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Abstract. The use of bonus-malus systems in compulsory liability auto-
mobile insurance is a worldwide applied method for premium pricing. Con-
sidering certain assumptions, an interesting and crucial task is to evaluate
the so called claims frequency regarding the individuals. Here we introduce
3 techniques, two is based on the bonus-malus class, and the third based
on claims history. The article is devoted to choose the method, which fits
to the frequency parameters the best for specific input parameters. For
measuring the goodness-of-fit we will use scores, similar to better known
divergence measures. The detailed method is also suitable to compare
bonus-malus systems in the sense that how much information they contain
about drivers.

1. Introduction

The joint application of probabilistic, statistical and Bayesian methods re-
lated to specific issues in practice played an important role in several works
of András Benczúr (see [1] for example). These methods are applied in the
present article concerning an actuarial problem.
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1.1. Motivation

The concept of bonus-malus system is a worldwide, especially in Europe
and Asia applied method in compulsory liability automobile insurance. Princi-
pally constructed in order to support the premium calculation of drivers. This
might vary for different countries, but the idea is similar: policyholders with
bad history should pay more than others without accidents in the past years.
Schematically and mathematically described, there is an underlying graph with
vertices called classes, among others an initial vertex, where every new driver
begins. The graph contains a finite number of classes in practice, however,
interesting articles are involved in the discussion of infinite systems, see book
[10]. After a year without causing any accident he or she jumps up to another
class, which has a cheaper premium. Otherwise, in case of causing an accident,
the insured person goes downward, to a new class with higher premium, except
he or she was already in the worst one.

Many other factors are taken into consideration when calculating one’s pre-
mium, such as the engine type, purpose of use, habitat, age of the person
etc., which result an a priori premium. Furthermore, the a posteriori premium
arises as the product of a priori and the bonus-malus factor. A wide range of
literature is available discussing these factors extensively, see [10], for example.
Here we only concentrate on the bonus-malus system. Note that premium cal-
culation is often realized involving credibility techniques, mixing the insurance
institution’s experiences with available national data, according to an appro-
priate proportion. The discussion of credibility is also omitted in the present
article, see [7] for details, for instance. We also recommend book [3].

Our aim is to estimate the expected λ number of accidents triggered by
insured drivers. This is usually called the claims frequency of the policyholder.
First we review our necessary assumptions, among others about the distribution
of claim numbers of a policyholder in one year, and the Markovian property of
a random walk in such a system. Section 2 will discuss the basic problem illus-
trated with Belgian, Brazilian and Hungarian examples. Since also a Bayesian
approach will be used for estimation of λ, a general a priori assumption is
also needed. Based on this and a gappy information about the driver, the a
posteriori expected value of λ will be calculated.

Fitting the possible best estimation for λ is a crucial task in the insurer’s
operation, since the expected value of claims, and which is the most important,
the claims payments are forecasted using λ. Let us note that for evaluating the
size of payments on the part of the insurer, the size of the property damages
has to be approximated, not even the number of them. This part of actu-
arial calculations is not taken into account in the present article, for further
discussions see [6, 12], for instance.
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1.2. Bonus-malus systems

We assume the following constraints, simplifying real-world scenarios:

Assumptions 1.1. 1. λ is a constant value in time for each policyholder,
and generally assumed to be the realization of a Λ random variable in-
dependent for each person. Remark that the case of time-dependent λ
implies using double stochastic processes (Cox processes for instance),
i.e., λ(t) would also be a stochastic process.

2. The random walk on the graph of classes is a homogeneous Markov chain,
i.e., the next step depends only on the last state, and is independent of
time.

3. The distribution of a policyholder’s claim number for a year is Poisson(λ)
distributed, conditionally on {Λ = λ}.

Notation 1.2. For a bonus-malus system consisting of n classes, let C1 denote
the worst one with the highest premium, C2 the second worst etc., and finally
Cn the best premium class which can be achieved by a driver. Moreover, let Yt

be the class of the policyholder after t steps (years).

Using these notations, the Markovian property can be written as P (Yt =
Ci|Yt−1, . . . , Y1) = P (Yt = Ci|Yt−1). As the Yt process is supposed to be
homogeneous, it is correct to simply write pij instead of P (Yt+1 = j|Yt = i).
These values specify an n × n stochastic matrix with non-negative elements,
namely the transition probability matrix of the random walk on states. Let us
denote it by M(λ). Now to be more specific, we outline the example of three
different systems, the Belgian, Brazilian and Hungarian.

