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Abstract. During recent years, BigData trends resulted in an increasing
number of large datasets. As a result, Semantic Web technologies not only
have to face the difficulties stemming from sheer data size, but — arising
from its intentions of interconnecting all relevant pieces of knowledge —
other problems can appear because of the increased structural complexity
of the data. As an answer to these challenges, there are several approaches
to support the technologies by utilizing structure indexes in order to in-
crease the efficiency of query evaluation. However, in our experience, the
benefits of these methods depend largely on the structural properties of
the data. In this paper we summarize our experiments conducted on a pa-
rameterizable dataset, with the intention of characterizing the relationship
between the structural complexity of the data and the possible benefits of
using a structure index.
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1. Introduction

The aim of the Semantic Web [4] is to move towards a “web of data”, where
the information is not (only) represented in the form of text-based documents
interconnected with hyperlinks, but where the pieces of data are directly con-
nected to each other, forming a complex network of knowledge. The main
advantage of such a network is that the information can be readily and more
easily interpreted, processed and combined by machines, without the need to
perform natural language processing or text mining. A practical, daily-used
application is the enrichment of web search engines with semantic informa-
tion, improving the quality of the search results, compared to the results of a
conventional string matching over the “web of documents”.

To achieve this vision, the Semantic Web uses the graph-based RDF [5]
(Resource Description Framework) as a data model. In RDF, knowledge is
modeled as a collection of statements in the form of (subject, predicate, object)
triples. The following example shows three triples describing Lorand Eotvos
— one statement each for his name, birth date and field — serialized using the
Turtle [3] syntax. (The example is part of DBpedia [10], a public dataset
containing information extracted from Wikipedia.)

dbpedia:Lorand_Eotvos foaf:name "Lorand Eotvos"
dbpedia:Lorand_Eotvés dbpedia-owl:birthDate "1848-07-27"
dbpedia:Lorand_Eotvos dbpedia-owl:field dbpedia:Physics .

An RDF dataset can also be considered as a graph, where each (s, p, o) triple
forms a directed edge with label p, pointing from node s to node o. In this
paper, we use a notation which emphasizes the “set-of-triples” approach, yet
hints at the graph-like nature as well: G C Vg X L x V& denotes an RDF graph,
given as the set of triples defining its edges, where Vi; denotes the vertices of
the graph, and L is the set of possible edge labels. Querying of RDF data is
done with SPARQL [7], a query language based on graph pattern matching.
A pattern can be defined similarly to RDF statements, with the additional
possibility of using variables as the components of a triple. This is illustrated
in the example query below, which returns the birth date of Lorand Eo6tvos.

SELECT ?birthDate

WHERE {
7eotvos foaf:name "Lorand Eo6tvos"
?7eotvos dbpedia-owl:birthDate 7birthDate .

}

Although SPARQL allows a wide variety of additional language constructs
to increase expressive power [2] (along with the complexity of evaluation [12,
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14]), the basic graph pattern matching constitutes the core of the language.
Since this feature implements the ability to impose constraints on the structure
of the selected data, this is the area where most structure indexes focus, as well
as this paper.

As the technologies of the Semantic Web are spreading, both the number
and size of RDF datasets are increasing. This trend introduced the necessity
of aiding the evaluation of SPARQL using structure indexes, applying similar
techniques to the ones successfully utilized in the world of XML and XPath.
However, in our experience, the applicability of this method depends largely
on the structural characteristics of the data, which can even lead to situations
where using an index actually slows down the evaluation process. In this paper,
we summarize our experiments regarding the benefits of utilizing a structure
index on a parameterizable dataset, showing that even a minimal amount of
structural complexity (found commonly in most real-life datasets) can lead to
practically useless indexes.

The rest of the paper is structured as follows. In Section 2, an overview of
previous works related to indexing techniques is presented. Section 3 describes
the details of our experiments, including the dataset, the indexing technique
used, and the evaluated queries. Section 4 is devoted to our findings as results
of the experiments, while Section 5 summarizes our conclusions and discusses
our plans for future research.

