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THE FUNCTIONAL EQUATION
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Abstract. We shall investigate the functional equation f(a + b) = g(a) +
+h(b) for all a ∈ A, b ∈ B, where A and B are subsets of natural numbers
satisfying some condition.

1. Introduction

Let P,N and C be the set of primes, positive integers and complex numbers,
respectively. For the sets A, B ⊆ N we define A+ B,A− B as follows:

A+B := {a+ b | a ∈ A, b ∈ B} and A−B := {a− b | a ∈ A, b ∈ B, a > b}.

In this paper we shall investigate those subsets A, B ⊆ N for which if the
functions

f : A+ B → C, g : A → C and h : B → C
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satisfy the condition

f(a+ b) = g(a) + h(b) for all a ∈ A, b ∈ B,

then there is a complex number A such that

f(a+ b)−A(a+ b) = O(1), g(a)−Aa = O(1) and h(b)−Ab = O(1)

for all a ∈ A, b ∈ B.

Many results concerning this topics are known for multiplicative functions,
for example C. Spiro proved that if f is a multiplicative, f(p0) 6= 0 for some
prime p0 and f(p + q) = f(p) + f(q) for all primes p, q, then f(n) = n for
all n ∈ N. For some similar results, we refer the works of P.V. Chung [2],
K.K. Chen and Y.G. Chen [3], P.V. Chung and B.M. Phong [4], J-H. Fang [5],
K-H. Indlekofer and B.M. Phong [6], J.M. De Koninck, I. Kátai and B.M. Phong
[8], B.M. Phong [13]–[18], C. Spiro [19].

Bojan Basic [1] investigated a function f : N→ C such that f(n2 +m2) =
= f(n)2 + f(m)2 is satisfied for all n,m. Let

M := {p1 + p2 + p3 | p1, p2, p3 ∈ P}.

Recently, by using result of H. A. Helfgott concerning the ternary Goldbach
conjecture, I. Kátai and B. M. Phong [7] proved that if the function f : M→ C,
g : P → C satisfy the condition

f (p1 + p2 + p3) = g(p1) + g(p2) + g(p3)

for every p1, p2, p3 ∈ P, then there exist suitable constants A,B ∈ C such that

f(n) = An+ 3B and g(p) = Ap+B for all n ∈M, p ∈ P.

Our purpose of this paper is to prove the following result:

Theorem 1. Assume that the sets

A = {a1 < a2 < · · · } ⊆ N, B := {m2 | m ∈ N}

and the arithmetical functions f : A+B → C, g : A → C and h : B → C satisfy
the equation

f(a+ n2) = g(a) + h(n2) for all a ∈ A, n ∈ N.

If

8N ⊆ A−A,
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then there is a complex number A such that

g(a) = Aa+g̃(a), h(n2) = An2+h̃(n) and f(a+n2) = A(a+n2)+g̃(a)+h̃(n)

hold for all a ∈ A, n ∈ N, furthermore

g̃(a) = g̃(b) if a ≡ b (mod 120), (a, b ∈ A)

and
h̃(n) = h̃(m) if n ≡ m (mod 60), (n,m ∈ N).

Maillet [10] formulated in 1905 the following

Conjecture 1. Every even number is the difference of two primes.

J. Pintz [4] proved that a positive proportion of even numbers in an interval
of type [x, x+(log x)C ] can be written as the difference of two primes if C > C0

and x > x0.

Conjecture 1 is clearly weaker than

Conjecture 2. (Kronecker [9], 1901) Every even number can be expressed in
infinitely many ways as the difference of two primes,

or

Conjecture 3. (Polignac [12], 1912) Every even number can be written in
infinitely many ways as the difference of two consecutive primes.

A weaker form of Conjecture 1 is

Conjecture 4. Every positive number of the form 8n is the difference of two
primes.

We obtain from Theorem 1 the following

Theorem 2. Assume that the sets

A = P, B := {m2 | m ∈ N}

and the arithmetical functions F : P + B → C, G : P → C and H : B → C
satisfy the equation

F (p+ n2) = G(p) +H(n2) for all p ∈ P, n ∈ N.