Example 1.3 (Hungarian system). In the Hungarian bonus-malus system
there are 15 premium classes, namely an initial (A0), 4 malus (M4, . . . ,M1)
and 10 bonus (B1, . . . , B10) classes. Using the aforementioned notations, we
can think of it as C1 = M4, . . . , C4 = M1, C5 = A0, C6 = B1, . . . , C15 = B10.
After every claim-free year the policyholder jumps one step up, unless he or she
was in B10, when there is no better class to go to. The consequence of every
reported damage is 2 classes relapse, and at least 4 damages pulls the driver
back to the worst M4 state. Thus the transition probability matrix takes the
form of Equation 7.1, see Appendix.

Example 1.4 (Brazilian system). 7 premium classes: A0, B1, B2, . . . , B6.
Sometimes written as classes 7, 6, 5, . . . , 1, e.g. in [11]. Transition rules can be
found in the cited article.



22 M. Arató and L. Martinek

Example 1.5 (Belgian system). The new Belgian system was introduced
in 1992. We address the transition rules regarding business-users, which can be
found in article [11], among others. There are 23 premium classes: M8, M7,
. . ., M1, A0, B1, B2, . . . , B14 (sometimes written as classes 23, 22, 21, . . . , 2, 1).

2. The Bayesian approach

Our realistic problem is the following. When an insured person changes
insurance institution, the new company may not necessarily get his or her
claim history, only the class where his or her life has to be continued. The
new insurer also knows the number of years the policyholder has spent in the
liability insurance system. Nevertheless, based on this two information we
would like to provide the best possible estimation for the specific person’s λ.

Recall that Yt = c denotes the event that the investigated policyholder has
spent t years in the system (more precisely, from the initial class he or she has
taken t steps), and arrived in class c.

Notation 2.1. π0 is the initial discrete distribution on the graph, which is a
row vector of the form (0, . . . , 0, 1, 0, . . . , 0). The ith element is 1, which means
that each driver begins in the initial Ci state.

As a Bayesian approach, suppose that claims frequency is also a random
variable, and denote it by Λ. In practice, the gamma mixing distribution is a
commonly used choice for that, therefore only this case will be discussed now.
For other cases, the calculations can be similar, though not similarly nicely
done.

Notation 2.2. Γ(α, β) is the gamma distribution with α shape and β scale

parameters, and with density function f(x) = xα−1·βα·e−βx

Γ(α) .

Conditionally on {Λ = λ}, the number of property damages related to a
driver is a random variable X ∼ Poisson(λ), i.e., the conditional probability is

P (X = k|Λ = λ) = λk

k! e
−λ. It is well known (see [3] page 28 for details) that the

unconditional distribution will be negative binomial with parameters
(
α, β

1+β

)
in our notations, i.e., if Λ ∼ Γ(α, β). Accordingly, the a priori parameters
can be estimated by a standard method of moments or maximum likelihood
method.

Remark 2.1. It is certainly necessary to make hypothesis testing after all,
because our assumptions regarding the mixing distribution might be inaccurate.
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Remark 2.2. Besides the gamma mixing distribution, other alternatives
of claims frequency distributions might be worth considering in practice. For
instance, if Λ is Inverse Gaussian, the unconditional distribution of X is Pois-
son Inverse Gaussian, see [5, 13]. Furthermore, the case of Λ ∼ Log-normal is
also realistic, for description see [5]. For a more general parametric consider-
ation see [14], which contains Poisson, Negative Binomial or Poisson Inverse
Gaussian distributions as special cases, although requires 3 parameters. Be-
sides the parametric assumptions, also the non-parametric estimation is worth
considering, regarding the mixing distribution, see [2].

2.1. Estimation of distribution parameters

In this subsection we describe an estimation method to compute the ap-
proximate values of α and β parameters. Assume that the insurance company
has claim statistics from the past few years containing m policyholders. The
ith insured person caused Xi accidents by his or her fault over a time period of
ti years, where ti is not necessarily an integer. According to our assumption,
the distribution of Xi is Poisson(ti ·Θ), where ti is a personal time factor and
Θ is a Gamma(α, β)-distributed random variable. The unconditional distribu-

tion of Xi as mentioned above is Negative Binomial
(
α, β

ti+β

)
, thus its first two

moments are

(2.1) EXi = ti
α

β
,

(2.2) EX2
i = t2i

α

β2
+ t2i

α2

β2
+ ti

α

β
.

