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Abstract. Let fk(n) be the k-th iterates of a function f(n), i.e. f0(n) :=
n, f1(n) := f(n), . . . , fk+1(n) := f(fk(n)) (k = 1, 2, · · · ). We prove that if
n ∈ N and the function f is defined by f(p) = p and f(pα) = p + p2 for
all primes p, α ≥ 2, then for some k ∈ N there are an

u ∈ {1, 2, 3, 2.3, 23.32, 22.3, 2.32, 23.3}

and a square-free D ∈ N, (D, 6) = 1 such that fk(n) = u.D.

1. Let, as usual, P, N, N0, Z, R, C be the set of primes, positive integers,
non-negative integers, integers, real and complex numbers, respectively. (n,m)
denotes the greatest common divisor of n and m. We say that f : N → R is an
additive function, if f(mn) = f(m)+ f(n) for all (m,n) = 1. Let A denote the
set of all additive functions. A function g : N → C is multiplicative, if g(1) = 1
and g(mn) = g(m) · g(n) for all (m,n) = 1. We denote by M the set of all
multiplicative functions.
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For some n let n = pα1
1 · · · pαr

r be its prime decomposition. We say that n
is square-free, if α1 = · · · = αr = 1, and n is square-full if minαj ≥ 2. The
Möbius function µ(n) is defined as follows:

µ(n) =


1 if n = 1,

0 if maxαj ≥ 2,

(−1)r if α1 = · · · = αr = 1.

It is clear that µ ∈ M, |µ(n)| = 1 if and only if n is square free.

We are interested in such multiplicative functions f for which f(n) ∈ N (n ∈
N), and f(pα) = Qα(p) for all primes p, Qα(z) ∈ Z[z], Qα(z) > 0 for every
z ∈ N. Many of interesting multiplicative functions is of that type, e.g.

σ(n) = sum of divisors function,

σ⋆(n) = sum of unitary divisors function,

σ(e)(n) = sum of exponential divisors function,

φ(n) = Euler’s totient function.

We have

φ(pα) = pα−1(p− 1), σ(pα) =
pα+1 − 1

p− 1
,

σ⋆(pα) = 1 + pα, σ(e)(pα) =
∑
β|α

pβ .

The corresponding Qα(0) ∈ {−1, 1} in the cases f = φ, σ, σ⋆, while in the
case f = σ(e) we have Qα(0) = 0.

Let

f0(n) := n, f1(n) := f(n), . . . , fk+1(n) := f(fk(n)), (k = 1, 2, · · · ).

Some functions of fk(n), especially ω(fk(n)), ω(fk(p+ 1)) have been inves-
tigated in several papers. Here ω(n) is the number of prime factors of n. For
the function f(n) = σ(e)(n) is was proved that

lim
x→∞

1

x
♮
{
n ≤ x

∣∣∣ fj(n)

fj−1(n)
< αj , j = 1, 2, · · · , k

}
=

= Fk(α1, · · · , αk)

exists, Fk is strictly monotonic in each variables in (α1, · · · , αk) ∈ (1,∞)k.
(See [1] and the previous papers [2], [3], [4]).
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If f = σ(e), then f(n) > n holds for every non square-free n, and f(n) = n
if n is square-free (n = 1 is included).

Conjecture 1. For every n ∈ N there exists a constant Kn such that

p2 - fk(n) (k = 0, 1 · · · ) if p > Kn.

Conjecture 2. There exists an absolute constant R such that for every n
there is a k0(n) such that

p2 - fk(n) if p > R, k > k0(n).

We are unable to prove our conjectures. We shall prove such theorem in
the case when

f(pα) =

{
p if α = 1,

p+ p2 if α ≥ 2.

2. Let Qα(z) ∈ Z[z] be such a sequence of polynomials (α = 1, 2, · · · ) for
which

Q1(z) = z, Qα(z) = z +

t(α)∑
ℓ=2

aℓ(α)z
ℓ,

where
t(α) ≤ Cα, |aℓ(α)| ≤ C (ℓ = 2, · · · , t(α), α ≥ 2),

C is a suitable constant, Qα(n) ≥ n.

Let f ∈ M be defined by

f(pα) = Qα(p) (p ∈ P).

Let h be a fixed positive number. Let n = f0(n), nj = fj(n) (j = 1, · · · , h).
We can write n as n = Km, where K is square-full, m is square-free, (K,m) =
1. Let m1 be the largest divisor of m which is coprime to f(K). Let m = m1ν1.
Then ν1 | f(K). Write K1 := f(K)ν1. We have

n1 = f(n) = f(Km) = f(K)m = f(K)m1ν1 = K1m1.

Then clearly (K1,m1) = 1 and m1 is square-free.

We can continue this procedure. We have

n2 = f(K1)m1 = f(K1)ν2m2,
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where

ν2|f(K1), (m2, f(K1)) = 1, mh = ν2m2, K2 = f(K1)ν2.

In general we have

nj = f(Kj−1)mj−1 = Kjmj , Kj = f(Kj−1)νj

and
mj−1 = νjmj , νj |f(Kj−1), (mj ,Kj) = 1

for j = 1, · · · , k.

Assume now that K is a fixed square-full integer, K1, ν1, · · · ,Kh, νh are
defined as follows:

(1) (ν1,K) = 1, ν1 is square-free, ν1|f(K), K1 = f(K)ν1,

(2) (ν2,KK1) = 1, ν2 is square-free, ν2|f(K1), K2 = f(K1)ν2,

...

