ON THE ITERATES OF SOME MULTIPLICATIVE FUNCTIONS

Hoang Thi Lan Giao (Hue, Vietnam)

Imre Kátai and Bui Minh Phong (Budapest, Hungary)
Communicated by J.-M. DeKoninck
(Received July 30, 2013; accepted February 3, 2014)

Abstract

Let $f_{k}(n)$ be the k-th iterates of a function $f(n)$, i.e. $f_{0}(n):=$ $n, f_{1}(n):=f(n), \ldots, f_{k+1}(n):=f\left(f_{k}(n)\right)(k=1,2, \cdots)$. We prove that if $n \in \mathbb{N}$ and the function f is defined by $f(p)=p$ and $f\left(p^{\alpha}\right)=p+p^{2}$ for all primes $p, \alpha \geq 2$, then for some $k \in \mathbb{N}$ there are an $$
u \in\left\{1,2,3,2.3,2^{3} .3^{2}, 2^{2} .3,2.3^{2}, 2^{3} .3\right\}
$$ and a square-free $\mathcal{D} \in \mathbb{N},(\mathcal{D}, 6)=1$ such that $f_{k}(n)=u \cdot \mathcal{D}$.

1. Let, as usual, $\mathcal{P}, \mathbb{N}, \mathbb{N}_{0}, \mathbb{Z}, \mathbb{R}, \mathbb{C}$ be the set of primes, positive integers, non-negative integers, integers, real and complex numbers, respectively. (n, m) denotes the greatest common divisor of n and m. We say that $f: \mathbb{N} \rightarrow \mathbb{R}$ is an additive function, if $f(m n)=f(m)+f(n)$ for all $(m, n)=1$. Let \mathcal{A} denote the set of all additive functions. A function $g: \mathbb{N} \rightarrow \mathbb{C}$ is multiplicative, if $g(1)=1$ and $g(m n)=g(m) \cdot g(n)$ for all $(m, n)=1$. We denote by \mathcal{M} the set of all multiplicative functions.

Key words and phrases: multiplicative functions, additive functions, iterates of function. 2010 Mathematics Subject Classification: 11A07, 11A25, 11N25, 11N64.
This work was completed with the support of the Hungarian and Vietnamese TET (grant agreement no. TET 10-1-2011-0645).

For some n let $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ be its prime decomposition. We say that n is square-free, if $\alpha_{1}=\cdots=\alpha_{r}=1$, and n is square-full if $\min \alpha_{j} \geq 2$. The Möbius function $\mu(n)$ is defined as follows:

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } \max \alpha_{j} \geq 2 \\ (-1)^{r} & \text { if } \alpha_{1}=\cdots=\alpha_{r}=1\end{cases}
$$

It is clear that $\mu \in \mathcal{M},|\mu(n)|=1$ if and only if n is square free.
We are interested in such multiplicative functions f for which $f(n) \in \mathbb{N}(n \in$ \mathbb{N}), and $f\left(p^{\alpha}\right)=Q_{\alpha}(p)$ for all primes $p, Q_{\alpha}(z) \in \mathbb{Z}[z], Q_{\alpha}(z)>0$ for every $z \in \mathbb{N}$. Many of interesting multiplicative functions is of that type, e.g.

$$
\begin{aligned}
& \sigma(n)=\text { sum of divisors function } \\
& \sigma^{\star}(n)=\text { sum of unitary divisors function, } \\
& \sigma^{(e)}(n)=\text { sum of exponential divisors function, } \\
& \varphi(n)=\text { Euler's totient function. }
\end{aligned}
$$

We have

$$
\begin{gathered}
\varphi\left(p^{\alpha}\right)=p^{\alpha-1}(p-1), \quad \sigma\left(p^{\alpha}\right)=\frac{p^{\alpha+1}-1}{p-1} \\
\sigma^{\star}\left(p^{\alpha}\right)=1+p^{\alpha}, \quad \sigma^{(e)}\left(p^{\alpha}\right)=\sum_{\beta \mid \alpha} p^{\beta}
\end{gathered}
$$

The corresponding $Q_{\alpha}(0) \in\{-1,1\}$ in the cases $f=\varphi, \sigma, \sigma^{\star}$, while in the case $f=\sigma^{(e)}$ we have $Q_{\alpha}(0)=0$.

