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SPECTRAL SYNTHESIS ON SPECIAL VARIETIES

László Székelyhidi (Debrecen, Hungary)

Communicated by Zoltán Daróczy
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Abstract. Spectral synthesis on varieties deals with the description of
translation invariant function spaces on groups. In this paper we show
that spectral synthesis holds for a variety, if the factor ring with respect
to its annihilator in the group algebra is a Noetherian semi-local ring with
exponential maximal ideals.

1. Introduction and preliminaries

In this paper C denotes the set of complex numbers. If G is an Abelian
group, then C(G) denotes the locally convex topological vector space of all
complex valued functions defined on G, equipped with the pointwise operations
and the topology of pointwise convergence.

The dual of C(G) can be identified with Mc(G), the space of all finitely
supported complex measures on G. This space is also identified with the set of
all finitely supported complex valued functions on G in the obvious way that
the pairing between C(G) and Mc(G) is given by the formula

〈μ, f〉 =
∫

f dμ =
∑
x∈G

f(x)μ(x) .
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Convolution on Mc(G) is defined by

μ ∗ ν(x) =
∫

μ(x − y) dν(y)

for any μ, ν in Mc(G) and x in G. Convolution converts the linear space
Mc(G) into a commutative algebra with unit δ0, 0 being the zero element in
G. In general, δx is the characteristic function of the singleton {x}. We realize
that Mc(G) is the so-called group algebra of G, hence we shall use the notation
CG for it.

We also define convolution of measures in CG with arbitrary functions in
C(G) by the same formula

μ ∗ f(x) =
∫

f(x − y) dμ(y)

for each μ in CG, f in C(G) and x in G.

Translation with the element y in G is the operator mapping the function
f in C(G) to its translate τyf defined by τyf(x) = f(x + y) for each x in G.
Clearly, τyf = δ−y ∗f holds for each function f in C(G) and y in G. A subset of
C(G) is called translation invariant, if it contains all translates of its elements.
A closed linear subspace of C(G) is called a variety on G, if it is translation
invariant. For each subset in G the smallest variety containing this subset is
called the variety generated by this subset. In particular, for each function f
the variety generated by f is called the variety of f and is denoted by τ(f). It
is the intersection of all varieties containing f .

Obviously, C(G) can be considered as a CG-module with the natural action
of CG on C(G) defined by (μ, f) �→ μ∗f , whenever μ is in CG and f is in C(G).
Submodules of this module are exactly the translation invariant subspaces and
the closed submodules are exactly the varieties. For all subsets J in CG and
H in C(G) we use the notation JH for the set of all functions μ ∗ f with μ in
J and f in H.

It is very easy to check that the annihilator of each variety on G is an ideal
in CG, which is proper if and only if the variety is nonzero. The annihilator of
the variety V will be denoted by V ⊥. Analogously, for each ideal I in CG its
annihilator is defined by

I⊥ = {f : f ∈ C(G), μ(f) = 0 for each μ ∈ I} .

It follows from [14, Theorem 11.12] and [14, Theorem 11.13], pp. 146–147, that
I⊥ is a variety on G, which is nonzero if and only if I is proper.
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2. Spectral synthesis and function classes

Spectral analysis and spectral synthesis deals with the description of va-
rieties. It turns out that the basic building bricks of this description are the
exponential monomials.

Let G be an Abelian group. The function m : G → C is called an ex-
ponential, if it is a homomorphism into the multiplicative group of nonzero
complex numbers. Such functions sometimes are called generalized characters.
The function a : G → C is called additive, if if it is a homomorphism into the
additive group of complex numbers. The set of all additive functions is a linear
space and it is denoted by Hom(G, C). It is known (see [9]) that the dimension
of this linear space is equal to the torsion free rank of G in the sense that either
both are infinite, or both are finite and in this case they are equal. Here the
torsion free rank of an Abelian group is the largest cardinal κ for which G has
a free subgroup of rank κ.

Additive functions are special cases of polynomials. The function p : G → C
is called a polynomial, if it has the form

p(x) = P
(
a1(x), a2(x), . . . , aN (x)

)
for each x in G, where N is a positive integer, P : CN → C is an ordinary
polynomial in N variables, and a1, a2, . . . , aN : G → C are additive functions.
We note that here we can always suppose that these additive functions are
linearly independent.

Using Taylor’s Formula it is easy to check that every polynomial p : G → C
satisfies Fréchet’s Functional Equation

(2.1) Δy1,y2,...,yn+1 ∗ p = 0

for each y1, y2, . . . , yn+1 in G with some natural number n. Here the difference
Δy1,y2,...,yn+1 is the element of CG defined by

Δy1,y2,...,yn+1 = Πn+1
k=1(δ−yk

− δ0) ,

where the multiplication means convolution. Nevertheless, equation (2.1) does
not characterize polynomials – it turns out that, in general, there are functions
satisfying (2.1), which are not polynomials. A function f : G → C is called a
generalized polynomial, if it satisfies (2.1) with f in place of p for some natural
number n and for each y1, y2, . . . , yn+1 in G.