2. Related work

Prior to Semantic Web technologies, structure indexes were applied in the
world of semi-structured databases [9, 8] to aid the evaluation of XPath queries
over XML data. Here, the data can be viewed as an edge-labeled graph, where
queries select vertices that can be reached from a designated root node by
walking a path whose sequence of edge-labels satisfy the pattern specified in the
path-expression of the query. Bisimulation-based indexes help the evaluation
by merging those nodes, which have the same pattern of incoming or outgoing
paths. Thus, an index graph is constructed in a such a way, that the evaluation
of all query patterns yield the same results on the data graph and the (usually
much smaller) index graph.

When it comes to indexing RDF data, there are some approaches which
focus on “traditional” (i.e. non-structural) indexing, offering fast lookup of
triples while avoiding scans of the whole dataset. Of these, a notable approach
is Hexastore [17], which essentially uses six differently ordered versions of the
data, according to the six permutations of the subject, predicate, and object
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components of the triples.

Also, there are RDF indexes which capture the structural properties of
the data graph by some other means than bisimulation, nevertheless these are
generally based on similar principles, i.e. extracting common patterns in paths.
For example, Matono et al. [11] propose an indexing scheme which builds suffix
arrays from the possible paths extracted from subgraphs of the dataset, in order
to facilitate answering queries defined by path expressions. Stuckenschmidt
et al. [15] also focus on recurring patterns by building a hierarchy of join
indexes based on paths, to solve the problem of decomposing queries (and
joining retrieved answers) over distributed RDF repositories.

During our experiments we followed the technique described by Tran &
Ladwig [16]. They build a structure index based on forward-backward bisim-
ulation, and use a two-step method to evaluate queries defined as basic graph
patterns. Further details of this approach are explained in Section 3, where
we elaborate on the specifics of our experiments. Similar to our goals, Alzogbi
& Lausen [1] also investigate the benefits of structure indexes. They compress
the data graph by performing an agglomerative clustering step on partitions
obtained by bisimulation. However, their focus is on the size reduction, while
we considered the practical aspects of query evaluation as well.

3. Experiments

Motivation. When creating bisimulation-based structure indexes, the
quality of the resulting index structure highly depends on the structural com-
plexity of the data graph. To illustrate this, we included in Table 1 the results
of indexing two datasets from the opposite ends of the spectrum.

Data Index Query time Query time
Dataset | | des | nodes | (without index) | (with index)
SP2Bench 61107 58506 2.031 s 2.547 s
Triangles 90000 3 0.875 s 1.532 s

Table 1. The results of using an index for two datasets with highly different
structural characteristics.

The SP?Bench dataset [13] is used as a basis of a SPARQL performance
benchmark. It contains an artificial publication database mirroring the char-
acteristics of real-world ones. Our dataset contained 100000 triples generated
with the SP?Bench tool. The query applied here is a simple search for the
authors and titles of all inproceedings (based on Q2 of the SP2Bench queries).
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The data has a rather complex structure, owing to the fact that it contains
all kinds of publications with different attributes, each citing numerous other
publications, etc. Because of this, only a few nodes could be merged based
on the similarity of their incoming and outgoing paths, thus the index is al-
most as large as the original graph. On the other hand, our trivial Triangles
dataset shows a high degree of regularity. It consists of 90000 nodes, forming
30000 triangle-shaped isolated subgraphs. For a dataset like this, the index
always contains only 3 nodes, regardless of the size of the data graph. Yet, in
both cases the use of the index makes the evaluation of the query slower. This
anomaly is caused by the fact that — contrary to the world of XML indexes —
query evaluation here consists of not only an evaluation on the index graph,
but has a second step in order to obey additional non-structural constraints
specified in the query (e.g. the equality of node values with given constants).
In the case of SP?Bench — as the index is almost as large as the data — the
first step (evaluation on the index graph) is not fast enough to make up for
the additional time required by the second step. For Triangles, the first step is
reasonably quick, but since each index node corresponds to 30000 data nodes,
the search space is not reduced enough, and the slowness of the second step
cancels the benefits of the index. This illustrates that either too complex or
too simple structures can result in practically useless indexes. More about the
details of indexing and the two-step query evaluation can be read in Section 3.2.

