectively computable constant C = C(p) such that

$$n_{i+1} - n_i > \frac{n_i}{(\log n_i)^C}$$
 for every $n_i \ge 3$.

Corollary. Let p be the largest prime factor of $q_2!$, C = C(p) (defined in Theorem A). Let K be such a set for which

$$\mathcal{K} \cap J_{bq_2^m} \neq \emptyset \quad if \quad bq_2^m > K.$$

Assume that $g_1 \in \mathcal{A}_{q_1}, g_2 \in \mathcal{A}_{q_2}$,

$$g_1(n) = g_2(n) \quad if \quad n \in \mathcal{K}$$

and

$$g_1(n) = g_2(n) = cn$$
 for every $n \le K$ $(K > q_2)$.

Then

$$g_1(n) = g_2(n) = cn$$
 for every $n \in \mathbb{N}_0$.

Proof. We can see it by using induction.

Assume that $g_1(k) = g_2(k) = ck$ holds for every $k < bq_2^m$. Let $k < (a+1)q_1^n$. Since

$$g_1(uq_1^{\nu}) = \begin{cases} cuq_1^{\nu} & \text{for } \nu < n \text{ and } u \in \{1, \cdots, q_1 - 1\} \\ cuq_1^n & \text{for every } u \le a, \end{cases}$$

therefore

 $g_1(k) = ck$ if $k < (a+1)q_1^n$.

Let $\kappa \in \mathcal{K} \cap J_{bq_2^m}$. Thus

$$g_1(\kappa) = g_2(\kappa) = c\kappa, \kappa = bq_2^m + h, h < q_2^m,$$

and so

$$g_2(\kappa) = g_2(bq_2^m) + g_2(h) = g_2(bq_2^m) + ch.$$

Consequently

$$g_2(bq_2^m) = cbq_2^m.$$

Remark. Let $\mathcal{E} = \{a_1 < a_2 < \cdots\}$ be such a sequence of integers for which $a_{n+1} - a_n < a_n^{1-\epsilon}$ for some $\epsilon > 0$. Then \mathcal{E} is a \mathcal{K} -sequence, that is, if K is a suitable constant, $f_1 \in \mathcal{A}_{q_1}, f_2 \in \mathcal{A}_{q_2}$, and

$$f_1(n) = f_2(n) \quad (\forall n < K) \text{ and } f_1(a_j) = f_2(a_j) \quad (j = 1, 2, \cdots),$$

then

$$f_1(n) = f_2(n) = c \cdot n$$
 for every $n \in \mathbb{N}_0$

Specially, if $Q(x) \in \mathbb{Z}[x]$,

$$\mathcal{E}_1 = \{Q(n)|n=1,2,\cdots\}$$
 and $\mathcal{E}_2 = \{Q(p)|p\in\mathcal{P}\}$

then both of \mathcal{E}_1 and \mathcal{E}_2 are \mathcal{K} -sequences.

3. What are the *q*-additive multiplicative functions?

In this section let I(n) be the identity function and $\chi_q(n)$ be a Dirichlet character function. It is clear that

$$\{I, \chi_q\} \subseteq \mathcal{M}^* \cap \mathcal{A}_q.$$

We shall prove the following

Theorem 2. Let \mathcal{M}^* the set of all completely multiplicative functions f with f(1) = 1. Then there exists a $q_0|q$ such that

$$\mathcal{M}^* \cap \mathcal{A}_q \subseteq \{I, \chi_{q_0}\}.$$

Proof. Let $f \in \mathcal{M}^* \cap \mathcal{A}_q$. First we consider the case f(q) = 0. Let $q = q_0q_1$, where $f(q_1) \neq 0$ and f(p) = 0 for all primes $p, p|q_0$. It is clear that

$$f(q_1)f(q_0m+1) = f(qm+q_1) = f(q_1) + f(qm) = f(q_1) + f(q)f(m) = f(q_1)$$

for every $m \in \mathbb{N}$. This implies that $f(q_0m+1) = 1$, which with Lemma 19.3 of [5] proves that $f = \chi_{q_0}$.

Now we assume that $\xi := f(q) \neq 0$. For each $a \in \{0, 1, \dots, q-2\}$, we have

$$f(q+1) = f(1) + f(q) = 1 + \xi, \quad f(q+a) = f(a) + f(q) = f(a) + \xi$$

and

$$(q+1)(q+a) = q^2 + (a+1)q + a.$$

Thus, we infer that

$$f((q+1)(q+a)) = f(q^2 + (a+1)q + a) =$$
$$= f(q^2) + f((a+1)q) + f(a) = \xi^2 + f(a+1)\xi + f(a),$$

consequently

$$(1+\xi)(f(a)+\xi) = \xi^2 + f(a+1)\xi + f(a).$$

This shows that

$$f(a+1) = f(a) + 1$$
 for $a \in \{0, 1, \dots, q-2\},\$

and so

$$f(m) = m$$
 for $m \in \{0, 1, \dots, q-1\}.$

Since $f \in \mathcal{A}_{q^2}$, therefore the above result shows that

$$f(M) = M$$
 for every $M < q^2$,

and so $\xi = f(q) = q$, because $q < q^2$.

Theorem 2 is proved.

The following problem seems to be interesting. Characterize those subsets \mathcal{D} of \mathbb{N}_0 for which if $f \in \mathcal{M}^*$, $g \in \mathcal{A}_q$, and

$$f(d) = g(d) \quad (\forall d \in \mathcal{D}),$$

then

$$f(n) = g(n)$$
 for every $n \in \mathbb{N}$.

