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Abstract. The Correlation Clustering is a classical, NP hard op-
timization problem with many social, economic, physical, biologi-
cal and computer science applications. We had implemented several
methods to find near optimal solutions for particular problems. Here
we summarize the results of our experiments on random graphs in
particular with regard to phase transitions.
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1. Introduction

The aim of clustering is to discover the structure of objects and group
them based on similarity, without any previous information about their
structure. We would like similar objects to get into the same clusters,
and different object to get into different ones. This condition is very
general, so we cannot wonder how many different clustering methods
exist. Most of the classification methods are based on some distance
functions. Based on this distance we can say that two objects are similar
or dissimilar. Correlation clustering [5] is different. It uses a similarity
relation, so two objects are similar if this relation holds, and dissimilar if
does not. This kind of clustering is sleekly modeling physical processes
[25], biological relations [26] or social coalitions [29].

Sometimes it is interesting to cluster a given structure [3]. However,
other times we have no exact knowledge about the stucture, just about
some of its parameters. Néda at al. [25] had shown that in the case of
a complete signed graph there is a phase transition: the function r(q),
which denotes the relative size of the maximal cluster, has a transition
at q = 1/2.

Clustering of random graphs is an especially engaging problem [12].
Unfortunately the clustering is so complicated, that we cannot give a
mathematically strict analysis, just Monte Carlo simulations. Néda at
al. [24] made numerical tests on some special Erdős-Rényi graphs as
well as Barabasi-Albert type scale-free graphs. Our investigations were
inspired by that article. We implemented several well-known algorithms
along with some new ones [2], to replace the tools used at simulations in
[24]. This, and a new storage method of graphs enables us to raise the
number of nodes from 100 − 150 to 500 and generate one curve of the
graphs within an hour on an ordinary desktop computer, which needs
thousands of clusterings. We tested these simulations by random graphs
which can be written with a few parameters.

András Benczúr almost 40 years ago drew attention to the special
problems and hardness in handling of the large systems as well as data
(database) and program level. He gave good solutions concerning this
’big data’ world in real practice [8, 22], and he got very nice theoretical
results [1, 9, 10], too. Another field of his interest is to understand
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the deep meaning of information, the essence of information boom of
information society [11, 7, 10]. In this paper we give a small contribution
to the investigation of large networks (graphs) from side of algorithms.
Our experiments fully support Benczúr’s approach.

1.1. Random networks

In this point we give a short summary of questions and answers
from theory of random graphs concerning to our main topic. This is
based mostly on the book of L. Lovász published in 2012 [20]. Random
Networks has no other source which would provide a better explanatory
overview than Chapter 1 in Lovász’s book. The meaning might have
been modified by rephrasing the author’s sentences, therefore we quoted
pieces verbatim from that chapter.

That is the fact that a large number of the most interesting struc-
tures and phenomena of the world can be described by networks. Some
examples: the Internet, the network of hyperlinks; the acquaintance
graph of all living people with about 7 billion nodes; the human brain,
a network of neurons having about a hundred billion nodes. One can
say that the whole universe is a single network, where the nodes are
events (interactions between elementary particles), and the edges are
the particles themselves. This is a network with perhaps 1080 nodes.

Very large networks are never completely known, in most cases they
are not even well defined. Data about them can be collected only by
indirect means like random local sampling or by monitoring the behavior
of various global processes.

The most important and widely investigated questions: What is the
average degree of nodes? Is the graph connected? Where is the largest
cut in the graph? How to classify the nodes (vertices)? One of the
crucial questions is how to observe graph processes? Poperties of very
large graphs can be studied by randomly sampling small subgraphs.
It turns out that this sample contains enough information to determine
many properties and parameters of the graph, with some error of course.

There were introduced some different models. The simplest random
graph model was developed by Erdős–Rényi [16] and Gilbert [19]. One
can generate a random graph by taking the nodes, and connecting any
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two of them with a given probability making an independent decision
about each pair of nodes. There are alternate models, which are es-
sentially equivalent from the point of view of many properties. Two of
these were introduced in the early papers by Erdős–Rényi [16, 17]. An-
other model, closer to some of the more recent developments, is evolving
random graphs, where edges are added one by one, always choosing uni-
formly from the set of unconnected pairs. Random graphs have many
interesting, often surprising properties, and a huge literature, see Bol-
lobas [13].