Now we construct a method of moments estimation. Since this methodology
implies several corresponding systems of equations, we have to choose one of

them, described as follows. On the one hand, we can say that
m∑
i=1

EXi =
α
β

m∑
i=1

ti

and
m∑
i=1

EX2
i =

(
α
β2 + α2

β2

) m∑
i=1

t2i +
α
β

m∑
i=1

ti, thus the estimators of parameters

are the result of the following equations

(2.3)
α̂

β̂
=

m∑
i=1

Xi

m∑
i=1

ti

,
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(2.4)
1

β̂
=

m∑
i=1

ti

m∑
i=1

t2i

⎛
⎜⎜⎝

m∑
i=1

X2
i

m∑
i=1

Xi

− 1

⎞
⎟⎟⎠−

m∑
i=1

Xi

m∑
i=1

ti

.

On the other hand,
m∑
i=1

EXi

ti
= mα

β , thus the first equation for the estimators

is the following α̂
β̂

=

m∑
i=1

xi
ti

m . Generally they do not provide the same results,

except if t1 = t2 = . . . = tm. Numerous claims history scenarios were simulated
for several portfolios, and according to our experiences, the solutions of system
of equations 2.3 and 2.4 provided the best estimations for α and β. Finally
we have to notice the maximum likelihood method as another obvious solution
for this parameter estimation. Unfortunately, the likelihood function generally
has no maximum, hence this method has been rejected.

2.2. Conditional probabilities

On the one hand, assume the a priori α, β parameters to be evaluated.
On the other hand, consider the information {Yt = c} besides the initial class
Y0, which is fixed for each insured person. According to Bayes’ theorem, the
conditional density of Λ is

fΛ|Yt=c(λ|c) = P (Yt = c|Λ = λ) · fΛ(λ)
∞∫
0

P (Yt = c|Λ = λ) · fΛ(λ)dλ
,

and the estimation for λ is the a posteriori expected value, denoted by

λ̂ =

∞∫
0

λ · fΛ|Yt=c(λ|c)dλ.

Unfortunately, P (Yt = c|Λ = λ) introduces complications, because it only
can be evaluated pointwise as a function of λ, calculating the tth power of
transition matrix M(λ). If I denotes the index of the initial class in the graph,
this probability is exactly the M(λ)t(I,|c|) element of the matrix, where |c| is the
index of class c. Using numerical integration it can be solved relatively fast.
If we take a glance at Figure 1, we might see the claim frequency estimations
for different countries and different α and β parameters. For example, the first
figure was made based on the Brazilian bonus-malus system with parameters
α = 1.2 and β = 19, which indicates a relatively high risk portfolio. There
is a line in the chart for each bonus class, which values show the estimated
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λ frequencies as a function of time. Note that the mentioned functions do
converge slowly to the stationary state, which might take even several decades.
Thus the information regarding the elapsed time in the system of the individual
is important.

We will refer to this method as method.1 later.

3. Other methods for frequency estimation

In this section we shortly introduce 2 other (known) possible methods to
evaluate policyholders’ claim frequencies. Our assumptions for the distribution
of claim numbers still definitely hold.

3.1. Average claim numbers of classes

The following method is probably the simplest, and we will refer to this
as method.2. Suppose that statistics concerning the last years claim numbers
are available. The estimator for a policyholders’ claims frequency in class C
is defined as the average number of claims related to the population in bonus

class C in previous year, i.e., λ̂C =

m∑
j=1

kj ·χ{jth policyholder is in class C}

m∑
j=1

·χ{jth policyholder is in class C}
, where m is

the total number of policies in previous year, kj is the claim number regarding
jth person, and χ is an indicator function, respectively.

For instance, if last year our portfolio contained 5 policyholders each in
class C with claims 0, 1, 0, 0, 2, then the estimation for insured peoples’ fre-
quencies present year in class C is λ̂C = 0.6. Although it might sound as an
oversimplification, in some cases it gives the best results.