For each odd prime p let p ∈ {1, 3} such that p ≡ p (mod 4).



290 I. Kátai and B. M. Phong

If Conjecture 4 holds, then there are complex numbers A,A2, D such that

G(p) = Ap+G(p)−Ap,G(2) = A+G(1) +A2,

H(n2) = An2 +A2χ2(n) +D,

F (p+ n2) = A(p+ n2) +G(p)−Ap+A2χ2(n) +D

for all p ∈ P \ {2}, n ∈ N, where χ2(n) is the Dirichlet character (mod 2), that
is χ2(0) = 0, χ2(1) = 1.

2. Lemmata

In this section we denote by A,B the following sets:

A = {a1 < a2 < · · · } ⊆ N and B := {m2 | m ∈ N}.

We consider those arithmetical functions

U : A → C and V : B → C,

for which

(1) U(a) + V (n2) = U(b) + V (m2) if a+ n2 = b+m2, a, b ∈ A, n,m ∈ N.

Let Sm := V (m2) (m ∈ N).

Lemma 1. Assume that the arithmetical functions U, V satisfy (1). If

(2) 8N ⊆ A−A

is satisfied, then

(3) Sn+12 = Sn+9 + Sn+8 + Sn+7 − Sn+5 − Sn+4 − Sn+3 + Sn

holds for all n ∈ N and

(4)



S7 = 2S5 − S1

S8 = 2S5 + S4 − 2S1

S9 = S6 + 2S5 − S2 − S1

S10 = S6 + 3S5 − S3 − 2S1

S11 = S6 + 4S5 − S3 − S2 − 2S1

S12 = S6 + 4S5 + S4 − S2 − 4S1.
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Proof. The proof of this result is similar to the proof of Lemma 1 in [18].

First we infer from (1) and (2) that for each m ∈ N,m > 7 we have

(5) S2m+1 − S2m−1 = Sm+2 − Sm−2 and S2m+1 − S2m−5 = Sm+5 − Sm−7.

Indeed, for m ∈ N,m > 7 we have{
8m = (2m+ 1)2 − (2m− 1)2 = (m+ 2)2 − (m− 2)2

24m = (2m+ 1)2 − (2m− 5)2 = (m+ 5)2 − (m− 7)2,

and so (2) implies that there are x, x′, y, y′ ∈ A, x > x′, y > y′ such that

x− x′ = (2m+ 1)2 − (2m− 1)2 = (m+ 2)2 − (m− 2)2,

and
y − y′ = (2m+ 1)2 − (2m− 5)2 = (m+ 5)2 − (m− 7)2.

These with (1) imply that

U(x)− U(x′) = S2m+1 − S2m−1 = Sm+2 − Sm−2,

and
U(y)− U(y′) = S2m+1 − S2m−5 = Sm+5 − Sm−7.

Hence (5) is proved.

Finally, we infer from (5) that

Sm+5 − Sm−7 = S2m+1 − S2m−5 =

=
(
S2m+1 − S2m−1

)
+
(
S2m−1 − S2m−3

)
+
(
S2m−3 − S2m−5

)
=

=
(
Sm+2 − Sm−2

)
+
(
Sm+1 − Sm−3

)
+
(
Sm − Sm−4

)
.

This with m := n+ 7 proves that (3) holds for all n ∈ N.

Now we prove (4). Indeed, by using (5), we have

S7 = S2.3+1 = 2S5 − S1,

S9 = S2.4+1 = S7 + S6 − S2 = S6 + 2S5 − S2 − S1

and
S11 = S2.5+1 = S9 + S7 − S3 = S6 + 4S5 − S3 − S2 − 2S1.

Since the following three numbers

82 − 42 = 72 − 12, 102 − 22 = 112 − 52, 122 − 82 = 92 − 12
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are in A−A, therefore from (1) and (2) we have

S8 = S7 + S4 − S1 = 2S5 + S4 − 2S1,

S10 = S11 + S2 − S5 = S6 + 3S5 − S3 − 2S1

and

S12 = S9 + S8 − S1 = S6 + 4S5 + S4 − S2 − 4S1.

which completes the proof (4).