Let

$$
f_{0}(n):=n, f_{1}(n):=f(n), \ldots, f_{k+1}(n):=f\left(f_{k}(n)\right), \quad(k=1,2, \cdots)
$$

Some functions of $f_{k}(n)$, especially $\omega\left(f_{k}(n)\right), \omega\left(f_{k}(p+1)\right)$ have been investigated in several papers. Here $\omega(n)$ is the number of prime factors of n. For the function $f(n)=\sigma^{(e)}(n)$ is was proved that

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{1}{x} \natural\left\{n \leq x \left\lvert\, \frac{f_{j}(n)}{f_{j-1}(n)}<\alpha_{j}\right., j=1,2, \cdots, k\right\}= \\
& =F_{k}\left(\alpha_{1}, \cdots, \alpha_{k}\right)
\end{aligned}
$$

exists, F_{k} is strictly monotonic in each variables in $\left(\alpha_{1}, \cdots, \alpha_{k}\right) \in(1, \infty)^{k}$. (See [1] and the previous papers [2], [3], [4]).

If $f=\sigma^{(e)}$, then $f(n)>n$ holds for every non square-free n, and $f(n)=n$ if n is square-free ($n=1$ is included).

Conjecture 1. For every $n \in \mathbb{N}$ there exists a constant K_{n} such that

$$
p^{2} \nmid f_{k}(n) \quad(k=0,1 \cdots) \text { if } p>K_{n} .
$$

Conjecture 2. There exists an absolute constant R such that for every n there is a $k_{0}(n)$ such that

$$
p^{2} \nmid f_{k}(n) \quad \text { if } p>R, k>k_{0}(n) .
$$

We are unable to prove our conjectures. We shall prove such theorem in the case when

$$
f\left(p^{\alpha}\right)= \begin{cases}p & \text { if } \alpha=1 \\ p+p^{2} & \text { if } \alpha \geq 2\end{cases}
$$

2. Let $Q_{\alpha}(z) \in \mathbb{Z}[z]$ be such a sequence of polynomials $(\alpha=1,2, \cdots)$ for which

$$
Q_{1}(z)=z, \quad Q_{\alpha}(z)=z+\sum_{\ell=2}^{t(\alpha)} a_{\ell}(\alpha) z^{\ell}
$$

where

$$
t(\alpha) \leq C \alpha,\left|a_{\ell}(\alpha)\right| \leq C \quad(\ell=2, \cdots, t(\alpha), \alpha \geq 2)
$$

C is a suitable constant, $Q_{\alpha}(n) \geq n$.
Let $f \in \mathcal{M}$ be defined by

$$
f\left(p^{\alpha}\right)=Q_{\alpha}(p) \quad(p \in \mathcal{P}) .
$$

Let h be a fixed positive number. Let $n=f_{0}(n), n_{j}=f_{j}(n)(j=1, \cdots, h)$. We can write n as $n=K m$, where K is square-full, m is square-free, $(K, m)=$ 1. Let m_{1} be the largest divisor of m which is coprime to $f(K)$. Let $m=m_{1} \nu_{1}$. Then $\nu_{1} \mid f(K)$. Write $K_{1}:=f(K) \nu_{1}$. We have

$$
n_{1}=f(n)=f(K m)=f(K) m=f(K) m_{1} \nu_{1}=K_{1} m_{1} .
$$

Then clearly $\left(K_{1}, m_{1}\right)=1$ and m_{1} is square-free.
We can continue this procedure. We have

$$
n_{2}=f\left(K_{1}\right) m_{1}=f\left(K_{1}\right) \nu_{2} m_{2}
$$

where

$$
\nu_{2} \mid f\left(K_{1}\right), \quad\left(m_{2}, f\left(K_{1}\right)\right)=1, \quad m_{h}=\nu_{2} m_{2}, \quad K_{2}=f\left(K_{1}\right) \nu_{2} .
$$

In general we have

$$
n_{j}=f\left(K_{j-1}\right) m_{j-1}=K_{j} m_{j}, K_{j}=f\left(K_{j-1}\right) \nu_{j}
$$

and

$$
m_{j-1}=\nu_{j} m_{j}, \nu_{j} \mid f\left(K_{j-1}\right), \quad\left(m_{j}, K_{j}\right)=1
$$

for $j=1, \cdots, k$.
Assume now that K is a fixed square-full integer, $K_{1}, \nu_{1}, \cdots, K_{h}, \nu_{h}$ are defined as follows:
(1) $\left(\nu_{1}, K\right)=1, \nu_{1}$ is square-free, $\nu_{1} \mid f(K), K_{1}=f(K) \nu_{1}$,
(2) $\left(\nu_{2}, K K_{1}\right)=1, \nu_{2}$ is square-free, $\nu_{2} \mid f\left(K_{1}\right), K_{2}=f\left(K_{1}\right) \nu_{2}$,
(h) $\left(\nu_{h}, K K_{1} \cdots K_{h-1}\right)=1, \nu_{h}$ is square-free, $\nu_{h} \mid f\left(K_{h-1}\right), K_{h}=f\left(K_{h-1}\right) \nu_{h}$.

