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Abstract. We shall investigate the functional equation f(a + b) = g(a) +
+h(b) for all a € A,b € B, where A and B are subsets of natural numbers
satisfying some condition.

1. Introduction

Let P,N and C be the set of primes, positive integers and complex numbers,
respectively. For the sets A, B C N we define A+ B, A — B as follows:

A+B:={a+blac AbeB} and A-B:={a—-b |ac A beB,a>b}

In this paper we shall investigate those subsets A, B C N for which if the
functions

fitA+B—-C, g:A—C and h:B—>C
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satisfy the condition
fla+b) =g(a) +h(b) foral aecAbebB,
then there is a complex number A such that
fla+b) —A(a+b) =0(1), gla) — Aa=0O(1) and h(b) — Ab=0(1)

foralla € A,b € B.

Many results concerning this topics are known for multiplicative functions,
for example C. Spiro proved that if f is a multiplicative, f(po) # 0 for some
prime pp and f(p + q) = f(p) + f(q) for all primes p,q, then f(n) = n for
all n € N. For some similar results, we refer the works of P.V. Chung [2],
K.K. Chen and Y.G. Chen [3], P.V. Chung and B.M. Phong [4], J-H. Fang [5],
K-H. Indlekofer and B.M. Phong [6], J.M. De Koninck, I. K&tai and B.M. Phong
[8], B.M. Phong [13]-[18], C. Spiro [19].

Bojan Basic [1] investigated a function f : N — C such that f(n? +m?) =
= f(n)? + f(m)? is satisfied for all n,m. Let

M :={p1 +p2+p3 | p1,p2,p3 € P}

Recently, by using result of H. A. Helfgott concerning the ternary Goldbach
conjecture, I. Kétai and B. M. Phong [7] proved that if the function f : 9t — C,
g : P — C satisfy the condition

f(p1+p2+p3) = g(p1) + 9(p2) + 9(p3)
for every p1,p2,p3 € P, then there exist suitable constants A, B € C such that

fn)=An+3B and g(p)=Ap+ B forall neMpeP.

Our purpose of this paper is to prove the following result:
Theorem 1. Assume that the sets
A={a;<as<---}CN, B:={m?|mecN}

and the arithmetical functions f : A+B - C, g: A— C and h : B — C satisfy
the equation

fla+n?) =g(a) +h(n?) foral acAnécN.

If
SNCA-A,
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then there is a complex number A such that
g(a) = Aa+g(a), h(n®) = An’+h(n) and f(a+n?) = A(a+n?)+g(a)+h(n)
hold for all a € A,n € N, furthermore
gla)=9g(b) if a=b (mod120), (a,be A)
and B B
h(n)=h(m) if n=m (mod60), (n,m eN).
Maillet [10] formulated in 1905 the following
Conjecture 1. FEvery even number is the difference of two primes.

J. Pintz [4] proved that a positive proportion of even numbers in an interval
of type [z, z+ (log 2)¢] can be written as the difference of two primes if C' > Cj
and = > xg.

Conjecture 1 is clearly weaker than

Conjecture 2. (Kronecker [9], 1901) FEvery even number can be expressed in
infinitely many ways as the difference of two primes,

or

Conjecture 3. (Polignac [12], 1912) Fuvery even number can be written in
infinitely many ways as the difference of two consecutive primes.

A weaker form of Conjecture 1 is

Conjecture 4. FEvery positive number of the form 8n s the difference of two
primes.

We obtain from Theorem 1 the following
Theorem 2. Assume that the sets
A=P, B:={m?|mecN}

and the arithmetical functions F : P+B - C,G: P - Cand H : B — C
satisfy the equation

F(p+n?) =G(p)+Hn?) forall peP,necN.

For each odd prime p let p € {1,3} such that p =7 (mod 4).
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If Conjecture 4 holds, then there are complex numbers A, As, D such that
G(p) = Ap+ G(p) — Ap,G(2) = A+ G(1) + As,
H(n?) = An® + Ayxa(n) + D,
F(p+n?) = A(p +n°) + G(p) = Ap+ Aaxa(n) + D

for allp € P\{2},n € N, where x2(n) is the Dirichlet character (mod 2), that
is x2(0) =0, x2(1) = 1.