Lemma 1 is proved. �

Lemma 2. Assume that the arithmetical functions U, V satisfy (1). Let

(6)



A := 1
120 (S6 + 4S5 − S3 − S2 − 3S1),

A2 := −1
8 (S6 − 4S5 + 4S4 − S3 − 3S1),

A3 := −1
3 (S6 − 2S5 + 2S3 − S2),

A4 := 1
4 (S6 − 2S4 − S3 + S2 + S1),

A5 := 1
5 (S6 − S5 − S3 − S2 + 2S1),

D := 1
4 (S6 − 4S5 + 2S4 + 3S3 + S2 + S1),

Bk := A2χ2(k) +A3χ3(k) +A4χ4(k − 1) +A5χ5(k) +D,

where χ2(k) (mod 2), χ3(k) (mod 3) are the principal Dirichlet characters and
χ4(k) (mod 4), χ5(k) (mod 5) are the real, non-principal Dirichlet characters,
i.e.

χ2(0) = 0, χ2(1) = 1, χ3(0) = 0, χ3(1) = χ3(2) = 1,

χ4(0) = χ4(2) = 0, χ4(1) = 1, χ4(3) = −1,

χ5(0) = 0, χ5(2) = χ5(3) = −1, χ5(1) = χ5(4) = 1.

If (2) holds, then

(7) Sk = Ak2 +Bk for all k ∈ N.

Proof. By using (3) and (4), the proof Lemma 2 is similar to the proof of
Lemma 2 in [18]. For the sake of completeness, we give the proof here.

From the definition of Bk, using Maple program, we may compute the val-
ues of Bk for k = 1, 2, · · · , 12. We have

B1 = − 1
120S6 − 1

30S5 + 1
120S3 + 1

120S2 + 41
40S1,
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B2 = − 1
30S6 − 2

15S5 + 1
30S3 + 31

30S2 + 1
10S1,

B3 = − 3
30S6 − 3

10S5 + 43
40S3 + 3

40S2 + 9
40S1,

B4 = − 2
15S6 − 8

15S5 + S4 + 2
15S3 + 2

15S2 + 2
5S1,

B5 = − 5
24S6 + 1

6S5 + 5
24S3 + 5

24S2 + 5
8S1,

B6 = 7
10S6 − 6

5S5 + 3
10S3 + 3

10S2 + 9
10S1,

B7 = − 49
120S6 + 11

30S5 + 49
120S3 + 49

120S2 + 9
40S1,

B8 = − 8
15S6 − 2

15S5 + S4 + 8
15S3 + 8

15S2 − 2
5S1,

B9 = 13
40S6 − 7

10S5 + 27
40S3 − 13

40S2 + 41
40S1,

B10 = 1
6S6 − 1

3S5 − 1
6S3 + 5

6S2 + 1
2S1,

B11 = − 1
120S6 − 1

30S5 + 1
120S3 + 1

120S2 + 41
40S1,

B12 = − 1
5S6 − 4

5S5 + S4 + 6
5S3 + 1

5S2 − 2
5S1.

Consequently, we obtain from (4) and A = 1
120 (S6+4S5−S3−S2−3S1) that

A · k2 +Bk = Sk for all 1 ≤ k ≤ 6,

A · 72 +B7 = 2S5 − S1 = S7,

A · 82 +B8 = 2S5 + S4 − 2S1 = S8,

A · 92 +B9 = S6 + 2S5 − S2 − S1 = S9,

A · 102 +B10 = S6 + 3S5 − S3 − 2S1 = S10,

A · 112 +B11 = S6 + 4S5 − S3 − S2 − 2S1 = S11,

A · 122 +B12 = S6 + 4S5 + S4 − S2 − 4S1 = S12.