Functions of the form f = p · m are called exponential monomials, resp.
generalized exponential monomials, if m is an exponential and p is a polynomial,
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resp. generalized polynomial. Linear combinations of exponential monomials,
resp. generalized exponential monomials are called exponential polynomials,
resp. generalized exponential polynomials.

We say that spectral analysis holds for a variety, if every nonzero subvariety
of it contains an exponential. We say that spectral analysis holds for G, if
spectral analysis holds for every variety on G. We say that a variety is syn-
thesizable, if the exponential monomials in this variety span a dense subspace.
We say that spectral synthesis holds for a variety, if every subvariety of it is
synthesizable. We say that spectral synthesis holds for G, if every variety on
G is synthesizable. Obviously, spectral synthesis for a variety implies spectral
analysis for this variety, but the converse is not true.

Abelian groups, for which spectral analysis, resp. spectral synthesis holds
have been characterized by their torsion free rank: for spectral analysis on the
group it is necessary and sufficient that the torsion free rank is less than the
continuum, and for spectral synthesis on the group it is necessary and sufficient
that the torsion free rank is finite (see [8], [11]). However, much less is known
about spectral analysis and synthesis on particular varieties. A classical result
in this direction is due to L. Ehrenpreis in [2], the Principal Ideal Theorem,
which states that in the space of infinitely differentiable functions on Rn spec-
tral synthesis holds for a variety if its annihilator is a principal ideal. A special
case of this result is due to B. Malgrange in [1] in the context of the solution
space of linear partial differential operators with constant coefficients. This
result has been generalized by R. J. Elliott for locally compact Abelian groups
in [3]. Another well-known result in another direction is that spectral synthesis
holds for finite dimensional varieties. In fact, finite dimensional varieties con-
sist of exponential polynomials (see e.g. [4]). Our main result below can be
considered as a generalization of this result, as the residue ring with respect
to the annihilator of a finite dimensional variety obviously satisfies the condi-
tions of Theorem 3.2 below. In addition, a negative result in this respect in
[15] gives a necessary condition for a variety to have spectral synthesis. In this
paper we prove a sufficient condition of this type. Our approach depends on
the annihilator technique developed in [16], [14]. For more about polynomials,
exponential polynomials and spectral synthesis on Abelian groups the reader
is referred to [7], [10], [13], [12], [14].

3. The results

A maximal ideal M in a commutative ring R with unit is called an expo-
nential maximal ideal, if R/M is isomorphic to the complex field. It is known
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that in the case of R = CG this is the case if and only if M is the annihilator
of a variety generated by an exponential. We have the following result (see [16,
Theorem 5]).

Theorem 3.1. Let G be an Abelian group. Then spectral analysis holds for a
nonzero variety on G if and only if every maximal ideal including the annihi-
lator of this variety is exponential.

It is easy to see (see e.g. [14, Theorem 12.5], p. 156.) that for the exponential
maximal ideal M there is a unique exponential m such that M = τ(m)⊥, in
this case we use the notation M = Mm.

We recall that a commutative ring with unit is called local, if it has exactly
one maximal ideal, and it is called semi-local, if it has finitely many maximal
ideals (see [6]). Our main result follows.

Theorem 3.2. Let G be an Abelian group and V a variety on G such that
CG/V ⊥ is a semi-local ring. If CG/V ⊥ is a Noetherian ring with exponential
maximal ideals, then V is synthesizable.

Proof. Suppose that CG/V ⊥ is a semi-local Noetherian ring with exponential
maximal ideals M1, M2, . . . , MN . Let Φ : CG → CG/V ⊥ denote the natural
homomorphism. Then we have Mk = Φ(Mmk

) for some exponentials mk on G
(k = 1, 2, . . . , N). It follows V ⊥ ⊆ Mmk

for k = 1, 2, . . . , N , which implies that
mk belongs to V , in fact, m1, m2, . . . , mN are the only exponentials in V . By
Krull’s Intersection Theorem (see e.g. [5, Theorem 7.23], the zero ideal is the
intersection of the positive powers of the Jacobson radical of CG/V ⊥:

∞⋂
n=0

Jn+1 = 0 .