2. Lemmata

In this section we denote by A, B the following sets:
A={a1<ay<---}CN and B:={m?|meN}.
We consider those arithmetical functions
U:A—-C and V:B—C,
for which
(1) Ula) +V(n*) =Ub) +V(m?) if a+n®>=b+m? a,bec An,mecN.
Let S, :=V(m?) (m €N).
Lemma 1. Assume that the arithmetical functions U,V satisfy (1). If
(2) SNCA-A
is satisfied, then
(3) Sp+12 = Snt9 + Snts + Snt7 — Snys — Snqa — Sngs + S
holds for all n € N and

S, = 255 -5

Sg = 2S5+ 54 —25;

Sg =85+255—5,— 51

S0 = Sg+ 385 —S3 —25;

S11 =89 +485 —S3 — 52 — 25,
S12 = Sg+4S55+ 54 — Sy —45;.
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Proof. The proof of this result is similar to the proof of Lemma 1 in [18].
First we infer from (1) and (2) that for each m € N,m > 7 we have

(5) Som+41— Som—1 = Smt2 — Sm—2 and Somi1 — Som—5 = Sm45 — Sm—7.

Indeed, for m € N;m > 7 we have

8m  =(2m+1)2 - (2m —1)? = (m+2)? — (m — 2)?
24m = (2m+1)> — (2m —5)2 = (m+5)? — (m —7)2,

and so (2) implies that there are x,2',y,y" € A,z > 2,y >y such that
r—2' =2m+1)2 - 2m—1)? = (m+2)? - (m —2)%,

and
y—y =2m+1)>—(2m—5)*=(m+5)>—(m—7)>

These with (1) imply that
U(x) = U(x") = Soms1 — S2m—1 = Sm42 — Sm—2,

and
Uly) = U®W') = Somt+1 — S2m—5 = Sm+ts5 — Sm—7-
Hence (5) is proved.
Finally, we infer from (5) that

Smts — St = Samp1 — Som_5 =
= (Sems1 = S2m1) + (Sam1 = Sam—s) + (Sam—3 = Sam—s) =
- (Sm+2 - Sm_g) + (sm+1 - Sm_g) n (Sm _ sm_4).

This with m := 1+ 7 proves that (3) holds for all n € N.

Now we prove (4). Indeed, by using (5), we have
S7 = Sa.311 = 255 — 51,
Sg = Sa.441 =57+ 56 — 52 = S +255 — 52 — 51

and
S11 = 52_5+1 = Sg + 857 — 53 =S5 +455 — S35 — Sy — 257.

Since the following three numbers

82 42 =72_-1%2 102 -22=112-5% 122 -82=92—-12
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are in A — A, therefore from (1) and (2) we have
Ss =87 +854— 51 =255+ 54, — 254,

S10 = S11 + 52 — S5 = Sg + 355 — S5 — 25

and
S19 = Sg + Sg — S1 = Sg + 4S5 + 5S4 — Sy — 45].

which completes the proof (4).

Lemma 1 is proved. ]

Lemma 2. Assume that the arithmetical functions U,V satisfy (1). Let

A= ﬁ(SG + 4S5 — S3 — Sy — 351),

n

Ay = (S5 — 4S5 + 45, — S3 — 351),
Az = Z(Ss — 255 + 255 — S3),

(6) Ag = 1(86 — 254 — S5+ S2 + 51),
Ay == 1(Sg — S5 — S5 — S2 +25),

D := i(S — 455 + 254 + 353 + S5 + Sl),
By == Asxa(k) 4+ Asxs(k) + Agxa(k — 1) + Asxs(k) + D,

where x2(k) (mod 2), x3(k) (mod 3) are the principal Dirichlet characters and
x4(k) (mod 4), x5(k) (mod 5) are the real, non-principal Dirichlet characters,
1.e.

x2(0) = 0,x2(1) = 1,x3(0) = 0, x3(1) = x3(2) = 1,

x4(0) = xa(2) = 0,x4(1) = 1, x4(3) = —1,
x5(0) = 0,x5(2) = x5(3) = =1, x5(1) = x5(4) = 1.
If (2) holds, then

(7) Sy = Ak* + By, for all keN.