3.2. Claim history of individuals

The third method is generally prevalent in the actuarial practice, and will
be referred as method.3. Here we use the insured person’s claim history, i.e.,
suppose that he or she was insured by our company for t years, and the distri-
bution of claim numbers for each year is Poisson(λ). Let X denote the number
of aggregate claims caused by this person in his t-year-long presence in the
system, more precisely, in our field of vision. Then the conditional distribu-
tion of X is also Poisson with parameter λt. Let us remark that t does not
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(b) Brazilian, α = 1.8, β = 12
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(c) Hungarian, α = 1.2, β = 19
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(d) Hungarian, α = 1.8, β = 12
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(f) Belgian, α = 1.8, β = 12

Figure 1: Estimated λ parameters for different countries and α, β parameters
on a time horizon of 30 years. (Charts start at points for each class, from where
the probability of being there is positive.)
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have to be an integer (people often change insurer in the middle of the year in
most countries). Based on this, our estimation on a special λ is the conditional
expected value of the Gamma distributed Λ on condition X = x, i.e., as well
known, λ̂ = E(Λ|X = x) = x+α

t+β .

This is also a Bayesian approach as in the case of method.1, but the con-
dition is different. Besides notice that first the α and β parameters have to be
estimated exactly the way we have seen it before in Section 2.1.

4. Comparison using scores

The aim of this section is to make a decision which method gives the most
accurate estimation of claims frequencies. In this context, we will use the
theory of scores, a tool of probabilistic forecasting. For much more detailed
information see article [9], as here we will discuss only the most important
properties useful for our problem.

Scores are made for measuring the accuracy of probabilistic forecasts, i.e.,
measuring the goodness-of-fit of our evaluations. Let Ω be a sample space,
A a σ-algebra of subsets of Ω and P is a family of probability measures on
(Ω,A). Let a scoring rule be a function S : P × Ω −→ R = [−∞,∞]. We
work with the expected score S(P,Q) =

∫
S(P, ω)dQ(ω), where measure P is

our estimation and Q is the real one. Obviously one of the most important
properties of this function is the inequality S(Q,Q) ≥ S(P,Q) for all P,Q ∈ P .
In this case S is proper relative to P. Additionally, we call S regular relative
to class P, if it is real valued, except for the contingency of being −∞ in case
of P �= Q. If these two properties hold, then the associated divergence function
is d(P,Q) = S(Q,Q)− S(P,Q).

Here we mention two main scoring rules, which will be used in sections
below for comparing our evaluation methods. Remember that for an individual,
the conditional distribution of the number of accidents is Poisson, so in our
notations let pi (i = 0, 1, 2, . . .) be P (X = i|Λ = λ̂), i.e., the probabilities

of certain claim numbers using the estimated λ̂ as condition. Similarly, qi
(i = 0, 1, 2, . . .) is the same probability, but for the real λ frequency.

Two essential score definitions are introduced below. Although, other con-
cepts can be found in the literature, as the spherical score, for instance. The
application of the chosen scores is justified by the discrete probabilistic behav-
ior of claim numbers. Note that in case of random variables with uncountable
range, one has to apply other measures. It is inevitable if addressing claims
severities, see [6, 12], for instance. For more details of density or distribution
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function forecasts in general see [9, 8].

4.1. Brier Score

Due to the associated Bregman divergence being d(p, q) =
∑
i

(pi − qi)
2,

Brier score is sometimes referred as quadratic score. For an analysis regarding
precipitation forecasts using Brier scores see [4]. The score is defined as

(4.1) S(P,Q) = 2

(∑
i

piqi

)
−

(∑
i

p2i

)
− 1.

Here we use the unknown qi probabilities deliberately. Although, in practice
they are not known, in our simulations presented later in Section 5 we are
able to make decisions using them. For the purpose of calculating the score of
estimation subsequently, change qi values to a Dirac delta depending on the
number of claims caused. In other words, if the examined policyholder had i
claims last year, then it implies the corresponding score to be

S(P, i) = 2

⎛
⎝∑

j

pjδij

⎞
⎠−

⎛
⎝∑

j

p2j

⎞
⎠− 1 = 2pi −

∑
j

p2j − 1.

4.2. Logarithmic Score

The logarithmic score is defined as

(4.2) S(P,Q) =
∑
i

qi log pi.