Therefore, we proved that (7) holds for 1 ≤ k ≤ 12.
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Assume that Ak2 +Bk = Sk holds for n ≤ k ≤ n+ 11, where n ≥ 1. Then
we deduce from (4) that

Sn+12 = Sn+9 + Sn+8 + Sn+7 − Sn+5 − Sn+4 − Sn+3 + Sn =

= A
[
(n+ 9)2 + (n+ 8)2 + (n+ 7)2 − (n+ 5)2 − (n+ 4)2 − (n+ 3)2 + n2

]
+

+
[
Bn+9 +Bn+8 +Bn+7 −Bn+5 −Bn+4 −Bn+3 +Bn

]
=

= A(n+ 12)2 +Bn+12,

which proves that (7) holds for n + 12 and so it is true for all n. In the last
relation, by using (6), we have

Bn+9 +Bn+8 +Bn+7 −Bn+5 −Bn+4 −Bn+3 +Bn =

= A2

[∑n+9
k=n+6 χ2(k)−

∑n+6
k=n+3 χ2(k) + χ2(n)

]
+

+A3

[∑n+9
k=n+7 χ3(k)−

∑n+5
k=n+3 χ3(k) + χ3(n)

]
+

+A4

[∑n+9
k=n+6 χ4(k − 1)−

∑n+6
k=n+3 χ4(k − 1) + χ4(n− 1)

]
+

+A5

[∑n+10
k=n+6 χ5(k)−

∑n+6
k=n+2 χ5(k)−χ5(n+10)+χ5(n+2)+χ5(n)

]
+D =

= A2χ2(n) +A3χ3(n) +A4χ4(n− 1) +A5χ5(n+ 2) +D =

= A2χ2(n+12)+A3χ3(n+12)+A4χ4(n+11)+A5χ5(n+12)+D = Bn+12.

Lemma 2 is proved. �

Lemma 3. Let
T (k) := Bk+1 −Bk−1,

where

Bm = A2χ2(m) +A3χ3(m) +A4χ4(m− 1) +A5χ5(m) +D

and A2, A3, A4, A5, D are defined in (6) of Lemma 2. Then

(8) T (k) = A3χ
∗
3(k) + 2A4χ4(k) +A5E5(k),

where χ∗3(k) and χ4(k) are the real, non-principal Dirichlet characters, i.e.

χ∗3(0) = 0, χ∗3(1) = 1, χ∗3(2) = −1,
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χ4(0) = χ4(2) = 0, χ4(1) = 1, χ4(3) = −1

and

E5(k) := r ∈ {0,±1,±2} if k + r ≡ 0 (mod 5).

Proof. It is easy to check that

χ2(k + 1)− χ2(k − 1) = 0, χ3(k + 1)− χ3(k − 1) = χ∗3(k)

and

χ4(k)− χ4(k − 2) = 2χ4(k)

hold for all k ∈ N. Finally, we infer from the definition of χ5 that

χ5(k + 1)− χ5(k − 1) =



1− 1 = 0 if k ≡ 0 (mod 5)

− 1− 0 = −1 if k ≡ 1 (mod 5)

− 1− 1 = −2 if k ≡ 2 (mod 5)

1− (−1) = 2 if k ≡ 3 (mod 5)

0− (−1) = 1 if k ≡ 4 (mod 5),

consequently χ5(k + 1)− χ5(k − 1) = E5(k). Thus, we have

T (k) = Bk+1 −Bk−1 =

= A2

(
χ2(k + 1)− χ2(k − 1)

)
+A3

(
χ3(k + 1)− χ3(k − 1)

)
+

+A4

(
χ4(k)− χ4(k − 2)

)
+A5

(
χ5(k + 1)− χ5(k − 1)

)
=

= A3χ
∗
3(k) + 2A4χ4(k) +A5E5(k).

Therefore, (8) and Lemma 3 is proved. �

In the following for each a ∈ A we denote by a the smallest element of A
for which a ≡ a (mod 4).