Proof. By using (3) and (4), the proof Lemma 2 is similar to the proof of
Lemma 2 in [18]. For the sake of completeness, we give the proof here.

From the definition of By, using Maple program, we may compute the val-
ues of By for k=1,2,---,12. We have

_ 1 1 1 1 41
Bl = —mS(; — %55 + mSB + m52 + ESl’
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By = —3556 — &5 + 3553 + 5552 + 1551,

By = —3556 — 1555 + 1093 + 3552 + 1551,
Byi=—25c— 255+ 54+ &85+ &5 + 254,
Bs = —2:5¢ + 595 + 295 + 292 + 251,

Bs = 1556 — 285 + 1553 + 1552 + 1551,

Br = — 125 4+ 3195 4+ 15595 + 15552 + 551,
Bs=—25s— 255+ 54+ 553+ 5, — 254,
By = 1356 — 1595 + 2093 — 1252 + 3551,

Bio = §5 — 555 — §93 + ¢S2 + 351,

Bi1 = — 1555 — 5555 + 13553 + 15552 + 1551,

Big=—15:— 385+ Ss+ 895+ 15, — 25..

Consequently, we obtain from (4) and A = ﬁ(&; +4S5—53—55—351) that

Ak +B,=5;, forall 1<k<86,
A-T72+ B; =285 — S, = S,

A-8 4+ By =255+ 5, — 251 = Ss,

A-9%+ By = S6 4255 — S — 51 = Sy,

A-10? 4+ Byg = S + 355 — S3 — 251 = S1o,

A 1124+ By = Sg+ 4S5 — S5 — Sy — 251 = S11,

A-122+B12:Sﬁ+4S5+S4—SQ—451:Slg.

Therefore, we proved that (7) holds for 1 < k < 12.
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Assume that Ak% + By, = Si, holds for n < k < n + 11, where n > 1. Then
we deduce from (4) that

Sn+12 — Sn+9 + Sn+8 + Sn+7 - Sn+5 - Sn+4 - Sn+3 + Sn -
:A[(n+9)2+(n+8)2+(n+7)2 —(n+5)? - (n+4)* - (n+3)2+n2]+
+ [Bn+9 + Bnys + Bnyr — Buys — Bnya — Bruys + By

= A(n + 12)2 + Bn+127

which proves that (7) holds for n 4+ 12 and so it is true for all n. In the last
relation, by using (6), we have

Bn+9 + Bn+8 + Bn+7 - Bn+5 - Bn+4 - Bn+3 + Bn -
= Az R0 o xa (k) = pEe g xa(k) + xa(m)| +
A3 (k) = SRS g xa (k) + xa(m)| +
n+6
AL SR xalk = 1) = S0 g xalk = 1)+ xaln - 1)+
A5 [ SRR 6 x5 (B) = 420 5 X (k) —xs (n+10)+x5 (n+2)+ xa(m) | +-D =
= Aoxa(n) + Asxs(n) + Aaxa(n — 1) + Asxs(n+2) + D =

Lemma 2 is proved. |

Lemma 3. Let
T(k) := Bgy1 — Bi—1,

where

B, = Aaxa2(m) + Asxs(m) + Aaxa(m — 1) + Asxs(m) + D
and As, As, Ay, As, D are defined in (6) of Lemma 2. Then
(8) T(k) = Asxs(k) + 24sxa(k) + A5 E5(k),

where x5(k) and xa(k) are the real, non-principal Dirichlet characters, i.e.

x3(0) =0, x3(1) =1, x3(2) = -1,
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Xa(0) = xa(2) =0, x4(1) =1, x4(3)=-1
and
Es(k):=re{0,£1,£2} i k+r=0 (mod?5).