Let us consider those integers n which can be written as $n=K T M$, where $T=\nu_{1} \cdots \nu_{h},\left(M, K K_{1} \cdots K_{h}\right)=1, M$ is square-free.

For such an n we have

$$
\begin{gathered}
n=K T M, \quad n_{1}=f(K) T M, \quad \frac{n_{1}}{n}=\frac{f(K)}{K}=\frac{K_{1}}{\nu_{1} K} \\
n_{2}=f\left(f(K) \nu_{1}\right) \nu_{2} \cdots \nu_{h} M, \quad n_{1}=f(K) \nu_{1} \nu_{2} \cdots \nu_{h} M
\end{gathered}
$$

thus

$$
\frac{n_{2}}{n_{1}}=\frac{f\left(K_{1}\right)}{K_{1}}=\frac{K_{2}}{\nu_{2} K_{1}},
$$

and in general

$$
\frac{n_{j+1}}{n_{j}}=\frac{K_{j+1}}{\nu_{j+1} K_{j}} \quad(j=1, \cdots, h-1)
$$

Let A be an arbitrary positive integer and

$$
M(x \mid A)=\sum_{\substack{n \leq x \\(n, A)=1}}|\mu(n)|
$$

Let $\kappa(p)=\frac{1}{1+\frac{1}{p}} \quad(p \in \mathcal{P}), \kappa$ be strongly multiplicative.

It can be proved easily that

$$
M(x \mid A)=\left(1+o_{x}(1)\right) \frac{6}{\pi^{2}} \kappa(A) x .
$$

Consequently

$$
\begin{aligned}
& \qquad\{n=K T M \leq x, \quad M \text { is square-free, } \quad(M, K T)=1\}= \\
& =\left(1+o_{x}(1)\right) \frac{6}{\pi^{2}} \frac{\kappa(K T)}{K T} x
\end{aligned}
$$

for every fixed K and T.
Hence we obtain easily
Theorem 1. There exists a sequence

$$
\left(y_{1}^{(m)}, \cdots, y_{h}^{(m)}\right) \in(0, \infty)^{h} \quad(m=1,2 \cdots)
$$

such that

$$
\frac{1}{x} \natural\left\{n \leq x \left\lvert\, \frac{f_{j}(n)}{f_{j-1}(n)}=y_{j}^{(m)}\right., \quad j=1, \cdots, h\right\} \rightarrow d_{j} \quad(x \rightarrow \infty),
$$

and

$$
\sum_{j=1}^{\infty} d_{j}=1 .
$$

Let
(*)

$$
R(x \mid A)=\sum_{\substack{p \leq x \\(p+1, A)=1}}|\mu(p+1)| .
$$

By using the prime number theorem for the arithmetical progression, we obtain that

$$
R(x \mid A)=\left(1+o_{x}(1)\right) \frac{6}{\pi^{2}} \mathcal{D}(A) \operatorname{li} x
$$

where

$$
\mathcal{D}(A)=\prod_{p \mid A}\left(1-\frac{1}{p}\right) \cdot \prod_{p \nmid A}\left(1-\frac{1}{p(p-1)}\right)=\prod_{p \mid A}\left(\frac{p^{2}-2 p}{p^{2}-p-1}\right) E
$$

and

$$
E:=\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p(p-1)}\right) .
$$

Hence we can deduce
Theorem 2. There exists a sequence

$$
\left(z_{1}^{(n)}, \cdots, z_{h}^{(n)}\right) \in(0, \infty)^{h} \quad(n=1,2 \cdots)
$$

such that

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \natural\left\{p \leq x \left\lvert\, \frac{f_{j}(p+1)}{f_{j-1}(p+1)}=z_{j}^{(n)}\right., \quad j=1, \cdots, h\right\} \rightarrow \mathcal{D}_{j} \quad(x \rightarrow \infty)
$$

and

$$
\sum_{j=1}^{\infty} \mathcal{D}_{j}=1
$$

Remark. The relation (*) is even uniform as $1 \leq A \leq C_{1}(\log x)^{C_{2}}$, where $C_{1}, \quad C_{2}$ are arbitrary constants. This easily follows from the Siegel-Walfisz theorem.
3. Let

$$
f\left(p^{\alpha}\right)= \begin{cases}p & \text { if } \alpha=1 \\ p+p^{2} & \text { if } \alpha \geq 2\end{cases}
$$

