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Abstract. The paper investigates the approximation formulas for the
unlabeled rooted trees. In the case of ordered binary trees, the number of
tree instances can be given with the Catalan numbers. It is an interesting
fact, that for the case of unordered trees, only very few works can be found
in the literature. The approximation formulas are usually built up with
the application of appropriate generator functions. The paper presents an
evaluation of a selected approximation formula from the literature.

1. Introduction

An efficient object lookup structure is the key component of information
retrieval systems. The lookup operation is supported by index structures. The
index structure is usually based on one dimensional object representation, like
B-tree. On the other hand, there are many application areas where the objects
cannot be modeled as vectors in Euclidean space and only the distances be-
tween the objects are known [3]. In these cases, a general metric space (GMS)
approach [15] is used for object representation. The key element is a distance
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matrix H ∈ RN×N , where N denotes the count of elements. The matrix ele-
ment Hij is equal to the distance between objects oi and oj . The most widely
used indexing methods in general metric spaces use pivot elements. A pivot
element p is a distinguished object from the object-set. The distance from an
object x to p is used as the indexing key value to locate the bucket contain-
ing x. Usually more than one single pivot element are used in the algorithms.
There are many variants of pivot-based index trees in general metric spaces.
The Generalized Hyperplane Tree (GHT) is a widely used alternative. The
corresponding structure is a binary tree where each node of the tree is assigned
to a pair of pivot elements (p1, p2). If the distance of the object to p1 is smaller
than the distance to p2, then the object is assigned to the left subtree, other-
wise it is sent to the right subtree. According to authors, the GHT provides a
better indexing structure than the usual vantage point trees [12].

An important characteristic of every partitioning structure is the balancing
factor. The cost of a query operation depends on the actual balancing factor
of the tree, the optimal cost is yielded in the case of perfect balancing. For
one dimensional index structures, there are some efficient dynamic balancing
methods, like AVL trees. In the case of GMS, no such general dynamic method
exists. Thus the cost analysis of the generated index structure is an interesting
question of GMS index structures. The goal of our investigation is to determine
the number of different index tree structures.

In our investigation, the GHT index structure is modeled with a rooted un-
ordered binary tree. The tree is one of the most frequently used data structure
in computer science. The investigation is restricted to the rooted unordered
binary trees, where each node may have maximum two children nodes. This
tree structure is called weakly binary tree. The T binary tree structure can be
defined on the following recursive way:

T = {Θ} ∪
{(

Θ
′ × T × T

)}
where Θ denotes an external node and Θ

′
denotes an internal root node. The

size of a tree is defined as the number of its nodes. The usual tree represen-
tation form in programs is the label-based representation sequence. This form
assigns an unique integer number i ∈ (1..n) to every node where n is the size of
the tree. The parent sequence shows the label of the parent for every node in
the tree. For the tree given in Fig 1., the corresponding sequence is ’01122334’.
If each of the sibling nodes has a sequence number uniquely identifying the
child, the tree is called ordered binary tree. If there is no ordering among the
children the tree is called unordered tree.

Regarding the different tree manipulation algorithms, a key factor is the
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computational cost. Considering the tree structure as a combinatorial object,
the generation of the possible ordered or unordered trees is an intensively in-
vestigated problem domain. An important element in the cost analysis is the
number of possible tree instances of a given size. The literature contains de-
tailed analysis for each important subtype of the tree structure.

Tree enumeration was possibly first found useful by chemists in the study of
structurally isomeric, aliphatic hydrocarbons [6]. The algorithm of Beyer and
Hedetniemi [1] provides a constant time cost using a level sequence generation
method. Later, Wright [14] extended this algorithm to generate unlabeled free
trees. Pallo [8] introduced a coding method for efficient generation of binary
unordered trees. He shows that the proposed method uses constant amortized
time per tree. The proposal of Iwata, Ishiwata and Nakano [5] provides an
efficient encoding of unordered binary trees. In contrast with the standard
encoding where a tree with n nodes requires 2n bits, the algorithm uses only
1.4n bits per node in average. Liand Ruskey [10] presented an algorithm for
exhaustive generation of rooted and free trees where the algorithm uses linear
space and the running time is proportional to the number of trees produced.
Effantin [4] focuses on the generation of unordered binary trees and the pro-
posed algorithm needs a sub-linear O(log(n)) average time per tree. Li [6] also
developed a similar algorithm which uses canonic rooted trees where for any
tree T of size m, its parent is generated by removing the last node m, and its
children are obtained by adding node m+1 as the rightmost child of some node
on the rightmost path of T .

