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Abstract. The factorization of the matrices is not unique. The several
different results of the factorization of a matrix would be seem as reliable
and consequently usable in the recommender systems if ones were stable. It
means that the deducted conclusions are mainly the same without reference
to differences in the product of the factor matrices. In this paper we discuss
the interpretation of the stability of matrix factorization and give a few
definitions. We ascertain that the matrix factorization is unstable.

1. Overview

Recommender systems are such systems which based on previously collected
observations try to determine the parameters of previously not observed cases.

1.1. Recommender systems

Recommender systems are more and more widely used for selling of various
products and services such as tourism, movie, book and so on. Recommender
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systems observe the user preferences over items and based on the experiences
ones attempt to predict the relations between users and items. The goal of a
recommender system is to help the user in selection items from a large number
of choices. Recommender systems attempt to discover the needs of the users
even in the cases when no user activities in the past are available. Using this
approach, the user first provides ratings of some items, and after it the system
recommends other items based on ratings similar users have already provided.

Regarding to the recommender systems, the most cited examples are for
entertainment products such as movies. Many customers/users will see less or
more number of movies and each user will appreciate each movie. Thus the
level of satisfaction with particular movies might be seen as observations in the
past. Based on past user behavior, the ratings will be used to identify new user-
items associations. This approach of content filtering is termed collaborative
filtering (CF).

For example, let us consider the opinions of the customers on movies. Table
1 shows the ratings. The rows correspond to the customers, while the columns
to the items respectively. The jth entry of the ith row of the table contains
the opinion/reflection of the ith customer regarding to the jth movie. For ex-
ample, customer2 sets the value on 16 scores regarding for movie3. There may

movie1 movie2 movie3 movie4
customer1 16
customer2 17 16
customer3 15 10
customer4 18
customer5 7 6

...
...

...
...

...

Table 1. Table of the customers’ evaluations.

be empty places in the table representing the missing data. We wish to predict
the evaluation of a customer referring to a not seen movie yet. In other words,
we have to complete the table as precisely as possible. Personalized recommen-
dations are especially important in markets where the variety of the choices is
large and the taste of the customer is also essential. Numerous recommender
systems deliver automatically generated personalized recommendation to their
customers. The recommendation system compares the user’s ratings to other
users’ ratings and finds the most similar users and then recommends similar
items to similar users.

The data contained in Table 1 are entries of a sparse matrix. Therefore we
have to find the missing entries of a matrix.
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1.2. Methods for finding the recommendations

There are several methods for determining of the missing values. One of
them is the k-nearest neighbors methods. Its principle is as follows: If the
ratings of two users are close enough to each other based on some criterion of
similarity in the cases of the known values/entries then theirs ratings are close
together or at least similar for the unknown values. Suppose that we have a
missing number/value in a given row. At first we will find similar row or rows
which have the same or similar numbers/values to the given row in the filled
positions and then we will take the missing value from the similar row. Problem
may arise if we did not find any row which was similar enough or the rows were
very sparse. Besides, two or more similar rows found may result very different
values for the missing value.

Many researchers recommend matrix factorization to compute the missing
value, for example, Koren et al. in [4]. However, the paper contains only
allusions to the problems about the factoring the user-item rating matrix. The
high portion of missing values caused by the sparseness in the user-item rating
matrix may cause difficulties.

Karimi et al. investigated the recommender systems and turned out that
the matrix factorization is very suitable for applying active learning in the
recommender systems [3].

Forbes and Zu described a simple, content-boosted matrix factorization al-
gorithm for collaborative filtering [2]. The usefulness of the method was proved
via experiments. Non-negative matrix factorization methods were published by
Liu and Shen [6], and Lee and Sheung [5]. However, the difficulties caused by
the missing entries of the matrix were not discussed in the papers.

As we showed in [1] the matrix factorization is generally solvable in the
sense that the product of the factor matrices reproduces the known values of
the original matrix. Because the matrix factorization needs a high number of
operations so several factorizing algorithms do not try for precise reproducing
of known entries of the original matrix. These algorithms aim to produce the
approximate values of the known entries. Our considerations are valid for these
algorithms, too.

The application of the matrix factorization based on the consideration that
there is a relationship between the entries of the original matrix and this re-
lationship can be described just by the matrix factorization. Remark that the
multiplication of matrices is a special operation. There are various methods to
derive a result matrix from different matrices. In paper [1] we demonstrate a
few cases where the multiplication of matrices describes the real relationship.
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2. Definitions of stability for matrix factorization

As we showed in paper [1] the factorization of matrices is not unique, more-
over it may cause substantially inconsistent conclusions. It has been suggested
in spite of the products of the factor matrices of the same matrix are different,
but when the values of the observed entries have stability property in some
sense, the result is regarded as trusty.