Random graph models on a fixed set of nodes, discussed above, fail to
reproduce important properties of real-life networks. In 1999 Albert and
Barabasi [6] created a new random network model. Perhaps the main
new feature compared with the Erdős–Rényi graph evolution model is
that not only edges, but also nodes are added by natural rules of growing.
The Albert–Barabási graphs reproduce the heavy tail behavior of the
degree sequences of real-life graphs. In this paper our investigation is
related to these classical models introduced above. Since then a great
variety of growing networks were introduced, reproducing this and other
empirical properties of real-life networks among them Móri [23], Fazekas
and Porvázsnyik [18].

One of the most important questions is how to assign limits to se-
quences of graphs? The growing graph sequences tend to have a well-
defined structure, for almost all of the possible random choices along
the way. In the limit, the randomness disappears (similarly to the law
of large numbers), and the asymptotic behaviour of the sequence can
be described by a well-defined limit object. We have to mention again
a Hungarian mathematician whose contribution is fundamental in this
field. Namely Szemerédi and his regularity lemma from 1975 [27].

Many authors considered a growing sequence of graphs whose num-
ber of nodes tends to infinity, to define when such a sequence is conver-
gent, and to assign a limit object to convergent graph sequences, which
somehow incorporates all the properties we want to be remembered. For
dense graphs, this notion of convergence was defined by Borgs, Chayes,
Lovász, Soós and Vesztergombi [14]. More explicit descriptions of these
limit objects can also be given, in the form of a two-variable measurable
function, called a graphon (Lovász and Szegedy [21]).

There are several related questions here, depending on what we need
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as a result. The easiest setup is when we want to compute a numerical
parameter of the graph; say, how large is the maximum cut, or what
fraction of the triples induce a triangle, or we want to find a perfect
matching in the graph, or a maximum cut, or a regularity partition in a
huge dense graph. To handle these questions we must define similarity
distance between two nodes of a graph. We could try considering two
nodes similar, if their neighbourhoods differ by little.

1.2. Correlation clustering

At correlation clustering mathematically speaking we have a graph
G = (V,E), where V is the set of object we would like to cluster. And
we have signed edges, more precisely a function s : E → {+,−} which
assigns a sign for each edge. Here the sign + denotes the similarity and
− denotes the dissimilarity. We refer to the signed graph as (G, s) in
the following. Naturally we can use two colours instead of signs, but the
signed graph is the traditional terminology according to Bansal at al. [5].
The sign of edges here can arise from any source, e.g. from similarity
distance or by real distance.

The correlation clustering minimizes the disagreements: the number
of pairs of dissimilar objects within clusters plus the number of pairs of
similar objects in different clusters. If p : V → N is a partition of the
object, then we can assign a cost value to this partition as

f s
G(p) :=

∣∣∣ {(i, j) ∈ E | s(i, j) = + iff p(i) = p(j)}
∣∣∣.

The fact, that the goodness of a clustering is measured by a number,
enables us to compare the different clusterings/partitions. This compa-
rability of clusterings is not common, at other methods thumb rules to
help the users to choose the right parameters: to get a good clustering.
This is not the case here. The comparison enables us to choose the best
one. The result of a correlation clustering of some signed graph (G, s)
is a partition p� where f s

G(p
�) is minimal, i.e. f s

G(p
�) ≤ f s

G(p) for each
partition p : V → N.

When the number of the objects is less than 15, a full search gives
for us the global optimum. In special cases (for special graphs) we can
get the exact optimum for more nodes, too; but in general case not.
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Unfortunately the number of partitions is an exponential function of
the number of objects, so at practical cases we can only approximate
the optimal partition. The authors and their students implemented
several combinatorial optimization methods [2, 4]. These methods were
tested for correlation clustering, and a fast and effective method had
been chosen to run experiment for this article. This method named
Contraction is a simple greedy algorithm. It starts with singletons as
a partition and iteratively selects the pair of clusters worth to join.
According to the greedy method it selects the pair where the cut in
value f s

G(p) is maximal. It stops when there is no pair of clusters worth
to join.

2. Theoretical and experimental results for complete graph

For a given set of object V in case of complete graphs the set of
edges E is uniquely defined. But in case of signed complete graphs,
many s : E → {+,−} colouring functions exist. To be able to compare
these colourings, we define the rate qs of positive edges as follows:

qs =
|{e ∈ E|s(e) = +}|

|E| .