Figure 1. Sample tree

The first investigations on this area relate to Cayley [2] who created a
formula for counting the number of rooted trees where the degree of the nodes
are not limited. The number of unlabeled rooted trees (cn) can be given as

cn =
∑

∑n−1
i=1 i∗ji=n−1

n−1∏
i=1

(
ci + ji − 1

ji

)
.
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For efficient calculation of the number of possible tree structures, approxima-
tion formulas are used instead of the sequence definition [11]. In the case of
ordered binary trees, the number of tree instances [11] is equal to

cn =
1

n+ 1

(
2n

n

)
=

(2n)!

n!(n+ 1)!
=

1

n

(
2n

n− 1

)
The cn numbers in this sequence are called the Catalan numbers. For unlabeled
unrooted tree structure, the approximation function is

cn = c1
αn

n5/2
,

where c1 ≈ 0.5350 and α ≈ 2.9558. The formula for unlabeled unordered
rooted tree is

cn = c2
αn

n3/2
,

where c2 ≈ 0.4399 and α ≈ 2.9558. For unlabeled ordered trees, the approxi-
mation formula is

cn = c3
4n

n3/2
,

where c3 ≈ 0.1410. For unlabeled rooted ordered binary tree, the corresponding
approximation of the Catalan numbers is

cn = 4 · c3 4n

n3/2
.

In the case of labeled unrooted unordered tree structure, the approximation
function is

cn = nn−2.

For labeled rooted unordered trees, the approximation formula is

cn = nn−1.

It is an interesting fact, that for the case of unordered trees, only very few
works can be found in the literature [9]. The number of unordered trees can
be given with the following recursive definition:

C0 = C1 = 1,(1.1)

C2k = C0C2k−1 + C1C2k−2 + ..+ Ck−1Ck,(1.2)

C2k+1 = C0C2k + C1C2k−1 + ..+ Ck−1Ck+1 + Ck(Ck + 1)/2.(1.3)

Table 1 shows the first 12 elements of Bn and Cn sequences.
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n 1 2 3 4 5 6 7 8 9 10 11 12
Bn 1 2 5 14 42 132 429 1430 4832 16796 58786 208012
Cn 1 1 2 3 6 11 23 46 98 207 451 983

Table 1. The first elements of Bn and Cn sequences

2. Approximation formula for enumeration of unlabeled rooted bi-
nary trees

For the corresponding approximation formula on enumeration of unlabeled
rooted binary trees, usually the work of Otter [7] is referenced. In the work of
Otter, the number of trees of n vertices is given as

cn = Am
n − 1

2

∑
i+j=n,i>0,j>0

AiAj +
1

2
An/2,

where m denotes the ramification number.

The goal of our investigation is to analyze this approximation formula for
the Cn sequence. A simplified derivation for validation is presented yielding a
similar result to the formula of Otter [7]. The construction of the formula is
based on the following considerations.

Let us take the recursion formula of Cn. The formula can be transformed
into the following expression

Cn = an +
1

2

∑
i+j=n−1

Ci · Cj + bn,

where

an = 1, if n = 0(2.1)

= 0 otherwise,(2.2)

bn =
C(n−1)/2

2
, if n is odd(2.3)

= 0, otherwise.(2.4)

From the recursive formula, the equation for the corresponding generating
function can be determined with summation for every n and generating the
formal power series∑

n

Cn · xn =
∑
n

anx
n +
∑
n

∑
i+j=n−1 Ci · Cj

2
xn +
∑
n

bnx
n.(2.5)
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According the convolution rule of series, the equation can be given with∑
n

Cnx
n = 1 +

x

2

∑
n

Cnx
n
∑
n

Cnx
n +

x

2

∑
n

Cnx
2n

as only the a0 tag is not zero. Let f(x) denote the generating function of the
series. The equation to be solved to get the generating function is

f(x) = 1 +
x

2

(
f2(x) + f(x2)

)
.

The given function-equation is very complex to solve, thus an approximation
formula is used. Let us take the equation

f(x) = 1 +
x

2

(
f2(x) + 2c

)
instead of the original one where c denotes a non-negative constant value. This
equation for the generating function can be solved with the usual methods.
The g(x) = f(x)−1 substitution is introduced to apply the Lagrange-Bürmann
inversion formula [13]

g(x) =
x

2

(
2c+ (g(x) + 1)2

)
.

The Lagrange-Bürmann inversion formula can be used to solve g(x) defined
implicitly by

g(x) = xΨ(g(x)).

The coefficients of an arbitrary h(g(x)) function meet the following formula

[an]h(g(a)) =
[un−1]h(u) ·Ψ(u)n

n
.

In our case, the corresponding power series is

Ψ(u)n =
1

2n

n∑
k=1

(
n

k

)
(2c)n−k(u+ 1)2k.