Theorem 3. Let $n \in \mathbb{N}$. Then for some $k \in \mathbb{N}$ there are an

$$
u \in\left\{1,2,3,2.3,2^{3} .3^{2}, 2^{2} .3,2.3^{2}, 2^{3} .3\right\}
$$

and a square-free $\mathcal{D} \in \mathbb{N},(\mathcal{D}, 6)=1$ such that

$$
f_{k}(n)=u . \mathcal{D} .
$$

Furthermore, the following possibilities can be occur:
a) If $u \in\left\{1,2,3,2.3,2^{3} .3^{2}\right\}$, then

$$
f_{k+\ell}(n)=u . \mathcal{D} \quad \text { for all } \quad \ell=0,1,2, \cdots .
$$

b) If $u \in\left\{2^{2} .3,2.3^{2}, 2^{3} .3\right\}$, then

$$
f_{k+\ell}(n) \in\left\{2^{2} .3 . \mathcal{D}, 2.3^{2} \cdot \mathcal{D}, 2^{3} .3 . \mathcal{D}\right\} \quad \text { for all } \quad \ell=0,1,2, \cdots .
$$

Proof of Theorem 3. For each $n \in \mathbb{N}, n>1$ let

$$
\kappa(n):=\max _{\substack{p^{\alpha} \| \\ \alpha \geq 2}}\{p \in \mathcal{P}\} .
$$

Let us observe that if $\kappa(n) \geq 5$, then $\kappa(f(n))<\kappa(n)$. This is obvious. Let

$$
n=p_{1}^{\alpha_{1}} \cdots p_{j}^{\alpha_{j}} p_{j+1} \cdots p_{r}
$$

where $p_{1}<\cdots<p_{j}, \alpha_{1} \geq 2, \cdots, \alpha_{j} \geq 2$ and $\left(p_{1} \cdots p_{j}, p_{j+1} \cdots p_{r}\right)=1$. Since $\kappa(n)=p_{j} \geq 5, \alpha_{j} \geq 2$, therefore $f\left(p_{j}^{\alpha_{j}}\right)=p_{j}\left(1+p_{j}\right), 1+p_{j}$ is even, thus the largest prime factor of $1+p_{j}$ is less than p_{j}. Consequently $\kappa(f(n))<p_{j}=\kappa(n)$.

Hence it follows that for every n in the sequence $f_{0}(n), f_{1}(n), \cdots$, there is a k for which $p^{2} \mid f_{k}(n)$ implies that $p=2$ or $p=3$. Then $f_{k}(n)=2^{\alpha} 3^{\beta} \mathcal{D}$, $(\mathcal{D}, 6)=1, \mathcal{D}$ is square-free. It is clear that

$$
\begin{aligned}
f\left(2^{\alpha} 3^{\beta}\right) & \in\left\{1, f(2), f(3), f\left(2^{2}\right), f\left(3^{2}\right), f(2.3), f\left(2^{2} .3\right), f\left(2.3^{2}\right), f\left(2^{2} .3^{2}\right)\right\}= \\
& =\left\{1,2,3,2.3,2^{2} .3,2.3^{2}, 2^{3} .3,2^{3} .3,2^{3} .3^{2}\right\}:=\mathcal{U}
\end{aligned}
$$

Let

$$
\mathcal{U}_{1}=\left\{1,2,3,2.3,2^{3} \cdot 3^{2}\right\} \quad \text { and } \quad \mathcal{U}_{2}=\left\{2^{2} .3,2.3^{2}, 2^{3} \cdot 3\right\} .
$$

Let us consider the graph

$$
2^{\alpha} \cdot 3^{\beta} \rightarrow 2^{\alpha_{1}} \cdot 3^{\beta_{1}} \quad \text { if } \quad f\left(2^{\alpha} \cdot 3^{\beta}\right)=2^{\alpha_{1}} \cdot 3^{\beta_{1}}
$$

It is clear that

$$
a \rightarrow a \quad \text { for all } \quad a \in \mathcal{U}_{1}
$$

Furthermore

$$
2^{2} .3 \rightarrow 2.3^{2} \rightarrow 2^{3} .3 \rightarrow 2.3^{2} .
$$

Theorem 3 is proved.

References

[1] Kátai, I. and M.V. Subbarao, On the iterates of the sum of exponential divisors, Math. Pannon., 10 (2) (1999), 153-158.
[2] Lucht, L., On the sum of exponential divisors and its iterates, Arch. Math. (Basel), 27 (4) (1976), 383-386.
[3] Straus, E.G. and M.V. Subbarao, On exponential divisors, Duke Math. J., 41 (1974), 465-471.
[4] Subbarao, M.V., On some arithmetic convolutions. The theory of arithmetic functions, Lecture Notes in Math. 251, Springer, Berlin, 1972.

Hoang Thi Lan Giao
Hue University
77 Nguyen Hue
Hue City, Vietnam
htlgao@hueuni.edu.vn

Imre Kátai and Bui Minh Phong
Eötvös Loránd University
Pázmány Péter sét. 1/C
H-1117 Budapest, Hungary
katai@compalg.inf.elte.hu
bui@compalg.inf.elte.hu

