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Abstract. In Informatics we sometimes come across problems, which can-
not be solved by common algorithms. Other times, the devised algorithms
are too complex for real use. An alternative solution can often be found
in the use of metaheuristics. One of the metaheuristics subgroups are al-
gorithms inspired by nature. Their main inspiration is nature itself. They
imitate processes from life. Social insects like ants or bees are good ex-
amples. At the first sight they are very simple organisms. When we look
closer, however, their overall behavior is amazing, as is their organization
in a swarm when working towards their common goal. Application of these
algorithms can lead to interesting solutions in many different fields, espe-
cially when no other viable solution is available.

DNA assembly is one of such problems. The problem is to assemble DNA
from fragments read by some DNA sequencing technology, since current
technologies are not able to read the whole DNA sequence, only much
shorter fragments. We propose a possible solution to the DNA assembly
problem by use of a biologically inspired algorithm that imitates fireflies.
We adapted algorithm for this problem and designed new algorithm oper-
ators. We implemented the proposed solution in a prototype. Finally, we
successfully verified the algorithm on GenFrag and DNAgen benchmark
instances of DNA problem.
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1. Introduction

Analysis and data processing are often required when conducting research in
various scientific disciplines. Often, informatics becomes involved. Interdisci-
plinary fields emerge, such as bioinformatics. One of the most recent problems
in bioinformatics is the DNA assembly. Knowing a DNA structure is of fun-
damental importance in researching how to prevent many illnesses and how
to cure them. Due to progress in technology, it is currently possible to read
very big numbers of very small DNA fragments faster and faster, using e.g.
“shotgun sequencing” [9]. The problem is that we do not know the original
positions of fragments in the DNA sequence. To solve this computationally
difficult problem, many algorithms were devised. Their main goal is to recon-
struct the original structure of the DNA.

One of the possible approaches is to use biologically inspired algorithms
(BIA). BIA are stochastic search and optimization techniques based on prin-
ciples of collective behavior and self-organization. They are often inspired by
social behavior of living organisms. They were successfully applied to many
fields of computationally difficult problems, where solutions using conventional
algorithms are not possible. DNA assembly is such a problem.

2. Problem definition

The problem of DNA assembly can be characterized by the input and the
corresponding output. Input is a huge amount of small fragments, which are
essentially strings composed of only four characters A, G, C and T. Output
should be the original DNA sequence, which is a permutation of inputs. It is a
combinatorial NP-hard class problem [11].

The current technology (sequencing of second generation, “shotgun sequenc-
ing”), allows to read many DNA fragments in parallel very fast, but the frag-
ments must be short (of the order of hundreds). Thus the original DNA must
first be fractured. If not for this, there would be no problem of assembly.
Moreover, the way the fracturing is done has an unpleasant consequence that
information on a fragment’s position in the original sequence is lost. To be able
to reconstruct completely the whole DNA we need to reach proper coverage of
DNA sequence by a sufficient number of fragments [11], where sufficiency is
sought by redundancy. Redundancy is also needed to allow fragment overlaps.

One way of viewing the problem is finding the shortest common super-
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string by constructing Euler super-path [10]. Regardless the approach taken,
the problem is O(N P). However, the real problem, not viewed so abstractly, is
tied with additional complications. DNA structure consists of two complemen-
tary strings and the fragments come from either of them. In a genome of an
organism, repetitions of variable length and frequency are common. Reading
process is error prone. Its output can contain with some probability various
errors that need to be detected and repaired. The main problems can be sum-
marised as follows [5]. (1) unknown direction - overlaps between two fragments
depend on their order, (2) reading errors - current technology is error prone
and 1 to 10 % error rate is common, (3) insufficient coverage - fragments are
read randomly, the genome is not guaranteed to be covered completely, (4)
repetitions - repetitions that are bigger than readings cannot be detected, (5)
chimeras and contamination.

3. Standard approaches

Vast majority of assemblers are based on 2 standard approaches [8].