With rearrangement of the summations, the coefficient for un−1 is equal to

Dn =
1

2n

n∑
k=n∗

(
n

k

)
(2c)n−k

(
2k

n− 1

)
,

where n∗ denotes the [(n − 1)/2] integer value. In the next step, an approxi-
mation formula for Dn is generated. First, the asymptotic behavior of the Dn

sequence was analyzed.
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The goal of the investigation is to find the

β = lim
n→∞

Dn+1

Dn

value. After performing the substitutions, we get the key formula

β =
2c

−1 +
√
1 + 2c

.

In the next steps, the value of f(x2) will be estimated for the Cn sequence.
Let us denote the requested β value for the Cn sequence with βc. The f(x)
function can be expressed explicitly by solving the equation

f(x) =
1−√1− 2x(1 + cx)

x
.

It can be seen that f(x) is monotone increasing and

lim
x→0

f(x) = 1

and the R radius of convergence is equal to

R =
1

β
.

On the other hand,
lim
x→R

f(x) = β

also holds.

Let us assume, that g∗(x) is an approximation of f(x). Based on the pre-
vious result, the gi(x) is an upper boundary for f(x), where

∀x : ci >
x2g∗

′
(x2) + g∗(x2)

2
.

Let be

cl = inf

{
x2g∗

′
(x2) + g∗(x2)

2

}
,

cu = sup

{
x2g∗

′
(x2) + g∗(x2)

2

}
.

It follows from the definition that both g∗(x) and g∗
′
(x) are monotone increas-

ing, thus

inf

{
x2g∗

′
(x2) + g∗(x2)

2

}
=

g∗(0)
2

= 0.5,
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sup

{
x2g∗

′
(x2) + g∗(x2)

2

}
=

x2
rg
∗′(x2

r) + g∗(x2
r)

2
,

where

xr =
−1 +

√
1 + 2c∗

2c∗
.

Thus every c∗ can be assigned to a cu and cl values where gu(x) is an upper
boundary and gl(x) is a lower boundary for g∗(x). Let us denote these functions
by u(c) and l(c). From he definition of g() follows that

cu ≥ c∗ ≥ cl

should be met. Taking the u(x) and l(x) functions, it can be seen that this
condition holds only for

cl = 0.5,

cu = 0.631.

Based on these results, the following boundaries are given for the increase ratio

βl = 2.41

and
βu = 2.50.

In the next step, the investigated Cn value will be expressed with the help of
the Catalan numbers. It is known for the Bn Catalan number that the increase
ration meets

βB = lim
n→∞

Bn+1

Bn
= 4.

With the symbol

γ =
4

βc

the value sequence

Cn =
Bn

γn

meets the requested increase ratio. Using the Stirling formula, we get

Cn ≈ (2n)2n

(n+ 1)n+1(n− 1)n−1

√
n

π(n−1)(n+1)

nγn
.

For large n values, Cn can be approximated with

Cn ≈ βn
c√

πn3/2
.

In the next step, the βn
c factor is evaluated with a numerical test.
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Figure 2. The β function

Figure 3. The error rate of the modified cn approximation

3. Test experiments

For evaluation of the approximation formulas, some numerical test experi-
ments were executed. The first test (Figure 3) shows the measured real β values
as a function of n. As the resulted figure shows the β value is well approxi-
mated by the the calculated βu, an upper bound value. In the next Figure 4,
the relative approximation error of the modified formula is presented. As the
result shows the modified formula provides a better approximation (near 0 %)
of the real cn values. As the test result shows the following modified formula

Cn ≈ 0.7916
2.48325n

n3/2

can provide the required accuracy.

A further investigation can be focused on enumeration of tree instances
having a height value k. In the literature, where the random generation of
binary search trees are analyzed, the main result is that the Hn height of
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Figure 4. The Hn,k/n ratio function

a random binary search tree on n nodes can be approximated with αlnn −
βlnlnn+O(1), where α = 4.311andβ = 1.953 [12]. A tree of maximum height
of k, can be constructed as a union of left and right subtrees having a maximum
height of k − 1. Taking the different combinations on the size of the subtrees
into account, the following formula can be derived

H0,k = H1,k = 1,
(3.1)

H2n,k = H0,k−1H2n−1,k−1 +H1,k−1H2n−2,k−1 + ..+Hn−1,k−1Hn,k−1,
(3.2)

H2n+1,k = H0,k−1H2n,k−1 + ..+Hn−1,k−1Hn+1,k−1 +Hn,k−1(Hn,k−1 + 1)/2.
(3.3)

The Hn,k symbol denotes the number of rooted unordered unlabeled binary
trees having a height not greater than k and containing n vertices. If k → ∞,
the Hn,k value is equal to the previously investigated Cn value. The detailed
analysis of this enumeration function is an open interesting problem.
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