(h) (νh,KK1 · · ·Kh−1) = 1, νh is square-free, νh|f(Kh−1),Kh = f(Kh−1)νh.

Let us consider those integers n which can be written as n = KTM , where
T = ν1 · · · νh, (M,KK1 · · ·Kh) = 1, M is square-free.

For such an n we have

n = KTM, n1 = f(K)TM,
n1

n
=

f(K)

K
=

K1

ν1K
,

n2 = f
(
f(K)ν1

)
ν2 · · · νhM, n1 = f(K)ν1ν2 · · · νhM,

thus
n2

n1
=

f(K1)

K1
=

K2

ν2K1
,

and in general
nj+1

nj
=

Kj+1

νj+1Kj
(j = 1, · · · , h− 1).

Let A be an arbitrary positive integer and

M
(
x|A

)
=

∑
n≤x

(n,A)=1

|µ(n)|.

Let κ(p) = 1
1+ 1

p

(p ∈ P), κ be strongly multiplicative.
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It can be proved easily that

M
(
x|A

)
= (1 + ox(1))

6

π2
κ(A)x.

Consequently

♮
{
n = KTM ≤ x, M is square-free, (M, KT ) = 1

}
=

= (1 + ox(1))
6

π2

κ(KT )

KT
x

for every fixed K and T .

Hence we obtain easily

Theorem 1. There exists a sequence(
y
(m)
1 , · · · , y(m)

h

)
∈ (0,∞)h (m = 1, 2 · · · )

such that

1

x
♮
{
n ≤ x

∣∣∣ fj(n)

fj−1(n)
= y

(m)
j , j = 1, · · · , h

}
→ dj (x → ∞),

and
∞∑
j=1

dj = 1.

Let

(∗) R
(
x|A

)
=

∑
p≤x

(p+1,A)=1

|µ(p+ 1)|.

By using the prime number theorem for the arithmetical progression, we obtain
that

R
(
x|A

)
= (1 + ox(1))

6

π2
D(A)lix,

where

D(A) =
∏
p|A

(
1− 1

p

)
.
∏
p-A

(
1− 1

p(p− 1)

)
=

∏
p|A

( p2 − 2p

p2 − p− 1

)
E

and

E :=
∏
p∈P

(
1− 1

p(p− 1)

)
.
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Hence we can deduce

Theorem 2. There exists a sequence(
z
(n)
1 , · · · , z(n)h

)
∈ (0,∞)h (n = 1, 2 · · · )

such that

lim
x→∞

1

π(x)
♮

{
p ≤ x

∣∣∣ fj(p+ 1)

fj−1(p+ 1)
= z

(n)
j , j = 1, · · · , h

}
→ Dj (x → ∞)

and
∞∑
j=1

Dj = 1.

Remark. The relation (∗) is even uniform as 1 ≤ A ≤ C1(log x)
C2 , where

C1, C2 are arbitrary constants. This easily follows from the Siegel-Walfisz
theorem.

3. Let

f(pα) =

{
p if α = 1,

p+ p2 if α ≥ 2.

Theorem 3. Let n ∈ N. Then for some k ∈ N there are an

u ∈ {1, 2, 3, 2.3, 23.32, 22.3, 2.32, 23.3}

and a square-free D ∈ N, (D, 6) = 1 such that

fk(n) = u.D.

Furthermore, the following possibilities can be occur:

a) If u ∈ {1, 2, 3, 2.3, 23.32}, then

fk+ℓ(n) = u.D for all ℓ = 0, 1, 2, · · · .

b) If u ∈ {22.3, 2.32, 23.3}, then

fk+ℓ(n) ∈ {22.3.D, 2.32.D, 23.3.D} for all ℓ = 0, 1, 2, · · · .
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Proof of Theorem 3. For each n ∈ N, n > 1 let

κ(n) := max
pα∥ n
α≥2

{ p ∈ P }.

Let us observe that if κ(n) ≥ 5, then κ(f(n)) < κ(n). This is obvious. Let

n = pα1
1 · · · pαj

j pj+1 · · · pr,

where p1 < · · · < pj , α1 ≥ 2, · · · , αj ≥ 2 and (p1 · · · pj , pj+1 · · · pr) = 1. Since
κ(n) = pj ≥ 5, αj ≥ 2, therefore f(p

αj

j ) = pj(1 + pj), 1 + pj is even, thus the
largest prime factor of 1+pj is less than pj . Consequently κ(f(n)) < pj = κ(n).

Hence it follows that for every n in the sequence f0(n), f1(n), · · · , there is
a k for which p2 | fk(n) implies that p = 2 or p = 3. Then fk(n) = 2α3βD,
(D, 6) = 1, D is square-free. It is clear that

f(2α3β) ∈ {1, f(2), f(3), f(22), f(32), f(2.3), f(22.3), f(2.32), f(22.32)} =

= {1, 2, 3, 2.3, 22.3, 2.32, 23.3, 23.3, 23.32} := U .

Let

U1 = {1, 2, 3, 2.3, 23.32} and U2 = {22.3, 2.32, 23.3}.

Let us consider the graph

2α.3β → 2α1 .3β1 if f(2α.3β) = 2α1 .3β1 .

It is clear that

a → a for all a ∈ U1.

Furthermore

22.3 → 2.32 → 23.3 → 2.32.

Theorem 3 is proved.
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