3.1. Experimental datasets

To explore the area between the two extremes of Table 1, we used a parame-
terizable dataset in our experiments, which significantly simplifies the structure
of the real-world datasets, yet allows a tunable structural complexity in order
to demonstrate its effects on the efficiency of using an index. The data de-
scribes a hypothetical social network using the FOAF [6] (Friend of a Friend)
vocabulary. For each person in the network we record his name and three addi-
tional optional attributes: phone number, e-mail address, and homepage. The
subgraph describing a person forms a star shape, with his attributes attached
to a central node representing his unique identifier, as shown in the following
example.

personl foaf:name "Person #1"

personl foaf:phone "tel:000001"

personl foaf:homepage <http://example.org/personl> .
personl foaf:mbox <mailto:personl@example.org> .

The datasets are generated using a randomized process, in which the pres-
ence or absence of an optional attribute of a person is controlled with a fixed
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probability of 0.8, independently of the existence of his (or anyone’s) other
attributes. The structural complexity is introduced with edges of the form
(persony, knows, persons), connecting the centers of two stars, representing an
asymmetrical friendship relation between two people. For each person, a single
outgoing edge of this type is generated with probability pgpews (the param-
eter of the data model), the target of which is selected uniformly at random
from among the other people. Thus, a person either has zero or one outgoing
knows-edge. Also, prnows = 0 corresponds to a dataset consisting of isolated
stars, while prrows = 1 yields a social network where everyone (asymmetrically)
knows exactly one other person. This suffices for our purpose, since our goal
with the dataset is not to accurately model real-world social networks, but to
simplify and model structural properties of real-world Semantic Web datasets
for the purpose of testing the benefits of indexing. As it turns out, even as
few as one knows-edge per person can be more than enough to render indexing
efforts futile.

3.2. Indexing approach

In our experiments, we used the indexing technique and query evaluation
procedure introduced by Tran & Ladwig [16]. The index they propose is based
on a variation of the forward-backward bisimulation adapted to RDF datasets.

Definition 3.1 (Forward-backward bisimulation of an RDF graph). Let
G C Vg x L x Vg be and RDF graph given as a set of RDF triples, and
R C Vg x Vg be a binary relation over the vertices of G. Then R is called a
forward-backward bisimulation of G if and only if the followings hold.

1. For all s1,85 € Vg andp € L
e (s1,82) € R and (s1,p,01) € G implies that there exists oo € Vg
such that (s2,p,02) € G and (01,02) € R;
e (51,82) € R and (s2,p,02) € G implies that there exists 01 € Vg
such that (s1,p,01) € G and (01,02) € R.
2. For all 01,00 € Vg andp € L
e (01,02) € R and (s1,p,01) € G implies that there exists so € Vg
such that (s2,p,02) € G and (s1,82) € R;
e (01,02) € R and (s2,p,02) € G implies that there exists s1 € Vg
such that (s1,p,01) € G and (s1,s2) € R.

Corollary 3.1. Let ~ denote a binary relation over the vertices of G, such
that for all vi,ve € Vg : v1 ~ vg if and only if there exists a forward-backward
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bisimulation R with (v1,v2) € R. Then the relation ~ is itself a forward-
backward bisimulation.

Similarly to most bisimulation-based indexing techniques, the index graph
itself is constructed by merging the nodes belonging to the same partition
according to the equivalence relation ~ defined in Corollary 3.1.

Definition 3.2 (Index graph of an RDF graph). Let G C Vg x L x Vg be
an RDF graph, and ~ its forward-backward bisimulation as defined in Corol-
lary 8.1. Then the index graph I C Vi x L x Vi of data graph G is the graph
constructed the following way.

o The vertices of I are the equivalence classes of ~.

o An index edge (s~,p,0~) with label p € L exists between index nodes
s~,0~ € VI CP(Vg) if and only if there are vertices s,0 € Vg, such that
(s,p,0) € G is an edge of the data graph, and the vertices are members
of the corresponding equivalence classes: s € s~ and o € 0™.

This way, the data graph is compressed by reducing the number of vertices
and edges, while the structural patterns of the original graph are still preserved,
making it possible to compute graph pattern matches using the compressed
index graph. A basic SPARQL graph pattern is evaluated in two steps. In the
first step, index matches are computed, then in the second step data matches
are created by combining data elements retrieved in the first step.