It is obvious that only one colouring s′ exists such that qs′ = 0. In
this case all the edges are negative, and it is easy to check, that for the
partition p′ which contains only singletons f s′

G (p′) = 0. Similarly, there
uniquely exists a colouring s′′ such that qs′′ = 1. In this case for the
partition p′′ = {V } holds that f s′′

G (p′′) = 0. In other cases we examined
statistically colourings s, which have the same rate qs: we have chosen
several samples, and applied the correlation clustering for the signed
graph (G, s).

As Erdős and Rényi examined the connectivity of the whole graph
for random graphs [16], it is evident that it is needed to examine the size
of the maximal cluster of the solution of the correlation clustering on
complete graphs. As we noted in the introduction, Néda at al. had shown
that the correlation clustering has two district phases separated by 1/2
[25]. In the asymptotic case when q ∈ [0, 1/2), the relative size of the
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Figure 1. As we have more edges, the value of the cost function is bigger.

maximal cluster is 0, and when q ∈ (1/2, 1] then the maximal cluster
contains all the vertices. Fig. 2 and 3 justify that our experimental
results are consistent with this theoretical result, i.e. as n grows we get
closer to the asymptotic limit.

To show some half-hidden properties we present also the average of
the values of f s

G(p) as the function of qs, see Fig. 1. As we can have many
different colourings with the same rate, we only plot the mean. In this
case, the deviation is not remarkable. The figure contains several curves
for complete graphs with different sizes. Note, that the symmetry of
these functions, and the turning point is around 1/2 by the figure. If we
examine the data carefully, in these cases this value is around 0.53 and
not 0.5. It is an open question whether this difference is the effect/error
of the optimization algorithm we used, or it has other reason?

Fig. 3 shows the most interesting part of the curve of the averages of
the maximal cluster sizes which can be found on Fig. 2. Here we denote
relative sizes of the maximal clusters according to the number of vertices
of the complete graphs for several cases, to show the tendencies.
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Figure 2. Relative sizes of the maximal clusters.

3. Clustering of Erdős-Rényi type graphs

Apart from the uniqueness of the complete graph, there are other
options to choose graphs to colour. As the colourings are random, it is
reasonable to choose the graphs randomly, too. Two well-known types
of random graph exist; in this and the next section we analyse the clus-
tering of their colourized versions.

At Erdős-Rényi type graphs with parameters (n, p) we drop out each
edge of the complete graph with n vertices with probability 1−p and are
left with probability p. As the value p is high, the results are near to the
results of the previous section. The tendency becomes different, if p is
small. On Fig. 4 we illustrate the result of clustering several graphs have
near the same edges. It can be seen on the figure as p is decreasing the
curves become more and more asymmetric. Table 1 shows that this is
not an illusion, by the experiments the curves really have this property.
To examine this carefully we need to choose an even smaller p, an even
bigger n, and connected graphs only.
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Figure 3. Relative sizes of the maximal clusters.

Table 1. Optimum of the curves in Fig. 4

p 1 0.25 0.11 0.06 0.04

q 0.55 0.56 0.57 0.58 0.60

Fig. 5 shows that decreasing p has opposite effects from increasing
n: as p becomes smaller and smaller we get away from the previous
asymptotic limit. It is an open question whether for any fixed p > 0,
as n heads to infinity the asymptotic limit becomes the same as in the
previous section, or not?

4. Clustering of Barabási-Albert type graphs

In the last decade of the previous century the interest on big graphs
has increased. As Barabási and Albert found out the method of gener-
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Figure 4. The turning point moves right if the p becomes small.

ation these graphs [6] the interest even jumped.