Overlap-layout-consensus method was used in the Sanger project. In the
first phase, overlap, graph of overlapping fragments is created (e.g. using suffix
trees). After the first phase graph contains much duplicate information. In the
layout phase the graph is simplified by many operations, e.g. removing edges
that skip nodes, where the other path already exists. Also the contigs are
separated. The consensis stage relies on the high coverage of DNA. It picks
most likely nucleotide sequence for each contig. This phase can also repair
errors caused by the reading technology.

The most modern assemblers are based on the second approach, De Bruijn
Graphs [9]. Each node represents a unique string of length k, which can be
found in some input sequence or its complement. An oriented edge links two
nodes “aA” and “Ab” in the case that string “aAb” can be found in original
sequence. DNA assembly is the shortest path of graph that consists of all the
nodes. For double strand character of DNA the bi-directed graph is used. The
tools based on this principle are for example Fuler, Velvet, ABySS, AllPaths,
and SOAPdenovo. The tools differ mainly in internal memory representation
of data, dealing with a pair of readings and reading errors.
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4. BIA approaches

Optimization in DNA assembly, increasing the quality of assembly output
leads to the use of alternate methods such as BIA approaches [3]. One group
of BIA are algorithms inspired by swarm intelligence.

In [2] authors combined 2 BIA swarm algorithms, Artificial Bee Colony
(ABC) and Queen Bee Evolution Based on Genetic Algorithm (QUEGA). They
successfully applied algorithms for assembly of errorless data and data with
some rate of artificial errors. The food in ABC and individual in QUEGA was
one solution represented by sequence permutation. With the set of DNA frag-
ments in input, the optimization problem was to minimize number of contigs
and maximize the overlap score of permutation. The algorithms do not need
any data preprocessing. The authors used problem aware local search (PALS).
They used GenFrag and MetaSim for data generation. They observed compa-
rable results for errorless data with other BIA approaches. For data with some
degree of errors, they observed better performance with QUEGA.

Another popular BIA optimization is based on ants behavior. It is often
demonstrated on travelling salesman problem, which can be viewed also as
an abstraction of the DNA assembly. Authors of [7] applied the ant colony
optimization (ACO) to the DNA assembly problem. The cities are fragments
and the city distances are analogy to the fragment similarity. The goal is to
travel the shortest path over all the cities. In DNA assembly world it means
to find the shortest string of all the fragments. The algorithm was tested on
the subparts of human genome that was cut to fragments with no errors. It
performed better if numerous contigs were composed.

5. Firefly algorithm

Our approach is based on the algorithm inspired by fireflies - Firefly algo-
rithm (FA). The algorithm was first published in 2009 by its creator Xin-She
Yang [12]. The algorithm is inspired by the fact that fireflies are able to pro-
duce light to become attractive. In real life males and females are attracted by
lights for the purpose of reproduction. The main principles are [12]:

e the fireflies are bisexual;

e attractiveness is proportional to firefly light intensity, the fly with less
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intensive light moves always to the fly with more intensive light;

e the light intensity decreases proportionally to distance between two flies,
caused by light absorption;

e light intensity is characterized by an objective function. Objective func-
tion is similar to fitness function, which is metric for solution quality in
genetic algorithms.

Pseudocode for general algorithm [12]:

1. initial parameters are defined: fireflies count, number of moves M, itera-
tion limit N, light absorption gamma;

2. generate initial population P;
3. repeat IV times or until desired solution achieved:

(a) for every firefly F' in population P:
i. find the most attractive Fa;
ii. if more attractive is not visible for defined gamma, move ran-
dom M times;
iii. otherwise move to the more attractive M times;

(b) evaluate new flies based on their lightness, choose fireflies for the
next iteration.

Each firefly is one problem solution, in our case a permutation of the DNA
fragments. The distance between fireflies is a measure of difference between
fireflies. Light absorption is constant, usually a value from 0.01 to 100. It
describes how far a firefly can see in the solution space. If set too low, firefly
can see all the other fireflies and algorithms are similar to particle swarm opti-
mization. If set to high value, fireflies are blind and algorithms become random
search.

