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Abstract. This paper shows how can the peaks over threshold model of
gridded European precipitation data be combined with various data min-
ing tools. The motivation is that even the 0.5 grade-grid of 63 years of the
European Climate Assessment daily precipitation data is a massive data
set, where there is little hope to find valuable results without reasonable
preprocessing. This step is based on the peaks over threshold approach,
which is a sound model for the extremes. We have applied a moving win-
dow methodology in order to catch the changes in the pattern of the high
precipitations. Our results show that indeed there are spatially different
tendencies observable.

1. Introduction

Detection of signs for climate changes is a very important and actual ques-
tion. As mathematicians, we are not in the position of giving exact explanations
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Figure 1. Map of the region covered by our data

for the changes, but we may try to reveal them. This revelation is not easy
at all, as there are huge data sets of various quality available and it is difficult
to get useful results out of them. Precipitation is a very important meteoro-
logical phenomenon, here in Europe we often feel the economic effect of its
extremes – the last major flood affected most of Central Europe in 2013. The
used observations are the 63 years of daily precipitation data of the European
Climate Assessment (E-OBS, http://www.ecad.eu). We have worked with
the data based on 0.5-grade grid points, available for Europe and Northern
Africa. Figure 1 depicts the covered region. This gridded data base has been
used extensively for climate analysis, see [4]. The quality has been evaluated in
[5], and the results show that it may be considered reliable for most of Central
Europe. However, especially in the African and Middle-Eastern region there
are missing periods of various length, which have to be taken into account.

The used mathematical models are first the peaks over threshold model,
then we apply various data mining tools for the sequence of estimated return
levels. We give details of these models in Section 2. In Section 3 we show the
applications of the models. Section 4 contains the conclusions.
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2. Models

2.1. Peaks over threshold models

There are two widely investigated types of approaches to model extreme
values. The classical models are based on the annual maxima of the data.
The other, more recent approach focuses on all observations exceeding a high
threshold. The latter class of models is called peaks over threshold (POT)
models. In this paper we will concentrate on such models, because they allow
for the use of more data which is important for us, as we investigate the time-
dependence of the fitted distributions by the help of moving windows. Begueŕıa
et al. [2] have used the POT model to build a spatial pattern for extreme
precipitation hazard. Our approach differs from this, as our intention is to
determine temporal trends.

Threshold models have been introduced in the 1970s [1]. Under fairly gen-
eral regularity conditions the threshold exceedances have an asymptotic dis-
tribution. To be more specific, let Xn = (X1, ..., Xn) be a sequence of in-
dependent random variables with common unknown distribution function F .
Then under fairly general conditions (which is true for all important continu-
ous distributions)– for high thresholds u – the conditional excess distribution
function converges:

Fu(z) = P (Xi − u ≤ z|Xi > u)
u→∞−→ H(z),

where H(z) is a distribution function over the nonnegative numbers z with
parameters ξ ∈ R and σ > 0

(2.1) H(z) =

⎧⎨⎩1−
(
1 + ξz

σ

)− 1
ξ

if ξ �= 0;

1− e−
z
σ if ξ = 0.

The family defined in (2.1) is called generalized Pareto distribution (GPD).
Depending on the parameter ξ, this distribution includes three types of distri-
bution familes:

(I) ξ > 0: heavy tailed (ordinary Pareto) distribution;

(II) ξ < 0: short-tailed distribution;

(III) ξ = 0: exponential distribution.
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Figure 2. Estimated 10-years return levels for the daily precipitation in mm,
based on the 63 years of observations

These distributions have proved to be a suitable model for precipitation data,
see for example [3], where several reasonable families were compared and the
Pareto distribution was clearly the best fit. In our case both ordinary and
type II Pareto distributions appear, depending on the geographical properties
of the regions. Rakonczai et al. [10] have investigated 5 grid points of the
same dataset and found interesting tendencies both in its univariate and the
bivariate properties.

The parameters of the GPD can be estimated by maximum likelihood, which
has the usual optimality properties and asymptotic normality if ξ > −0.5,
which is the case in almost all applications (including ours).

In meteorology return levels, which correspond to certain return periods –
for instance 10, 20 or 50 years – are especially important. The q-quantile of
the GPD can be given as

H−1(q) = u+
σ

ξ

(
P (X > u)

q

)ξ−1

if ξ �= 0. Otherwise it is simply u+ σ log(P (X > u))− log(p). It is important
to note that in general if we have n observations over the threshold in l years∗

and the return period of interest is m years, then the corresponding quantile is
q = 1− 1

m
l
n . For example if there are 1000 such observations in 100 years, then

∗This means in average n
l
observations in a single year.
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the 50 years return level is the 0.998-quantile of the distribution, which models
the single exceedances. In our cases we shall estimate the 10-years return level.