(In case of i caused accidents S(P, i) = log pi.) We mention that the associated
Bregman divergence is the Kullback-Leibler divergence d(p, q) =

∑
i

qi log
qi
pi
.

5. Simulation and results

Example portfolios for testing have been simulated in R statistical program.
The simulation technique can be used for frequency evaluation in practice, if we
have the appropriate inputs. The main goal is to construct a ranking for given
inputs among the estimation methods described in Section 2 and 3 according to
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scores measures, to support decision making related to the choice of evaluation
technique. It is important to emphasize that the methodology might be applied
for other actuarial models, as well. Note that the example simulations below are
limited to Poisson distributed claim numbers with Gamma mixing distribution
for frequencies.

First we need a portfolio containing N insured individuals, which is used
to estimate the α and β parameters of the negative binomial distribution. We
think of it as the policyholders’ histories available in the insurer’s database.
Henceforth we refer this instituion as our company. Taking advantage of the
entire claim and bonus-malus history, we have done the parameter evaluation
exactly the way as described in Section 2.1. In the next step, we generated
the history of a portfolio containing M policyholders, assuming that the distri-
bution parameters are unchanged compared to the first portfolio. This might
result some bias, but this is the best we can do based on our available data.
The phenomenon occurs in the operation of insurance institutions. On the one
hand, the details of the own portfolio are known. On the other hand, the re-
cently acquired (or desired to acquire) portfolio involves only parts of relevant
information.

After that, we estimated the claim frequency parameters of policyholders
separately based on the three estimation methods described above, and com-
pared them to the real λ parameters using scores. Our aim is to make a decision
among the methods, and decide, which would give the best fit results in cer-
tain cases. In other words, for certain input parameters, which method yields
good-fit estimations in expected value, where the method resulting higher score
value means the better goodness-of-fit.

Considering that we are interested in the expected values of scores for given
inputs, we will apply a Monte-Carlo-type technique. This means that we gen-
erate the above mentioned two portfolios r times independently, but in each
first ones preserving the α and β distribution inputs. After that, based on the
approximated α̂ and β̂, we estimate the λ parameters of the second portfolios.
Each method gives one score number for each simulation, which is the aver-
age of scores calculated for individuals. (Of course aggregate scores would be
equally appropriate, since it differs only in an M multiplier from the average.)
At last we take the mean of mean scores, and the method resulting higher score
is the better.

For i = 1, . . . , r

• generate portfolio P
(1)
i consisting of N individuals, using parameters α, β;

• calculate estimators α̂(i), β̂(i) related to α, β;

• generate portfolio P
(2)
i containing M policies, with parameters α, β; it

results λ
(i)
1 , . . . , λ

(i)
M frequencies;
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• according to α̂(i), β̂(i) and an estimation method, calculate estimates

λ̂
(i)
1 , . . . , λ̂

(i)
M ;

• to each individual j assign score S
(i)
j , and calculate the mean value S

(i)
=

1
M (S

(i)
1 + . . .+ S

(i)
M ).

In accordance with the above detailed notations, the ultimate score value re-

garding one estimation method is S = S
(1)

+...+S
(r)

r .

Remark 5.1. For reference we will write and plot the score results also for
comparing the real frequencies to the real frequencies, since these scores are not
equal to 0, as in the divergence case. As a function of year steps, these scores
should be constant, contrary to the charts below, where small differences can be
observed. The reason is that in the Monte-Carlo simulations we generated also
the λ parameters over and over.

Remark 5.2. In our simulations input parameters are the following:

1. α and β distribution parameters. These can be considered as the true
underlying parameters, and unknown for the insurance company.

2. N the number of policyholders in the first portfolio, which is used to
estimate the α and β parameters.

3. M the number of policyholders in the second portfolio. This contains
individuals, whose λ parameters have to be evaluated. In practice, there
might be an overlap between these two files.

4. Number of year steps. This means the time elapsed in years, since the
certain individual is insured by our company. Note that it implies the
knowledge of claims history and bonus classification, thus it is a very im-
portant feature, as it affects the goodness-of-fit of our estimation methods.

5. Number of years elapsed before entering our company. This affects
method.1 and method.2, because the Markov chain on the bonus classes
converges slowly to the stationary distribution.

6. Transition rules of the examined country.

7. Number of simulated portfolios. As we approximate the scores via Monte-
Carlo-type technique, it has to be large enough.

