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Abstract. We characterize additive and exponential functions on some
two-point support hypergroups using regularity theorems concerning con-
ditional functional equations.

1. Introduction

The concept of DJS-hypergroup (according to the initials of C. F. Dunkl,
R. I. Jewett and R. Spector) can be introduced using different axiom systems.
We use Lasser’s axiom system, which is due to R. Lasser. Here we omit the
details. For the definition of hypergroups and basic facts the reader should
refer to [1]. Nevertheless, here we give a heuristic introduction.

The base set of a hypergroup is a locally compact Haussdorff space K,
and we suppose that there is a continuous mapping from K x K to the set of
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all compactly supported probability measures on K. This mapping is called
convolution. Furthermore, there is an involutive homeomorphism from K to
K, called involution, and there is a fixed element of K, called identity. The
Dirac—measure §, has a relevant role on hypergroups. The axiom system of
a hypergroup contains the relations and operations between Dirac—measures,
identity, convolution and involution. An important subclass of hypergroups is
the class of commutative hypergroups. We say that a hypergroup is commuta-
tive or Hermitian, if the convolution of Dirac—measures is commutative.

Using the convolution one introduces translation operators, which are de-
fined for every continuous complex valued function on K. If the hypergroup
is not commutative we make a distinction between right and left translation
operators. The definition of translation is as follows:

() = / [t A6, 6,00 (x,y € K).

For the sake of simplicity we use the following suggestive notation
flexy) =7 f(x) (2,9 €K).

In the following we focus on commutative hypergroups. The classical func-
tional equations on hypergroups are introduced in the following way.

A continuous complex valued function m on the hypergroup K is called
exponential, if it is not identically zero and

Tym(x) = m(z)m(y)

holds for each z,y in K.

A complex valued function a on the hypergroup K is called additive, if
mya(r) = a(r) + a(y)

holds for each z,y in K.

Exponential and additive functions play a basic role in the theory of func-
tional equations, in particular, in spectral synthesis and its applications. For
basic information on these topics the reader should consult with [3], [7]. Re-
cently new results concerning spectral analysis and spectral synthesis have been
established on some types of hypergroups (see [5], [8], [9], [11]). There are
also on-going investigations in connection with functional equations on hyper-
groups (see [4], [6], [12]). In this paper we give the description of exponential
and additive functions on some types of two-point support hypergroups. These
hypergroups are studied in [1]. Our problem leads us to the study of some
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conditional functional equations. Conditional functional equations play an im-
portant role in several applications of functional equations. For example, a
recent volume (see [10]) is devoted to characterization problems in probability
theory and statistics, where the results heavily depend on the solution of dif-
ferent conditional functional equations. While dealing with regular solutions of
conditional functional equations the most powerful tools are the so-called reg-
ularity results, which play a fundamental role in this paper, too. Concerning
such type of results, we refer to [2].

2. Conditional d’Alembert—type functional equations

Theorem 2.1. Let f:[0,1] — C be a continuous function satisfying f(0) =1
and

(1) fle+y)+ fl@e—y) =2f(2)f(y),

whenever 0 <y <z and x+y < 1. Then there exists a complexr number \ such
that f has the form:

(2) f(z) = cosh Az
for each z > 0.

Proof. Let ¢ = Rf and ¢ = Sf, then ¢,9 : [0,1] — R are continuous
functions and we have

(3) p(r+y) +o@—y) = 20()p(y) — 2¢(z)P(y)

(4) Y +y) +v(@—y) =20(@)P(y) + 29 (x)p(y)

whenever 0 < y < z and = +y < 1, further ¢(0) = 1 and (0) = 0. Let
0 < a <1 such that p(z) >0 for 0 <z < a.

Suppose first that ¢ and ) are linearly dependent, that is, ©» = ¢y holds on
[0, 1] for some real ¢. By ¢(0) =1 and #(0) = 0 it follows ¢ = 0, hence 9 = 0,
which implies that f = ¢ is real valued. Let A = ¢,B = 5,C =0,D = %,
then we can apply Remark 22.12. in [2] for the functional equation (5) on the
intervals ]A, B[ and ]C, D[ to infer that f = ¢ is C> on the interval |0, §[.

If ¢ and 9 are linearly independent, then with the same choice of A, B,C, D
we can apply the same result as above for the functional equation (3) on the
intervals |A, B[ and |C, D[ to infer that ¢ and ¢ are C*> on the interval ]0, ¢[.



326 L. Székelyhidi and L. Vajday

It follows that in any case f is C* on some interval |0, K[, where 0 < K < 1.