Lemma 4. Assume that the arithmetical functions U, V satisfy (1). If (2)
holds, then

(9) U(a)−Aa = U(a)−Aa+ T
(a− a

4

)
for all a ∈ A,

where T (k) is defined in Lemma 3. Consequently

(10) U(a)−Aa = U(r)−Ar if a, r ∈ A, a ≡ r (mod 120).
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Proof. For each a ∈ A, we have

a+
(a− a

4
− 1
)2

= a+
(a− a

4
+ 1
)2
,

which with (1) implies that

U(a) = U(a) + S a−a
4 +1 − S a−a

4 −1
.

From (7) we have

S a−a
4 +1 − S a−a

4 −1
= A

[(a− a
4

+ 1
)2
−
(a− a

4
− 1
)2]

+

+B a−a
4 +1 −B a−a

4 −1
= Aa−Aa+ T

(a− a
4

)
,

which proves (9).

The proof of (10) is clear. Indeed, if a ≡ r (mod 120), then a−r
4 ≡ 0

(mod 30), and so

T
(a− r

4

)
= A3χ

∗
3

(a− r
4

)
+ 2A4χ4

(a− r
4

)
+A5E5

(a− r
4

)
= 0.

Thus, (10) and Lemma 4 is proved. �

3. The proof of Theorem 1.

Assume that the sets

A = {a1 < a2 < · · · } ⊆ N, B := {m2 | m ∈ N}

and the arithmetical functions f : A+B → C, g : A → C and h : B → C satisfy
the equation

f(a+ n2) = g(a) + h(n2) for all a ∈ A, n ∈ N,

furthermore we assume that

8N ⊆ A−A.

It is obvious that (1) is true for U = g and V = h. In the notations of Lemma 2
for U = g, V = h and Sn = h(n2) (n ∈ N), we put

g̃(a) := g(a)−Aa and h̃(n) := h(n2)−An2 for all a ∈ A, n ∈ N.
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Then it follows from Lemma 3 and Lemma 4 that

h̃(n) = A2χ2(n) +A3χ3(n) +A4χ4(n− 1) +A5χ5(n) +D,

g̃(a) = g̃(a) + T
(a− a

4

)
and

f(a+ n2) = A(a+ n2) + g̃(a) + h̃(n)

hold for all a ∈ A, n ∈ N, furthermore

g̃(a) = g̃(r) if a, r ∈ A and a ≡ r (mod 120).

Thus the proof of Theorem 1 is completes. �

4. The proof of Theorem 2.

Assume that the sets

A = P, B := {m2 | m ∈ N}

and the arithmetical functions F : P + B → C, G : P → C and H : B → C
satisfy the equation

(11) F (p+ n2) = G(p) +H(n2) for all p ∈ P, n ∈ N.

Let
Sm := H(m2) and S := G(3)−G(2).

First we prove that

(12)


S3 = 2S2 − S1 + 2S,

S4 = 4S2 − 3S1 + 3S,

S5 = 6S2 − 5S1 + 6S,

S6 = 9S2 − 8S1 + 8S,

It follows from (11) that

(13) G(p)−G(q) = Sm − Sn if p− q = m2 − n2

where p, q ∈ P and n,m ∈ N.
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From (13) we have G(7) = S3 − S2 + G(2), G(11) = S3 − S1 + G(3) and
G(19) = S3−S1+G(11) = 2S3−2S1+G(3). Therefore, the relation G(7)+S4 =
= G(19) + S2 implies that

(14) S4 − S3 − 2S2 + 2S1 −G(3) +G(2) = 0.

On the other hand, we also get from (13) that

(15) S5 = S4 +G(11)−G(2) = S4 + S3 − S1 +G(3)−G(2)

and so

(16) S5 +G(3)− (G(19) + S3) = S4 − 2S3 + S1 +G(3)−G(2) = 0.

Then (14) and (16) imply that

S3 = 2S2 − S1 + 2G(3)− 2G(2) = 2S2 − S1 + 2S

and
S4 = 4S2 − 3S1 + 3G(3)− 3G(2) = 4S2 − 3S1 + 3S,

which prove (12) for m = 3, 4. Finally, we infer from (15) that

S5 = S4 +S3−S1 +G(3)−G(2) = 6S2−5S1 +6G(3)−6G(2) = 6S2−5S1 +6S,

which proves (12) for m = 5.