The Erdős-Rényi type graphs can be treated as dense graphs, as the
degree of any node is np on the average, therefore its limit, when n tends
to infinity, is∞ for any positive p. The generation of the Barabási-Albert
kind of scale free networks is the following: it starts from a complete
graph with m0 node, and each newer node connects to m older nodes
using the preference attachment. We call these graphs as m0/m type
Barabási-Albert graphs. Here by adding a new node to the network,
the sum of degrees increases by 2m in each step. Hence the limit of
the degree of any node on the average is 2m, i.e. a constant. This
suggests, that the asymptotic behaviour of the clusters will be different
in these two cases. Fig. 6 shows different sizes 3/2 type Barabási-Albert
graphs. For the sake of scare, here we used error-bars. It is obvious that
if the super-node (the node with the most edges) have many positive
edges, have many negative edges, or have about equal many positive and
negative edges, then the optimal clustering will be very different. As the
structure of Erdős-Rényi type graphs is more symmetric, the difference
of the maximal and minimal values of the cost function are not as big
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Figure 5. As p decreases the curve moves away from the previous limit.

as here. The number of edges in these graphs is a small fraction of the
complete graphs, hence the value of the cost function is just its fraction.
The asymmetry of the curves is obtrusive, by examining the data these
functions have extrema around 0.7. Fig. 7 illustrates the relative size of
the maximal clusters. In this case we show the whole graph given that
almost everywhere it differs from the theoretical result on the complete
graphs. As the size of the graph grows, the curve moving away from the
line y = 1. We have the conjecture that the limit of the relative size will
be 0 for q ∈ [0, 1) and 1 for q = 1, but without calculating these curves
for even larger graphs we cannot neither support nor reject it.

As these scale-free graphs have two parameters, we can examine how
the clusters vary, as we change these parameters. The experiments show
that as we increase the value of m, the same size graphs have more edges
and hence have more conflicts, so the values of the cost function increase.
Similarly the size of the maximal cluster increases, and in the interval
[0.8, 1] the curve is getting closer to the line y = 1.

Increasing m0 a little at first has only a small effect, since it does not
dramatically change the number of edges. However, the size of the core
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Figure 6. Asymmetry at curves of 3/2 type BA graphs

determines the degree of the competition for better preference values,
and finally dives the scale-free parameter of the whole network. Fig. 8
shows, that if m0 is bigger, then the extrema tends to left. Fig. 9 shows
the size of the maximal clusters. In this case, like at Fig. 7 we can find
a weak tendency, that the size of the maximal cluster gets bigger.

5. Technical details

For our students it was evident at implementing correlation cluster-
ing, to store the graphs in a modified adjacency matrix, where some
ones were replaced by −1, if the corresponding vertices are connected
with negative edges. The partition stored as a vector of numbers. The
authors reimplemented these with bit-matrices, hence the calculation of
the cost value reduced to bitwise operations. This speeded up the cal-
culation alone about a hundred times for some optimization methods.
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Figure 7. Relative sizes of the max. clusters of 3/2 type BA graphs.

Moreover the authors invented several optimization methods which
use the specialities of the correlation clustering [2]. With these methods
one can get results very close (about one percent distance) to result of
the best implemented algorithm, the taboo method.

In the case of sparse graphs the adjacency matrix stores many zeros
needlessly. Hence the search for non-zero elements could take more time
than the calculation. Therefore we had implemented a storage method
variant using the Yale Sparse Matrix Format [15] and an extra row,
to be able to sort the signed edges of the generated graph. Although
our graphs are symmetric, we store the edges in both directions, so after
sorting the edges belonging to some verteces are together, we can process
them in succession. Fig. 10 shows the running time of the clusterings
using different storage methods. With this new sparse representation the
clustering is two times slower than with bitwise operation, nevertheless
we believe that the calculations could be speeded up.
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Figure 8. Curves of the cost values of BA graphs with different cores.

6. Conclusion and further works

In this article—based on previous work of Néda at al. [24, 25] – we
have examined several random signed graphs, and their optimal parti-
tion. We have inspected the relation between the shapes of the cost-value
and maximal cluster function and the parameters of the different type
of random graphs. We have formulated several conjectures about be-
haviour of these curves. Although we had overstep the size of previous
experiments, but one need to analyse the result of clustering of even
bigger graphs to check the tendencies and interpret the conjectures in
detail. The new data type to store graphs is a good step into the right
direction, but other tricks need, to speed up the calculation. We have
many open questions and there are several other type of random graphs
to analyse [18, 28].
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Figure 9. Relative sizes of the max. clusters of BA graphs with different
cores.

References
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[11] Benczúr, A. and J. Kormos, Az informatikus szakmáról, Infor-
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[24] Néda, Z., R. Sumi, M. Ercsey-Ravasz, M. Varga, B.
Molnár and Gy. Cseh, Correlation clustering on networks, J. of
Physics A: Mathematical and Theoretical, 42 (34): 345003, 2009.
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