Index matches are computed in the first step by treating the index graph
as an ordinary data graph, and evaluating the query against it, using standard
procedures. Since the nodes in this case represent equivalence classes of the
data graph, the evaluation process has a minor difference in how constants are
treated: an index node matches a constant of the graph pattern, if the value
of the constant is a member of the equivalence class represented by the index
node. The results of this step are mappings from variables to index nodes
(equivalence classes of data nodes).

The second step in the evaluation has the task of computing data matches
based on the index matches of the first step and the information of the data
graph. One index match is a mapping from variables to index nodes (i.e. sets
of data nodes) which satisfy the structural patterns of the query. For exam-
ple, when searching for people and their e-mail addresses in our experimental
dataset, an index match contains a set of people and a set of e-mail addresses.
So basically, in this case, the goal of this step is to pair people with their e-mail
addresses. Additionally, false results have to be removed, which only satisfy
the structural patterns (i.e. edge labels) from the query, but fail to match node
value constants. Tran & Ladwig [16] proposed an efficient join-based iterative
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procedure to accomplish this task. During this step “traditional” indexes are
used to speed up the lookup of triples from the data graph. As a result of this
process, we obtain the final query results as mappings from variables to data
nodes. Note that in the case of XPath, a second step like this is unnecessary
because a) values are only captured at one point in the pattern (at the end of
the path), so there are no multiple variables whose index matches have to be
combined, and b) there are no false results to be removed, because in the basic
case all restrictions of the query apply to edge labels, and thus are satisfied
during the first step.

There is an opportunity for some optimization in the second step, as shown
by Tran & Ladwig [16]. Using the structure index as the basis of evaluation
in the first step results in narrowing down the space of possible solutions by
keeping only matches that meet the structural requirements specified by the
graph pattern. As a consequence, those parts of the query that would not add
information to the results — but only serve the purpose of specifying a structural
pattern — have already been dealt with and can be removed. Specifically, those
tree-shaped parts of the pattern that only consist of variables not appearing in
the SELECT list can be pruned away before the second step.

3.3. Measurements

During our experiments, we generated RDF datasets using various prnows
values, each dataset describing a hypothetical social network of n = 100000
people. Then, we built structure indexes using the method described above.
As a basis for evaluating the benefits of utilizing indexes, we used two kinds of
metrics: the compression ratio of the index, and the evaluation time of basic
queries. For an RDF graph G C Vi x L X Vi and the corresponding index
graph I C V; x L x V;, the compression ratio is defined as % For the query
evaluation we implemented the two-step method described earlier. To gain
further insights related to some details of query evaluation, we measured not
only the total time, but also the time taken to compute index matches (i.e.
the time to complete the first of the two necessary steps). The following two

queries were used for evaluation.

(Q1: SELECT *
WHERE {
?person foaf:name 7name .
?person foaf:phone 7phone .
?person foaf:homepage 7homepage .
7person foaf:mbox 7mbox .
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(Q2:  SELECT 7?name
WHERE {
?person foaf:name 7name .
?person foaf:phone 7phone .
?person foaf:homepage 7homepage .
?person foaf:mbox “mbox .

3

Both @7 and @ focus on specifying the same structural pattern that needs
to be satisfied, namely: the person in question must have all optional attributes.
The difference is in the SELECT lists: @)1 asks for the values of all variables,
while Q5 defines a projection to a single variable. This way, the second step of
query evaluation for ()2 can be carried out on a graph pattern that is pruned
to contain only the single ?name node.

4. Results

100000
L

10000

1000
100 ¢

10 ¢

compression ratio

0 01 02 03 04 05 06 07 08 09 1
Pknows

Figure 1. The resulting compression ratio of building a structure index for
datasets generated with various prnows parameters.
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An important characteristic of a structure index is how the compression
ratio changes as the structural complexity increases. To investigate this, we
measured the size of the index compared to the size of the graph, for various ar-
tificial social network-like datasets generated with gradually increasing prnows
values, as described in Section 3. The results can be seen on Figure 1. When
the dataset consists of isolated stars (prnows = 0), the ratio is the highest (more
than 15000). This is not surprising, because in this case the lack of diversity
among the possible paths causes the index to contain only 28 nodes regardless
of the value of |V, thus the ratio can be made arbitrarily large by increasing
the number of people in the dataset. For larger pgnows values, the ratio rapidly
drops (note that the y-axis uses a logarithmic scale): for prnows = 0.65 it is
already below 2, and it continues to approach the ratio of 1, where the index
is practically useless, as computing the results on the compressed graph does
not yield a significant advantage.
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Figure 2. Evaluation time of @)1 on datasets generated with various Pxnows
parameters.