2.2. Data mining

Figure 3. Maximum of the estimated 10-years return levels for the daily maxi-
mum precipitation in mm, based on the 57 moving windows

Our data is spatio-temporal, even after the parametric modeling by the
GPD - as we apply moving windows in order to capture the time-dependence of
the fitted parametric model. Spatio-temporal data mining has been developed
in the last few years, see for example [9] or Chapter 10 in the book [6]. However,
the methodologies are yet mostly ad hoc. For example if one wishes to find
anomalies in a data set, the calculation of some anomaly scores are proposed,
but there is no definite form given for these scores. We shall show that in our
cases this approach does not identify any real anomalies.

Another, more classical data mining tool is clustering. Here we apply the
k-means clustering, which is a traditional, simple and quick method even in
our case of over 20000 data points in the 57 dimensional space. We shall see
that a practical preprocessing makes this tool especially useful. In our case this
approach ensured that we focused on the temporal aspect in the data mining
(as the time series of estimated quantiles for the moving windows is analyzed),
but the method turned out to be suitable for detecting areas sharing similar
features – thus also the spatial aspects were included in the analysis.
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Figure 4. Time series of the 10-years return levels, based on the moving win-
dows of length 7 years for 9 neighbouring grid points in Central Europe

3. Applications

Having shown the tools, now we are in position of actually carrying out the
data analysis.

We have used 63 years of daily precipitation data of the 0.5 grade grid
points, as shown on Figure 1. We have not investigated the time series, which
may show some seasonality (see [10] for the analysis of Hungarian data) as
we always use complete years in the analysis, so this effect does not have an
influence. This is also true for the extremes, we are interested in.

First we show a map of the 10-years return levels, based on all observa-
tions (Figure 2). We see substantial differences in the expected amount of
precipitation.

Our main aim is to detect if there are any significant changes in the time
series. We have carried out an analysis, based on moving windows of 7 years
(altogether there were 57 such windows, as we have repeated the analysis every
year). In the paper of [7] the authors investigated a similar 2.5 grade gridded
database of South America, by windows of 25-years. Their approach was based
on the direct investigation of the parameters, including the quantiles of the
fitted distribution. However, our grid consists of much more points, so we
indeed need the data mining tools.
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First we have fitted the POT model separately to the data of the moving
windows (see Section 2.1). The threshold was chosen as the 95% quantile of
the observations in the given window. This means that we have used different
values for each site and time period. This choice allows the use of enough data
(over 100) in each of the windows, while it is high enough in order the theory
to hold.

For detecting possible anomalies, first we considered the maximum of the
57 estimated quantiles for all grid points. The result is shown in Figure 3.
There are quite a few surprisingly high values in the Middle East or Africa,
but not these time series are thought to be the most reliable. However, that
for the whole Denmark we have lower estimated return levels than the values
of its neighbours is interesting. These are those observations, which cannot
be found easily by any data mining tools. If we calculate scores as the mean
quadratic deviation between a point and its neighbours (excluding those points,
where there is no observation) then we do not get any patterns, when the large
deviations are plotted.

The time development of the 10-years return level, calculated by the esti-
mated model parameters for some neighbouring grid points is shown in Figure
4. We see that there is similarity between these paths. We explored this fur-
ther when clustering those sites, where there were no missing data. However,
we were not so much interested in the differences in the precipitation itself,
but more in the trends. So instead of the original estimates, we have used the
relative value of the actual estimates, where the reference was calculated on
the basis of the whole data set. These 57 dimensional data were clustered into
4 clusters by the k-means method, with the results shown in Figures 5 and 6.

As here all the values fluctuate around 1, there was no need to standardise
the data. Figure 5 shows the time-development of the 4 cluster centers. We can
clearly differentiate between 4 patterns (with respect to increasing darkness):
the lightest one has one peak around 1990, the second one is two-peaked, the
third one is decreasing after an early peak, and the last(black) one is increasing.
It is interesting to investigate which areas belong to the clusters. The shades
of Figure 6 correspond to those of Figure 5, so we may state that large parts
of Central Europe belong to the black (increasing) cluster.

4. Conclusions

As a conclusion we can formulate that there are indeed interesting patterns
observable in the gridded precipitation data we have analysed. Clustering and
other spatial methods turned out to be useful methods for finding the places
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Figure 5. Cluster centers, relative to the estimation, based on the whole time
span of 57 years

of special interest.

The POT model and the moving windows method provided reasonable
amount of data: summarizing the most important characteristics of the ob-
servations at hand.

The findings: recently increased return levels, combined with similar ob-
servations on the increased dependence, see [10], between the sites show the
danger of floods – something which has indeed been observed in summer 2013
over the Danube and the Elbe basin, so these tendencies are worth investigating
further and in more detail.
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