5K 3K
Let m = min{T,l}. Suppose that e < t < m, then, by (5), the

substitutionxzt—z,yzzgivesogygxgl,ogx—i—yglan(i
K K K
(5) s =2(e-7)5(5) (- 5)-

3K [ It

—,m]|.
oK -

follows that f is C* on }O,m{. If - > 1, then we have that f is C* on |0, 1[.

5K
If e < 1, then replacing K by Ve and repeating the above argument after

K K
Ast— 1 and t — ) is in ]0, K[, the right hand side is C*° on }

some steps we get that f is C* on ]0, 1].
Differentiating (5) twice with respect to y and then substituting y = 0 we
obtain that

(6) f'(@) =cf(2)
for each = in |0, 1] with ¢ = f”(0). As f(0) = 1, our statement follows. |

Theorem 2.2. Let f : [0,400[— C be a continuous function satisfying f(0) =
=1 and

(7) flx+y)+ fle—y)=2f(2)f(y),

whenever 0 < y < x. Then there exists a complex number X\ such that f has
the form:

(8) f(z) = cosh Az
for each = > 0.
Proof. The proof is similar to that of the previous theorem. |

The following corollaries are easy consequences.

Corollary 2.1. Let f : [0,1] — R be a continuous function satisfying f(0) =1
and

(9) fle+y) + fl@e—y) =2f(2)f(y),

whenever 0 <y < x and x +y < 1. Then there exists a real number \ such
that f has the form:

(10) f(z) =cosh Az or f(z) = cos\x
for each x in [0, 1].
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Corollary 2.2. Let f : [0,400[— R be a continuous function satisfying f(0) =
=1 and

(11) flz+y) + fle—y) =2f(2)f(y),

whenever 0 < y < x. Then there exists a real number A\ such that f has the
form:

(12) f(x) =cosh Az or f(z) = cosAx

for each x in [0, +o00].

3. Conditional square-norm equations

Theorem 3.1. Let f:[0,1] — C be a continuous function satisfying

(13) flz+y)+ fle—y)=2f(x) +2f(y),

whenever 0 <y < x and x+y < 1. Then there exists a complex number X such
that f has the form:

(14) f@) = Aa?
for each x in [0,1]. Moreover, f is real if and only if \ is real.

Proof. Clearly f(0) =0. Let ¢ = Rf and ¢ = Sf, then ¢, ¢ : [0,1] — R are
continuous functions and we have

(15) o +y)+ ol —y)=2p()+ 20(y)

(16) Y(x+y) +(r —y) = 2¢(x) + 2¢(y)

whenever 0 <y <z and z +y < 1, further ¢(0) = ¢(0) = 0. This means that
the real and imaginary parts of f satisfy the same functional equation (13),
hence we may suppose that f itself is real valued.

If f and 1 are linearly dependent, then f is constant, f = 0, hence our
statement follows.

Assume that the functions f and 1 are linearly independent. Then, similarly
as in the proof of Theorem 2.1, with the same choice of A, B, C and D, we infer
that f in C°° on some interval |0, K[, with a certain K in ]0, 1] .
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Differentiating (13) three times with respect to y, then substituting y = 0
and differentiating again we obtain that

(17) f"(x)=0

for each z in ]0, 1[, which implies that f is a quadratic polynomial on [0, 1].
Substituting into (13) our statement follows. The last assertion is obvious. W

From this result the following theorem can be concluded. Its proof is rather
similar to that of the previous theorem, therefore we will omit it.

Theorem 3.2. Let f : [0,4+o00[— C be a continuous function satisfying

(18) fle+y) + fle—y) =2f(z)+2f(y),

whenever 0 < y < x. Then there exists a complex number \ such that f has
the form:

(19) f(z) = \a?

for each x > 0. Moreover, f is real if and only if X is real.

4. Exponential and additive functions on the
hypergroup K; = ([0, 1], *)

Let K; be the hypergroup on the interval [0, 1] with the convolution defined
by
1

1

This is a one-dimensional compact hypergroup (see [1], Example 3.4.6 on
p-191.). The characterizing equation of additive functions has the form

(20) a(z +y) +a(lr —yl) =2a(z) + 2a(y) (0<z,y<1).
Our next theorem describes the additive functions on K;.

Theorem 4.1. Let K be the hypergroup defined above. Then the continuous
function a : [0,1] — C is an additive function on K; if and only if there exists
a complex number X\ such that

(21) a(r) = \x?

holds for each x in [0,1].
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Proof. If a is additive on K then it is continuous and satisfies equation (20),
hence also equation (13). By Theorem 3.1 it has the given form.

Conversely, it is easy to check that any continuous function a of the given
form is an additive function on the Kj;-hypergroup, hence the theorem is
proved. |

Using the convolution and the definition of exponential functions we have
that the continuous function m : [0, 1] — C is an exponential on K if and only
if it satisfies

(22)  m@+y)+mx—y)=2m@@)mly) O<y<z, z+y<l).
Using the above results we obtain the following statement.