Let us denote the original matrix by R, while the entry of R in the ith row
and in the jth column is denoted byRi,j . Let F denote a concrete factorization.
The product of the factor matrices yielded by factorization F of matrix R is
called result matrix. The result matrix is denoted by F(R).

It can be shown for the matrixR there exist several number of factorizations
F , consequently there are several result matrices F(R) which are typically (but
not definitely) different from each other.

We introduce different definitions for the stability of the matrix factoriza-
tion.

• We can observe the stability of an entry which is unknown in the original
matrix R.

• We can observe the stability of F(R).

• We can define stability for perturbation of the original matrix R. That is
what differences are caused in matrix F(R) by the perturbation of known
entries of R.

Definition 2.1. A fixed entry Ri,j of matrix R is stable from the
point of view of matrix factorization, if the relative deviation of the en-
tries F(R)i,j is less than the threshold, that is, it can be given εi,j > 0 such
that

σ(F(R)i,j)

|F(R)i,j |
≤ εi,j,

where σ is the deviation, the overline symbolizes the average of the entries
F(R)i,j. The smallest suitable εi,j can be considered the stability measure
of element Ri,j.

Definition 2.2. We assume that matrix R is stable from the point
of view of matrix factorization, if the stability measure of the unknown
entries in matrix R is under a suitable threshold, that is there exists ε > 0 such
that
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max
unknown element of R

εi,j ≤ ε.

The smallest suitable ε can be considered as the stability measure of matrix
R.

Definition 2.3. We assume that matrix R can be factorized stably
from the point of view of perturbation, if a small perturbation of the
known entries of matrix R causes a small perturbation of the entries of matrix
F(R). That is if for every ε > 0 there is a δ > 0 so that whenever

|Ri,j −R′i,j | ≤ δ then |F(R)i,j −F(R′)i,j | ≤ ε

for any known Ri,j. In the above formula R′ symbolizes the perturbation of
R. The smallest suitable ε can be considered as the factorization stability
measure of matrix R belonging to the perturbation δ.

Apparently we can give different other definitions for the stability and sta-
bility measurement.

3. The matrix factorization is unstable

Let {F(R)} denote the set of the result matrices F(R) produced by the
process of factorization of matrix R.

In the recommender systems the method is as follows: starting with matrix
R – using the matrix factorization – a single matrix F(R) is produced and the
values of the unknown entries of R are determined as the computed entries
of F(R). The aim is to find the answer for a given question by applying a
recommender system. For determining the answer for this question we use the
entries of F(R). Fixing a concrete question, suppose that the set of answers is
set A. Matrix R has unknown entries. Let us define the expansion of matrix
R as follows:

Definition 3.1. The expansion of matrix R contains all known entries
of R and some originally unknown entries of R. Let R+ denote the expansion
of R.

For any element a of the answer set A there exists an expansion of matrix
R which results the answer a for our observed question. Let R+a denote the
expansion of R which results the answer a ∈ A. In general for a given R and
a given a there are infinitely many different expansion-matrices R+a.
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Example 3.1. The initial matrix belonging to the ratings shown in Table
1 is as follows

R =

⎛⎜⎜⎜⎜⎝
16 . . .
. 17 16 .
. 15 10 .
. . . 18
. 7 6 .

⎞⎟⎟⎟⎟⎠
There are several factorizations of matrix R, three examples are as follows

⎛⎜⎜⎜⎜⎝
1 1 4
0 2 3
2 1 2
2 2 2
1
2 1 1

⎞⎟⎟⎟⎟⎠
⎛⎝ 0 2 0 3

0 1 2 3
4 5 4 3

⎞⎠ =

⎛⎜⎜⎜⎜⎝
16 23 18 18
12 17 16 15
8 15 10 15
8 16 12 18
4 7 6 7.5

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

6 5
3 2
1 3
8 10
1 1

⎞⎟⎟⎟⎟⎠
(

1 3 4 1
2 4 2 1

)
=

⎛⎜⎜⎜⎜⎝
16 38 34 11
7 17 16 5
7 15 10 4
28 64 52 18
3 7 6 2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

2 5
3 2
1 3
8 2
1 1

⎞⎟⎟⎟⎟⎠
(

3 3 4 1
2 4 2 5

)
=

⎛⎜⎜⎜⎜⎝
16 26 18 27
13 17 16 13
9 15 10 16
28 32 36 18
5 7 6 6

⎞⎟⎟⎟⎟⎠
When the observed question is ”Should we suggest for customer5 the film4?”

then the set of the possible answers is A ={yes, no, not known}. Some expan-
sions of R which support these answers:

R+yes =

⎛⎜⎜⎜⎜⎝
16 . . .
. 17 16 .
. 15 10 .
. . . 18
4 7 6 7.5

⎞⎟⎟⎟⎟⎠
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Because the observed entry of the matrix (line 5, column 4) is 7.5 and this is
the maximum value of its line.