Proof. It is easy to check that

x2(k+1) = x2(k—1) =0, x3(k+1)—xs(k—1) = x3(k)

and
xa(k) — xa(k — 2) = 2xa(k)
hold for all £k € N. Finally, we infer from the definition of x5 that

1-1=0 if k=0 (mod5)
-1-0=-1 if k=1 (mod5)
xs(k+1) —xs(k—1) = —1-1=-2 if k=2 (mod5)
1—(-1)=2 if k=3 (mod5)
0—(-1)=1 if k=4 (mod 5),

consequently xs5(k + 1) — x5(k — 1) = E5(k). Thus, we have
T(k) = Byt1 — Br—1 =
= Ao (xalk+1) = x2(k = 1)) + As(xa(k + 1) = xa(k — 1))+
+ Ag(xaltk) = xalk = 2)) + 45 (xs(b +1) = xs(k— 1)) =
= Asx;(k) + 2Asxa(k) + A5 E5 (k).
Therefore, (8) and Lemma 3 is proved. |

In the following for each a € A we denote by @ the smallest element of A
for which a =@ (mod 4).

Lemma 4. Assume that the arithmetical functions U,V satisfy (1). If (2)
holds, then

a—a

9) Ula) — Aa = U(a) — Aa + T( ) forall a€ A,

where T'(k) is defined in Lemma 3. Consequently

(10) U(a) —Aa=U(r)—Ar if a,re A a=r (mod 120).
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Proof. For each a € A, we have
—a 2 _a 2
) e ()
4
which with (1) implies that

Ula) = U(@) + Susy — Sus_,.

From (7) we have
S s=(5E) - (5E )

. a—a
+B%E+1_B%E_1:AG—A(I+T( 4 ),

which proves (9).

The proof of (10) is clear. Indeed, if a = r (mod 120), then 47 = 0
(mod 30), and so

(1) () <21 ¢ e () <o

Thus, (10) and Lemma 4 is proved. |

3. The proof of Theorem 1.

Assume that the sets
A={a1<ay<---}CN, B:={m?|meN}

and the arithmetical functions f : A+B — C, g: A — Cand h : B — C satisfy
the equation

fla4+n?) =g(a) + h(n?) forall ac AmneN,
furthermore we assume that
SNC A- A

It is obvious that (1) is true for U = g and V' = h. In the notations of Lemma 2
forU=g, V=hand S, =h(n?) (ne€N), weput

§(a):=g(a) — Aa and h(n):=h(n?) — An®> forall a€ AneN.
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Then it follows from Lemma 3 and Lemma 4 that

h(n) = Agxa(n) + Azxa(n) + Aaxa(n — 1) + Asxs(n) + D,

g(a) = gl@) + ()

and
fla+n?) = Ala+n?) +g(a) + h(n)

hold for all a € A,n € N, furthermore

gla)=g(r) if a,re A and a=r (mod 120).

Thus the proof of Theorem 1 is completes. |
4. The proof of Theorem 2.

Assume that the sets
A=P, B:={m?|meN}

and the arithmetical functions F : P+ B - C,G:P - Cand H : B - C
satisfy the equation

(11) F(p+n?) =G(p)+H(n?*) forall peP,neN.

Let
Sy = H(m?) and S:=G(3) - G(2).

First we prove that

S3 =255 — 851 + 25,

Sy =452 — 351 + 35,
S5 =652 — 551 + 65,
S =952 — 851 + 85,

(12)

It follows from (11) that

(13) G(p) —G(q) = Sm — Sn if p—qg=m?—n?

where p,q € P and n,m € N.
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From (13) we have G(7) = S35 — S + G(2), G(11) = S5 — 51 + G(3) and
G(19) = S3—51+G(11) = 255—2514+G(3). Therefore, the relation G(7)+S54 =
= G(19) + S, implies that