However, as powers of different maximal ideals are co-prime, we have

J =
N⋂

k=1

Mk =
N∏

k=1

Mk ,

consequently, we infer

Jn+1 =
( N∏

k=1

Mk

)n+1

=
N∏

k=1

Mn+1
k =

N⋂
k=1

Mn+1
k ,

whence

V ⊥ =
∞⋂

n=0

N⋂
k=1

Mn+1
mk

,
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which means that

V =
∞∑

n=0

N∑
k=1

(
Mn+1

mk

)⊥
,

by [14, Theorem 11.12] and [14, Theorem 11.15], pp. 146 and 148. As
(
Mn+1

mk

)⊥
consists of generalized exponential monomials corresponding to the exponential
mk, it follows that the generalized exponential monomials corresponding to the
exponentials mk for k = 1, 2, . . . , N span a dense subspace in the variety V .
Let ϕ be one of them. Then we have τ(ϕ) ⊆ V , hence V ⊥ ⊆ τ(ϕ)⊥. The
mapping F : CG/V ⊥ → CG/τ(ϕ)⊥ defined by

F (μ + V ⊥) = μ + τ(ϕ)⊥

for each μ in CG is well-defined. Indeed, if μ+V ⊥ = ν+V ⊥, then μ−ν is in V ⊥,
hence it is in τ(ϕ)⊥, which implies μ+ τ(ϕ)⊥ = ν + τ(ϕ)⊥. On the other hand,
it is obvious, that F is a surjective homomorphism. It follows that CG/τ(ϕ)⊥

is a Noetherian ring with exponential maximal ideal. Obviously, CG/τ(ϕ)⊥ is
a local ring, as τ(ϕ) contains exactly one exponential. This implies that τ(f)⊥

is included in exactly one maximal ideal of the form Mm, where m is one of the
exponentials mk (k = 1, 2, . . . , N). On the other hand, as ϕ is a generalized
exponential monomial corresponding to the exponential m it follows that τ(ϕ)
is annihilated by some power of Mm. In other words, the maximal ideal of the
ring CG/τ(ϕ)⊥, which corresponds to Mm is nilpotent. By Theorem 7.15 in
[5], Vol. II. on pp. 426–427. it follows, that CG/τ(ϕ)⊥ is an Artinian ring,
hence, by [14, Theorem 12.11] and [14, Theorem 12.28], pp. 162. and 178, ϕ
is an exponential monomial. It follows that spectral synthesis holds for V and
our theorem is proved.

We note that the condition of the theorem is not necessary, even if CG/V ⊥

is a local ring. This is shown by the following theorem.

Theorem 3.3. Let G be an Abelian group with infinite torsion free rank. If
V denotes the linear span of all additive functions and the constant functions
on G, then V is a variety, spectral synthesis holds for V , and CG/V ⊥ is not a
Noetherian ring.

Proof. Let M1 be the annihilator in CG of the variety consisting of all
constant functions on G. Then, obviously, M1 is an exponential maximal ideal.
Let f be in (M2

1 )⊥, then we have for each x, y, z in G:

(3.1) 0 = Δy,z ∗ f(x) = f(x + y + z) − f(x + y) − f(x + z) + f(x) .

Substituting x = 0 we have

f(y + z) + f(0) = f(y) + f(z) ,
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which implies that f − f(0) is additive, that is, f is in V . Conversely, it is easy
to check that every constant function and every additive function satisfies (3.1).
It follows that V = (M2

1 )⊥, in particular, V is a variety. As every element of
V is a sum of an additive function and a constant, hence spectral synthesis
holds for V . Let Φ : CG → CG/V ⊥ denote the natural homomorphism, then
Φ(M1) is a nilpotent maximal ideal in CG/V ⊥, by the above computation,
which means that Φ(M1)2 = 0. It follows that Φ(M1)2 is the only maximal
ideal in CG/V ⊥, that is, CG/V ⊥ is a local ring with maximal ideal. Suppose
that it is Noetherian. Then, by [5, Theorem 7.15] cited above, CG/V ⊥ is an
Artinian ring. As the torsion free rank of G is infinite, it follows, by [9, Theorem
2], that there are infinitely many linearly independent additive functions on G.
Let (an)n∈N be a sequence of linearly independent additive functions and let Vn

denote the linear span of 1, a0, a1, . . . , an for each natural number n. Obviously,
Vn is a variety, and we have Vn ⊂ Vn+1 for each n, where the inclusion is proper.
By [14, Theorem 11.12] and [14, Theorem 11.13], pp. 146–147, the chain of
ideals V ⊥0 ⊃ V ⊥1 ⊃ · · · ⊃ V ⊥n ⊃ . . . is strictly descending, which generates a
strictly descending chain of ideals Φ(V ⊥n ) in the ring CG/V ⊥. This contradicts
the Artinian property and our theorem is proved.
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