Theorem 3. Let c, N_0 be given numbers, $J_N = (2^N, 2^{N+1})$. Let $\mathcal{D} \subseteq \mathbb{N}_0$ be such a set of integers for which if $N > N_0$, then there exist $m_1, m_2 \in J_N \cap \mathcal{D}$, $m_1 \neq m_2$ such that

$$\frac{m_1}{m_2} = \frac{A}{B}, \quad A, B < c, A, B \in \mathbb{N}.$$

Assume that

$$f \in \mathcal{M}^*, g \in \mathcal{A}_2, f(n) = g(n) = n \quad if \quad n \le \max(c, 2^{N_0}).$$

Then

$$f(d) = g(d)$$
 for every $d \in \mathcal{D}$,

implies that

$$f(n) = n$$
 for every $n \in \mathcal{D}$.

Proof. We shall use induction. Assume that

$$g(2^n) = 2^n$$
 for every $n = 0, 1, \dots, N-1$.

Then clearly

$$f(u) = g(u) = u \quad \text{if} \quad u < 2^N$$

Let $m_1 = 2^N + l, m_2 = 2^N + r, 0 < l, r < 2^N, l \neq r$. We have

$$g(m_1) = g(2^N) + g(l) = g(2^N) + l,$$

similarly

$$g(m_2) = g(2^N) + g(r) = g(2^N) + r.$$

We can choose m_1, m_2 such that $\frac{m_1}{m_2} = \frac{A}{B}$, A, B < c. Thus $m_1 B = m_2 A$, $Bf(m_1) = Af(m_2)$, $f(m_j) = g(m_j)$, and so

$$B\left(g(2^N)+l\right) = A\left(g(2^N)+r\right).$$

Since $B(2^N + l) = A(2^N + r)$, the above relation implies that $g(2^N) = 2^N$. The proof of Theorem 3 is complete.

We guess that the following conjecture is true.

Conjecture 1. There exist such constants c > 0 and N_0 such that if $N \ge N_0$, $N \in \mathbb{N}$, then in the interval $[2^N, 2^{N+1})$ there exist p - 1, q - 1 $(p, q \in \mathcal{P})$ for which

$$\frac{p-1}{q-1} = \frac{A}{B}, \quad A, B \in \mathbb{N}, A, B < c.$$

Corollary. Assume that Conjecture 1 is true. Let

$$f \in \mathcal{M}^*, g \in \mathcal{A}_2, f(n) = g(n) = n \quad if \quad n \le \max(c, 2^{N_0}).$$

If

$$f(p-1) = g(p-1)$$
 for every $p \in \mathcal{P}$,

then

$$f(p-1) = p-1$$
 for every $p \in \mathcal{P}$

References

- Csajbók, T., A. Járai and J. Kasza, On representing integers as quotients of shifted primes, Ann. Univ. Sci. Budapest., Sect. Comp., 28 (2008), 157–174.
- [2] Dress, F. and B. Volkman, Ensembles d'unicité pour les fonctions arithemtiques additives ou multiplicatives, C. R. Acad. Sci. Paris Ser. A, 287 (1978), 43–46.
- [3] Elliott, P.D.T.A., A conjecture of Kátai, Acta Arith., 26 (1974), 11–20.
- [4] Elliott, P.D.T.A., On representing integers as products of the p + 1, Monatshefte für Math., 97 (1984), 85–97.

- [5] Elliott, P.D.T.A., Arithmetic Functions and Integer Products, Grund. der Math. Wiss., 272, Springer - Verlag, New York, Berlin, 1985.
- [6] Gelfond, A. O., Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., 13 (1968), 259–265.
- [7] Hoffmann, P., Note on a problem of Kátai, Acta Math. Hung., 45 (1985), 261–262.
- [8] Indlekofer, K.-H., On sets characterizing additive aritmetical functions, Math. Z., 146 (1976), 285–290.
- [9] Indlekofer, K.-H., On sets characterizing additive and multiplicative arithmetical functions, *Ill. J. Math.*, 25 (1981), 251–257.
- [10] Indlekofer, K.-H., J. Fehér and L.L. Stachó, On sets of uniqueness for completely additive arithmetic functions, *Analysis*, 16 (1996), 405–415.
- [11] Kátai, I., On sets characterizing number-theoretical functions, Acta Arith., 13 (1968), 315–320.
- [12] Kátai, I., On sets characterizing number-theoretical functions II., Acta Arith., 16 (1968), 1–4.
- [13] Puchta, J.-C. and J. Spilker, Functions that are both g- and h-additive, Arch. Math., 80 (2003), 264–270.
- [14] Schinzel, A. and W. Sierpinski, Sur certaines hypothéses concernant les nombres premiers, Acta Arith., 4 (1958), 185–208, erratum 5 (1958), p. 259.
- [15] Tijdeman, R., On integers with many small prime factors, Compositio Mathematica., 26 (1973), 319–330.
- [16] Wolke, D., Bemerkungen über Eindeutigkeitsmengen additiver Funktionen, *Elem. Math.*, **33** (1978), 14–16.

I. Kátai and B. M. Phong Department of Computer Algebra Faculty of Informatics Eötvös Loránd University H-1117 Budapest Pázmány Péter sétány 1/C Hungary katai@compalg.inf.elte.hu bui@compalg.inf.elte.hu