Theorem 4.2. Let K1 be the two-point support hypergroup defined above. The
continuous function m : [0,1] — C is an exponential function on Ky if and
only if there exists a complex number \ such that

(23) m(x) = cosh Az
holds for each x in [0,1].

Proof. If m is an exponential on K; then it is continuous and satisfies
equation (22), hence also equation (5). By Theorem 2.1 it has the given form.

Conversely, it is easy to check that any continuous function m of the given
form is an exponential function on the K;—hypergroup, hence the theorem is
proved. |

5. Exponential and additive functions on the
hypergroup K, = ([0, +00[, *)

The hypergroup K5 is defined on the nonnegative reals [0, +o0o[ and the

convolution is defined by
1 1
Oy % 0y = §5x+y + §5x_y (0<y<ux).

This hypergroup Ko = ([0, +o0[, *) is a noncompact one-dimensional hyper-
group (see [1], Example 3.4.5 on p. 191.). On K, the characterizing equation
of additive functions has the form

(24) alz +y) + alr —y) = 2a(z) + 2a(y) 0<y<ux).

Now we exhibit the general form of additive functions on the hypergroup Ko.
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Theorem 5.1. Let Ky be the two-point support hypergroup defined above. The
continuous function a : [0, +oo[— C is an additive function on Ky if and only
if there exists a complexr number A such that

(25) a(x) = \x?
holds for each x in [0, 4o0].

Proof. If a is additive on K5 then it is continuous and satisfies equation (24),
hence also equation (13). By Theorem 3.2 it has the given form.

Conversely, it is easy to check that any function a of the given form is an
additive function on the Ko—hypergroup, hence the theorem is proved. |

Using similar arguments and Theorem 2.2 we get the general form of expo-
nential functions on Ko.

Theorem 5.2. Let Ky be the two-point support hypergroup defined above. The
continuous function m : [0,4+00[— C is an exponential function on Ks if and
only if there exists a complex number \ such that

(26) m(x) = cosh Az

holds for each x in [0,4o0].

6. Exponential and additive functions on the cosh—hypergroup

In the theory of hypergroups the Sturm-Liouville hypergroups represent an
important subclass. A general introduction to this theory and examples can
be found in [1], [6]. Sturm-Liouville hypergroups are generated by a Sturm-—
Liouville function. This function is continuous on the nonnegative reals and
differentiable on the positive reals. Using the function cosh, we can build
up a Sturm-Liouville hypergroup on the nonnegative reals, called the cosh-
hypergroup.

Another way to introduce the cosh—hypergroup is the following. We consider
the nonnegative reals as a base set and we introduce the convolution with the

formula
cosh(z + y) cosh(|z — yl)

52?*61/ +

Tyl *

- 2coshzcoshy Y 2coshxcoshy

This hypergroup is also a special two-point support hypergroup, which is ac-
tually identical with the cosh-hypergroup (see [1]). We denote this hypergroup
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by K3 = ([0,+o0[,*). Exponentials on this hypergroup satisfy the following
equation:

cosh(z +y) f(x +y) + cosh(lz —y|) f(|z — y|) = 2coshz f(z) coshy f(y) .

The substitution g(t) = coshtf(t) gives

g(x+y)+g(x—y) =29(x)g(y)

for 0 < y < z, which shows the relation to the hypergroup K,. Hence the
following result is a consequence of the previous theorems.

Theorem 6.1. Let K3 be the cosh—hypergoup. Then the continuous function
m : [0, +o0[— C is an exponential on K3 if and only if there exists a complex
number X such that

(27) m(z) = cosh Az

cosh x

holds for each x in [0, +oo].

The case of additive functions is a bit more complicated. We consider the
equation of additive functions

cosh(z 4+ y) a(z + y) + cosh(z — y) a(z — y) =

= 2coshz coshya(z) + 2coshzcoshya(y) (0 <y < x).

Differentiating this equation twice with respect to the variable y, then substi-
tuting y = 0 and A = a”(0) and using the properties a(0) = 0 and a’(0) = 0

we have )
sinh x

a’(x) +2 a(z) = \.

coshx

This means that on the cosh-hypergroup an additive function is the solution
of the previous equation. The next theorem describes the additive functions
on Ksj.

Theorem 6.2. Let K3 be the cosh—hypergoup. The continuous function
a : [0, +o0o[— C is an additive function on K3 if and only if there exists a com-
plex number \ such that

2sinh z

(28) a’(z) + a'(z) =\

coshz

holds for each x in [0, +o0].

The solutions of equation (28) are special Bessel-functions.
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