Figure 2 shows an example. We simulated r = 50 times a portfolio contain-
ing 80 thousand people, estimated α and β parameters, then estimated the λ
parameters of 20 thousand policyholders. After that we set the results of the
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three methods against the real frequencies using scores. For every simulation
and country we got 2 scores, the Brier score and Log score. The points of the
charts are the average scores for this 50 simulations for given year steps. Cer-
tain year steps mean that we generated the second portfolios (the current we
are analysing) as we had information about policyholders 1, 2, 5, 10, 15 and 20
years back, respectively. Intermediate points are approximated linearly. Note
that standard deviation of the sample of Brier scores in the Hungarian example
are under 0.0009, and under 0.0016 in case of Log scores.

Remark 5.3. In practice, there are different lengths of claim histories
available for different policyholders. In function of this length, we can de-
cide that the parameters of a group of insured people will be evaluated using
method.2, and the rest using method.3, for example.

Remark 5.4. Here (see Figure 2) we let the random walks of policyholders
in the systems run for 15 years. Then they are assumed to be acquired by our
company, which implies our observations to start at that point. In other words,
year steps start at that time, when each driver has already spent some time
randomly walking on the transition graph.

The example clearly shows the differentiation capability of systems contain-
ing more bonus-malus classes. In other words, the more classes the system has,
the more years needed for method.3 to get the start of method.2. Here the
Bayesian type method.1 is the worst method in every case, but we shall not
forget that in certain circumstances it can be useful. For example, if the claim
history is largely deficient.

On the tested parameters the two types of scores gave almost the same
results (difference is not significant), what we have been expecting. Meaning
that if method.x is the best according to Brier scores, then it is the best
according to Log scores, too.

6. Conclusions

In this article we presented the principle of bonus-malus systems, and the
necessary assumptions about the distribution of claim numbers of policyholders,
inter alia that the X number of claims caused in a year by an insured person is
conditionally Poisson distributed. The goal was to evaluate these λ frequency
parameters, which is the expected number of claims caused, and we did not
deal with the size of them. Since the unconditional distribution is negative
binomial, we can simply evaluate the shape and scale parameters based on the
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Time (years)

m
ea

n 
sc

or
e 

va
lu

es
 (l

og
)

−0.300

−0.295

−0.290

−0.285

−0.280

−0.275

−0.270

5 10 15 20

method.1.mean
method.2.mean

method.3.mean
real.frequencies

(d) Hungarian, Log scores
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Figure 2: Mean Brier and Log scores in the Brazilian, Hungarian and Belgian
system, when N = 80000, M = 20000, with real distribution parameters α =
1.2 and β = 14, and 50 portfolio simulation.
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insurer’s claim history from past years. Though the second portfolio might
have some different parameters, this file consisting of the insurers previously
observed claims experiences is the best we can use.

We introduced 3 methods for frequency estimation, where one (method.1)
was never used by actuaries to our knowledge, and the other two are known.
Note that method.1 is well applicable in case of the Hungarian MTPL in-
surance (motor third party liability insurance), the reason being that most
frequently the data applied by this method are available regarding new policy-
holders. The main aim of this article was to decide which method is the most
appropriate in certain circumstances, i.e., for given parameters. Our decision
is made based on scores, which are devoted to measure the bias of two distri-
butions. Assuming method.x gives λ̂1, . . . , λ̂M frequency parameters, and the
real ones are λ1, . . . , λM , then method.x is the best choice among the other
methods, if the average score is greater than in the other cases. The proposed
Monte-Carlo-type algorithm can be used in order to make decisions in practice.

At last, but not least, our method presented in Section 2 includes a tech-
nique, which is suitable to compare bonus-malus systems in the following sense.
In function of years, the longer the method.2 is better than others, the more
informative is the system, as we expect more accurate evaluation of claims fre-
quencies using the past years’ average claim numbers in different classes, than
using other methods. For parameters chosen in example 2, in the Brazilian sys-
tem, method.3 based on claims history becomes the most appropriate in the
second year, while in the Hungarian system it needs 7-8, and in the Belgian 16-
17 years. The ranking methodology can be applied using other distributional
and model constraints.

7. Appendix

7.1 shows the transition probability matrix of the Hungarian bonus-malus
system.
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Department of Probability Theory and Statistics
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