The main idea of the algorithm is to improve solution using similar but
better solution. Yang claims that it finds extremes in an effective way and also
with the global optima between them. It performs better and converges faster
compared to genetic algorithm and particle swarm optimization.

The attraction in distance r is defined as [12]:
2
(5.1) B(r) = Boe ",

r - distance,
By - lightness of firefly = fitness,
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~ - light absorption constant, optional number (mostly between 0,01 and 100).

The algorithm is primarily designed for continuous optimization problems.
Its performance was illustrated with Michalewitz function for 2 independent
variables. It needs to be modified to meet combinatorial problem requirements.
The possible solution was illustrated in [4]. The movement part of algorithm
is an abstraction of solution modification. In our solution we designed compo-
nents of the algorithm as follows.

5.1. Algorithm modifications

Firefly:

One firefly is a permutation of all available input DNA fragments. In the case
of a continuous problem the firefly was defined by values of optimized problem
parameters.

Movement:

Movement should express various length and direction. We designed two algo-
rithms. The first one is pure random movement. We take random number N
from uniform distribution depending on distance between 2 fireflies. Then the
moving firefly is N times randomly changed.

The second one expresses movement characteristics in a better way. In ad-
dition to the length it is also directed. We called it Sequence ConstructedMove-
ment (SCM). It is inspired by the SCX operator used in genetic algorithm for
combinatorial problems [1]. It tries to compose a new, better permutation by
adding the subsequences of the firefly we are moving to. By using random
factors with probabilities we can control the ratio of edges from moving firefly,
toward firefly and new edges. The algorithm pseudocode can be found in the
Picture 1.

Distance:

To determine distance between firefly A and firefly B we devised 2 algorithms.
The first one is based on one to one comparison of permutations. Distance is
percentage of object in different positions to all positions in permutation.

The second one uses a relative position of fragments in permutation, the
edges between fragments. It looks at the successor of compared permutation
objects. If they are not the same, the counter is incremented. The result is
relative to the permutation length.

Attractiveness:
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Figure 1. Activity diagram for SCM movement

We are completely satisfied with original proposed mathematic model in equa-
tion 5.1. The firefly quality, or better its light intensity in distance zero is the
sum of overlaps over all fragments in a permutation. Another interesting model
from [6] is also based on overlaps but penalizes permutations, where two good
overlaps are far from each other.
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Selection:

We use three methods. The first one chooses best solutions only from new
generated fireflies. The second one chooses best solutions from a union of sets
of old and new fireflies. The third one takes constant number of elits from old
iteration and combines them with the new fireflies. For quality of solution we
use the same function as for attractiveness.

6. Complexity

6.0.1. Data complexity

The main source of data complexity is the table of distances/overlaps be-
tween fragments. Size of this table is N x N, where N is number of in-
stances/fragments. Data complexity of algorithm is

(6.1) O(N?).

Proposed data complexity is specific for many BIA approaches and is one of
the main limitations for solving DNA assembly of real organisms size.

6.0.2. Time complexity

The firefly algorithm is nondeterministic. It runs in iterations, until con-
dition is not met, I. In each iteration, for each firefly P, new fireflies are
generated. Most computationally intensive part of the algorithm is computa-
tion of quality of firefly. It needs to sum N — 1 of paths, the complexity is
O(N). Chosen data structure used for paths storage also influences the overall
complexity. Taking all this into account, the overall complexity is

(6.2) OI«F«PxN),

where: I - number of instances, F' - number of fireflies in generation, P -
number of moves, N - number of fragments.
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7. Experiments and results

In the first phase the experiments were performed on freely available Asym-
metric Travelling Salesman (ATSP) instances®, instances of TSP where distance
from city A to B is not equal to distance from city B to A. The solution of the
problem is to find shortest path through all the cities.

The second phase was tested on DNA data. We used publicly available
instances of benchmark problems generated by GenFrag and DNAgen tools.
The dataset is available from . In [13] authors collected often used prob-
lem instances, documented them and compared results of various algorithms
tested on them. The dataset became standard for testing metaheuristic assem-
bler methods. This is the reason, why we also decided to use these problem
instances.