Since G(13) = S3 − S1 +G(5) = 3S2 − 3S1 + 2G(3)−G(2), we have

S6 = G(13) + S5 −G(2) = 9S2 − 8S1 + 8S,

which proves (12) for m = 6.

Assume that Conjecture 4 holds, then the condition (2) is true, i.e.

8N ⊆ P − P.

Thus we infer from (6) and (12) that A3 = A4 = A5 = 0 and

A =
1

4

(
S2 − S1 + S

)
, A2 =

−1

4

(
S2 − S1 − 3S

)
, D = S1 − S,

which with Lemma 2 implies that

(17) H(n2) = An2 +A2χ2(n) +D for all n ∈ N.

Finally, by using the fact A3 = A4 = A5 = 0, we infer from the relations
(9) and (10) of Lemma 4 that

(18) G(p)−Ap = G(p)−Ap for all p ∈ P \ {2},
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where p ∈ {3, 5} such that p ≡ p (mod 4).

For p = 2, we infer from (13), (17) and (18) that

G(2) = G(5) +H(1)−H(22) =

=
[
5A+G(1)−A

]
+
[
A(1− 4) +A2

]
= A+G(1) +A2.

The proof of Theorem 2 is completed. �

5. Remarks and corollaries

1. Theorem 1 and Theorem 2 remain valid if f, g, h and F,G,H maps into
an arbitrary Abelian group.

2. Let Nk be the set of those integers n for which the number of prime
power divisors of n (= Ω(n)) is at most k. By using the method of Chen one
can deduce that Nk−Nk contains every even numbers if k ≥ 2. Thus Theorem
1 is true for A = Nk, if k ≥ 2.

3. Similar results are true if in Theorem 1 and Theorem 2 the set B is of
the form {n2 +M | n ∈ N}, where M ≥ 0 is a given integer.

4. Now we infer from Theorem 1 the following result of Bojan Basic [1]

Corollary. Assume that f : N→ C satisfies the relation

(19) f(n2 +m2) = f(n)2 + f(m)2 for all n,m ∈ N.

Then one of the following cases holds:

(a) f(n) = 0 for all n ∈ N,

(b) f(n)2 = 1
4 for all n ∈ N,

(c) f(n)2 = n2 for all n ∈ N.

Proof. Let A = {n2 | n ∈ N}. It is obvious that the condition (2) is satisfied.
Let Sk := f(k)2. From 2 = 12 + 12, 5 = 12 + 22, 8 = 22 + 22, 10 = 12 + 32 and
13 = 22 + 32 we get from (19) that

S2 = 4S2
1 , S5 = (S1+S2)2, S8 = 4S2

2 , S10 = (S1+S3)2 and S13 = (S2+S3)2.

Using Lemma 2, we obtain from S13 = (S2 + S3)2 the equation

S1(4S1 − 1)(4S2
1 + 4S1 + 1− S3) = 0.
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First assume that S1 = 0. Then it follows from the fact S20 = (S2 + S4)2

that S3 = 0, consequently f(n) = 0 for all n ∈ N.

If S1 = 1
4 , then we get from the relations S17 = (S1 + S4)2 and S18 = 4S2

3

the following system of equations:{
(4S3 + 3)(4S3 − 1) = 0

(4S3 − 9)(4S3 − 1) = 0.

This implies that S3 = 1
4 , which with Lemma 2 shows that A = 0 and A2 =

= A3 = A4 = A5 = 0 and D = 1
4 . Thus we have f(n)2 = 1

4 for all n ∈ N.

Finally, assume that S3 = 4S2
1 +4S1 +1, then we get from S17 = (S1 +S4)2

and S20 = (S2 + S4)2 that S1 = 1 and S3 = 9. In this case we have A = 1 and
A2 = A3 = A4 = A5 = D = 0, and so f(n)2 = n2 for all n ∈ N.
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