Figure 2 shows the time needed to evaluate ()1 on the datasets. Along
with the total evaluation time, we included the time spent on computing index
matches to indicate how the total time is distributed among the two steps of
the evaluation process. As a basis for comparison, the dotted line indicates
the time needed to carry out the same task without the use of an index. As
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it can be seen, in all cases for this query, the use of an index actually slows
down the process, even where the index manages to accomplish an acceptable
compression ratio. It is clear from the measurements that (in accordance with
the expectations) better compression ratios lead to faster computation of in-
dex matches. However, small index sizes (such as the mentioned 28 vertices in
the case of Prnows = 0) mean that a large number of data nodes get assigned
to a single index node (in the worst case, more than 15000 on average). As
a consequence, the step of computing data matches becomes slower, thereby
countering the advantage gained by the outstanding compression ratio. To-
wards higher prnows values even the first step becomes slower than the naive
evaluation time. This can be explained by the fact that while at these values
both methods operate on a graph of roughly the same size (see the compression
ratios for these values on Figure 1), the index matches are harder to compute,
because the matching of a constant requires a membership-test in a set instead
of an equality-check.
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Figure 3. Evaluation time of @2 on datasets generated with various pinows
parameters.

Figure 3 illustrates how pruning affects the problem of the slow second
step. In an extreme case, where all edges of the query can be omitted from the
computation of data matches, the evaluation time is dominated by the time of
the first step (which is, in turn, governed by the size of the index graph). Thus,
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for smaller values of prnows, the utilization of a structure index can beat the
naive evaluation time. However, for values around 0.55, the advantage starts
to become negligible, and for prpows > 0.7 the index-using method becomes
the slower one.

Summarizing the measurements, we can see that better query evaluation
times can only be achieved in strongly limited cases: a) we need a prunable
query, and additionally b) we need a dataset operating with relatively low struc-
tural complexity. For our measurements, these meant a) an extreme case of
only a single node remaining after pruning, and b) for a comparable advantage,
a value of Prnows below 0.55. In our experiences, most real-world applications
would have troubles meeting these requirements, especially the latter: even
our most extreme test case means only one “friendship”-edge for each entity,
whereas real-world datasets usually heavily rely on structural properties similar
to this (e.g. there are usually an order of magnitude more “cites”-edges for each
paper in a publication database). In principle, the problematic phenomenon
could be handled by approaches that ignore certain edge-labels when building
the index, such as the Parameterizable Index Graph of Tran & Ladwig [16].
For example, in our case this would mean that we could build the index as
if knows-edges did not exist, thus accomplishing an outstanding compression
ratio. However, for real-world datasets the “guilty” edge-labels may not be as
easily identifiable as in the case of our toy dataset. Even if we could manage to
find such parameters, there is still the risk of arriving at the opposite extreme,
where there are too many data nodes for each index node, as in the case of the
Triangles dataset or the @)1 query for low pgpows values.

5. Conclusion and future work

In our paper we investigated the benefits of utilizing structure indexes for
RDF graphs, in order to speed up evaluation of SPARQL queries. Our main
focus was on the effect of structural complexity. We tested a well-known struc-
ture index on a parameterizable artificial dataset describing a hypothetical so-
cial network. Our results show that in order to achieve a reasonable advantage
using indexes, the dataset and the query must meet some strict requirements,
which could make the real-world applications cumbersome. In future research,
we would like to further characterize how the structural properties of datasets
affect the fruitful applicability of indexes. Our purpose is to design a decision-
aiding procedure which could accurately predict whether it would be worth to
use a bisimulation-based index for a given dataset and query workload. Our
further plans include investigating the problems arising from building and up-
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dating indexes for dynamic graphs, where the data and its structure changes
over time.
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