R+no =

⎛⎜⎜⎜⎜⎝
16 . . .
. 17 16 .
. 15 10 .
. . . 18
3 7 6 2

⎞⎟⎟⎟⎟⎠
Because the observed entry of the matrix (line 5, column 4) is 2 and this is the
minimum value of its line.

R+not known =

⎛⎜⎜⎜⎜⎝
16 . . .
. 17 16 .
. 15 10 .
. . . 18
5 7 6 6

⎞⎟⎟⎟⎟⎠
Because the observed entry of the matrix (line 5, column 4) is 6 and this is
neither maximum nor minimum value of its line.
As we can see the above three matrices R+yes, R+no, and R+not known belong to
the result matrices of the factorizations, hence depending on which factorization
was found from the possible ones, each possible proposal can be supported, in
spite of the fact that there exists only one right proposal.

It is evident that when we factorize any expansion of the original matrix
then its result matrix is also the result matrix of the factorization of the original
matrix. It would be summarized as follows: for any R and for any a ∈ A

{F(R+a)} ⊂ {F(R)},

and in general

{F(R+)} ⊂ {F(R)}.

Because the number of elements of set {F(R+a)} is infinite and {F(R+a)} ⊂
{F(R)} it means that during the factorization of the original matrix the pro-
cedures produce infinite number of those matrices which contain any value in
the observed position. So we can state that the matrix factorization is
unstable. It is true for all of the above given definitions of the stability.
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Remark. In the datamining frequently applied method is that one part
of the known facts is used for learning and the other part of known facts
is used to test the model. To decide about the conformance of the result
matrix produced by the matrix factorization this technique is unusable.
In the case of the matrix factorization (when we take into account only
a part of known data at processing the algorithm, the further part of
data is used to check the correctness of results) this means the deletion of
certain elements of the original matrix R. It can be symbolized by R−.
We observe the values of those entries of matrix F(R−) which were left
out from R. When the applied matrix factorization for these elements
(which are used for control) proves to be proper, then this correspondence
has no influence on the unknown elements because – as we showed above
– the set F(R−) contains infinite number of matrices which could have
any values in the observed position. Consequently from the fact that the
applied factorization produces good values in known positions does not
follow that the values in the unknown positions are good or false.

4. Conclusion

Although there are infinitely many different factorizations of a matrix, in
practice during the processing of a concrete matrix we can produce only finite
number of factorizations of course. These factorizations – specifically when
we use the same factorizing algorithm – seem to be stable, so one may have
the impression that from the result matrix one can derive reliable conclusions.
However it is not true because – as we showed above – during the factorization
a number of result matrices with essentially different properties would come
off. Based only on careful mathematical conditions, there is no way to find out
which factorization is ”good” and which ones are ”wrong” from the point of
view of recommender systems. The faulty decision will obviously cause damage
and problem moreover it will badly shake the confidence in the application.

So we can confirm the statement published in [1]: Application of matrix
factorization in recommender systems would be dependably usable if we found
rationale for factor-matrices and the multiplication of the factor-matrices. Ac-
cording to our opinion, the right explanation of the factor-matrices based on
merely matrix R is impossible. In the case of some matrices, finding of the
correct explanation is possible only if we knew the practical environment.

In general the matrix factorization is unstable. We think it is possible that
there are special cases when the matrix factorization is stable. It is a difficult
problem the existence of the stable cases and how can we determine it by the
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analysis of matrix R.

References

[1] Buza, A. and P.B. Kis, Pitfall of the matrix factorization for recom-
mender systems (submitted)

[2] Forbes, P. and M. Zhu, Content-boosted matrix factorization for rec-
ommender systems: Experiments with recipe recommendation, RecSys’11,
2011.

[3] Karimi, R., C. Freudenthaler, A. Nanopoulos, and L.
Schmidt-Thieme, Comparing prediction models for active learn-
ing in recommender systems, http://www.ismll.uni-hildesheim.

de/pub/pdfs/karimi-gfkl.pdf, 2010.

[4] Koren, Y., R. Bell, and C. Volinsky, Matrix factorization techniques
for recommender systems, IEEE, Computer, (2009), 42-49.

[5] Lee, D.D. and H.S. Seung, Algorithms for non-negative matrix factor-
ization, Advances in Neural Information Processing Systems 13, Proc. of
the 2000 Conference¡ MIT Press, 2000, 556-562.

[6] Liu, Y. and C. Shen, Orthogonal nonnegative matrix factorization for
multi-type relational clustering, International Journal of Computer and
Information Technology, 2 (2) (2013), 215-221.
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