(14) Sy — 83 —25 425 —G(3)+G(2) =0.
On the other hand, we also get from (13) that
(15) S5 =54+ G(11) — G(2) =S4+ 53— S1 + G(3) — G(2)
and so
(16) S5+ G(3) — (G(19) + S3) =54 — 2534+ 51 +G(3) —G(2) =0.
Then (14) and (16) imply that
S3 =285 — 51 +2G(3) —2G(2) =25, — S1 + 25

and
Sy =455 — 351 + 3G(3) — 3G(2) =455 — 351 + 35,

which prove (12) for m = 3,4. Finally, we infer from (15) that
S5 = Sy +53 -5, —|—G(3) — G(Q) =655 —551 —|—6G(3) — 6G(2) =655 —551+65,

which proves (12) for m = 5.
Since G(13) = S5 — S1 + G(5) = 352 — 351 + 2G(3) — G(2), we have

Se = G(13) + S5 — G(2) = 955 — 85, + 85,

which proves (12) for m = 6.

Assume that Conjecture 4 holds, then the condition (2) is true, i.e.
SNCP-P.
Thus we infer from (6) and (12) that A3 = Ay = A5 = 0 and

1 ~1
A:ﬂ&—&+@,@:z{&f&fwjpz&f&
which with Lemma 2 implies that

(17) H(n?) = An® + Ayx2(n) + D forall neN.

Finally, by using the fact A3 = A4 = As = 0, we infer from the relations
(9) and (10) of Lemma 4 that

(18) G(p) —Ap=G(p) — Ap forall peP\{2},
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where p € {3,5} such that p =7 (mod 4).
For p = 2, we infer from (13), (17) and (18) that

G(2)=G((5)+H() - H(2?) =
- 5A+G(1)-A} + [A(1_4)+A2} = A+G(1) + As.

The proof of Theorem 2 is completed. |
5. Remarks and corollaries

1. Theorem 1 and Theorem 2 remain valid if f, g, h and F, G, H maps into
an arbitrary Abelian group.

2. Let Ng be the set of those integers n for which the number of prime
power divisors of n (= €(n)) is at most k. By using the method of Chen one
can deduce that N — N, contains every even numbers if £ > 2. Thus Theorem
1 is true for A = Ny, if & > 2.

3. Similar results are true if in Theorem 1 and Theorem 2 the set B is of
the form {n? + M | n € N}, where M > 0 is a given integer.

4. Now we infer from Theorem 1 the following result of Bojan Basic [1]
Corollary. Assume that f : N — C satisfies the relation
(19) f(n? +m?) = f(n)> + f(m)®> for all n,m € N.
Then one of the following cases holds:

(a) f(n)=0 for alln €N,

(b) f(n)?>=1 foralln €N,

(c)  f(n)?>=n? for alln € N.

Proof. Let A= {n? | n € N}. It is obvious that the condition (2) is satisfied.
Let Sy := f(k)2. From 2 =12+ 12,5 =12 4+ 22, 8 = 22 + 22,10 = 12 + 3 and
13 = 22 4 32 we get from (19) that

Sy = 45%7 Sy = (51+SQ)2, Sg = 453, S0 = (51+S3)2 and Si3 = (52+S3)2.
Using Lemma 2, we obtain from S;3 = (S5 + S3)? the equation

Sy(48; —1)(4SF +48; +1— S3) = 0.
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First assume that S; = 0. Then it follows from the fact Spy = (S2 + S4)?
that S3 = 0, consequently f(n) =0 for all n € N.

If S, = %, then we get from the relations S17 = (S7 + S4)? and Sig5 = 453
the following system of equations:

(453 + 3)(453 - 1) =0
(453 —9)(4S3 —1) =0.
This implies that S3 = i which with Lemma 2 shows that A = 0 and Ay =
=A3=A4;=As5=0and D = %. Thus we have f(n)? = % for all n € N.
Finally, assume that S3 = 457 +4S5; + 1, then we get from Si7 = (51 +54)?
and Sog = (S2 + S4)? that S; = 1 and S3 = 9. In this case we have A = 1 and
Ay =A3=A;=A5=D =0, and so f(n)?> =n? for all n € N.
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