In Table 1 we can see the statistics obtained from algorithm runs on avail-
able problem instances. The algorithm was repeatedly running 10 times for
every instance. The represented value is an overall sum of overlaps in per-
mutation. We monitored the best and the worst result, variance, mean and
median. Instances bx842596 have high variance compared to acin, both are
almost the same dimension. The reason could be various values of coverage for
these problems.

In Table 2 we can see the performance of our solution compared to other
algorithms. For GenFrag instances, of smaller dimension, algorithm performed
similarly to other methods. It reached the best result in 2 / 7 instances. For
instance z60189_4 it reached optimal value. For instance z60189_5 it reached
best results from compared algorithms. For other 5 instances it performed
slightly worse, the furthest from optimum in instance m15421_7.

For DNAgen instances the results were more interesting. From all compared
methods our algorithm reached the best result in 3 from 9 instances. In the
other 2, only method PPSO+DEFE was better. In other 3 instances results were
slightly worse than others. In the worst instance j02459_7 the results differed
in more than 5 %.

Our algorithm exceeded the expectations, it outperformed compared algo-
rithms in various instances. For others it performed similarly. We successfully
adapted firefly algorithm to solve problem of DNA assembly.

*http://www.iwr.uni-heidelberg.de/groups/comopt/software/ TSPLIB95/atsp/
Thttp://www.mallen.mx/fragbench/
Thttp://comopt.ifi.uni-heidelberg.de/software/ TSPLIB95/
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Instance Mean Median | Minimum | Maximum | Variance
x60189_4 11466.1 11487.0 11320.0 11487.0 3486.1
x60189_5 13957.25 13961.5 13841.0 14075.0 9859.9
x60189_6 17885.75 17880.5 17673.0 18097.0 21912.2
x60189_7 20744.0 20718.5 20565.0 20898.0 15334.5
m15421.5 37438.4 37401.0 37026.0 37743.0 51693.8
m15421_6 46617.8 46589.0 | 46227.0 47033.0 61359.2
ml15421.7 51419.5 51408.0 51353.0 51509.0 5643.0
j02459_7 108587.0 108588.5 | 108470.0 108701.0 9234.0

bx842596_4 || 211014.25 | 211013.0 | 210377.0 211654.0 378990.9

bx842596_4 || 413045.5 412919.5 | 412713.0 413630.0 164264.3

acinl 44966.4 44949.0 | 44827.0 45160.0 10327.1
acin2 147218.8 | 147236.5 | 146976.0 147460.0 42134.5
acin3 164306.75 | 164212.5 | 164150.0 164652.0 95348.9
acind 162753.5 | 162767.0 | 162565.0 162915.0 21673.6
acin’? 179907.5 | 179908.0 | 179901.0 179913.0 24.3
acin9 333388.75 | 333425.0 | 332890.0 333815.0 217396.9

Table 1. Statistics for DNAgen and GenFrag instances

8. Conclusion and future work

In this paper we described new approach to DNA assembly based on the
firefly algorithm. The algorithm, essentially a metaheuristic, shows interesting
optimization possibilities. We designed new algorithm operators and evaluated
them on benchmark DNAgen and GenFrag instances.

We run multiple experiment types to explore influence of algorithm param-
eters on the quality of results. Finally, we generated solutions for all available
DNA benchmark problems.

Based on these results we can say that firefly algorithm is comparable in
performance with other BIA approaches. For larger DNAgen instances it even
outperformed the algorithms used for comparison. One result of experiments is
that firefly algorithm can be successfully adapted to solve the problem of DNA
fragment assembly.

Fine tuning and optimizing the implementation of our prototype is likely
to bring improvements. Further research e.g. on employing a combination of
new operators could also amend the proposed solution.
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Parallel implementation of the algorithm seems to be a viable option. The

firefly algorithm is such that the computationally hard parts require minimum
communication.
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