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Abstract. During the precomputation phase of the Atkin–Morain primal-
ity test, a rather big set of negative fundamental discriminants, moreover
the class numbers related to these discriminants are produced. In this ar-
ticle, we present a method which allows us to quickly produce negative
fundamental discriminants representable on at most eight bytes. Further-
more we give two methods to compute the class numbers related to these
discriminants. With the first method, we can quickly acquire the exact
value of the class numbers related to discriminants with absolute value up
to approximately 240 (depending on the underlying processor), while with
the second method we can estimate the order of magnitude of the class
numbers.

1. Introduction

Nowadays, with the elliptic curve primality tests, we can decide the pri-
mality of natural numbers, even if the examined numbers have thousands of
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decimal digits. These primality tests form the keystone of modern cryptog-
raphy and computational number theory, so the efficient implementation of
these methods is essential. The first primality test which uses elliptic curves
is from Goldwasser and Kilian [9]. Atkin and Morain gave a faster variant of
this primality test [1]. Hereinafter, we look at why the Atkin–Morian primality
test is a leap forward, compared to the one created by Goldwasser and Kilian,
without going into the detailed description of these tests.

The Goldwasser–Kilian primality test starts as follows: let n ∈ N be the
number which we want to test for primality. (Here and henceforth n 	= 1 and
n is relatively prime to 6.) We choose an elliptic curve over Z/nZ randomly
and we use the cardinality of the points on this elliptic curve for further com-
putations. Counting points on a random elliptic curve is a hard task, although
there exists an algorithm for it with polynomial running time (see Schoof’s [12]
article). Hereafter we will denote the number of points on the random elliptic
curve with m.

The Atkin–Morain primality test offers us a significantly faster solution,
where first the proper value of m is acquired, then the necessary elliptic curve
is computed for this cardinality. This way, we can skip the time expensive
algorithm for counting points on the given elliptic curve. During the test, the
computation of the proper m cardinality is done with a big set of negative fun-
damental discriminants. These negative fundamental discriminants are such
D < −1 integers, which satisfy one of the following two conditions: either
D ≡ 1 (mod 4) and D is square-free, or D ≡ 0 (mod 4) and D/4 is square-free.
If the proper m value is successfully acquired with a given D negative funda-
mental discriminant, then comes the computation of the required elliptic curve.
The probability of success during this step is 1/(2h (D)), where h (D) is the
class number related to the mentioned D discriminant. After the computation
of the proper elliptic curve, the Atkin–Morain primality test continues like the
Goldwasser–Kilian primality test.

During the precomputation phase of the Atkin–Morain primality test, a
rather big set of D negative discriminants and the h (D) class numbers related
to these discriminants are produced. This step is independent of the number
which we want to test for primality, so we can execute this precomputation
phase before the test is performed.

Usually these exact primality tests are not used in practice, because the
probabilistic primality tests are much faster and the probability of error is neg-
ligible. Most of the computer algebra systems are not able to prove primality.
One exception is the Magma system, which has the implementation of the
Atkin elliptic curve primality test as a built-in function, which is not able to
test numbers with thousands of digits for primality. But with the application
of the proper amount of fundamental discriminants, the ability of Magma to
prove primality can be significantly improved. Gábor Farkas and Gábor Kallós
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met the problem of proving the primality of numbers with more then 1000
decimal digits during the factorisation of certain elements of the generalized
Pascal-triangle. In their [7] article, which is published in 2008, they used a
François Morain ECPP implementation for primality testing. In 2011 with the
partnership of Gyöngyvér Kiss, they used Magma for a similar goal, which de-
tails can be read in [8]. They experienced the following phenomena: the exact
test of a 1030 digit long number is not finished even in a day. The explana-
tion is, that Magma (the used version) applied relatively few, fixed number of
fundamental discriminants. As a result, it had to use more time for the factori-
sation of the curve orders. The problem is solved through the application of
more fundamental discriminants, so the test is finished in one and a half hour.

2. Producing fundamental discriminants

We describe a method which allows us to quickly produce negative funda-
mental discriminants which can be represented on at most eight bytes. These
discriminants form a sufficiently big set of negative fundamental discriminants
for the Atkin–Morain primality test. The negative fundamental discriminants
are produced from a given interval. To decide that a number from the given
interval is a fundamental discriminant, first we have to check that one of the
mentioned congruences holds, then comes the verification of square-freeness.
We can verify square-freeness with factorisation, but for that we need a fast
primality test which is reliable in the mentioned order of magnitude.

2.1. Testing fundamental discriminants for primality

During the primality testing of the D negative fundamental discriminants
we mainly use the Miller–Rabin probabilistic primality test (see for example
section 8.2 in Cohen’s [6] book). We achieve exactness through the usage of
strong pseudoprimes (for more details see Jaeschke’s [10] article). Hereinafter
we look at how this roughly happens.

Let p1, p2, . . . , pk be the first k primes. Now let ψk be the smallest natural
number which is strong pseudoprime to the p1, p2, . . . , pk bases. So if our goal is
to decide the primality of an n < ψk natural number, it is sufficient to perform
only the Miller–Rabin tests with the p1, p2, . . . , pk bases on n. Jaeschke showed,
among other things, that the

ψ8 = 341 5500 7172 8321
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equality holds, furthermore he gave upper bounds on the values of ψ9, ψ10 and
ψ11. So for the natural numbers which are not greater than the value of ψ8

(approximately the numbers which can be represented on 44 bits), we obtain a
fast and exact primality test. But for all numbers which can be represented on
eight bytes, this bound is insufficient. We present two methods for the exact
primality testing of numbers which can be represented on more than five but
at most eight bytes.

Our first option to guarantee exactness is to use more primes during the
application of the Miller–Rabin primality test. In this case it’s worth relying
on the assumptions given in the article of Zhang [13]. By these assumptions
it is sufficient to use at most the value of ψ12 during the application of the
Miller–Rabin primality test for the numbers which can be represented on at
most eight bytes. Our second option is the application of a Lucas pseudoprime
test (see the 12th chapter in Bressoud’s [4] book). During the application
of this primality test, we have to compute the appropriate terms of a Lucas
sequence modulo the number which we want to test. There exists an efficient
algorithm based on the square-and-multiply principle for calculating the terms
of the Lucas sequence (see algorithm 8.3 in Bressoud’s book), so the primality
test can be implemented efficiently.

Finally we note that the application of the Miller–Rabin primality test
together with the Lucas pseudoprime test produces a primality test which is
even more reliable and still quite fast (see the article of Baillie and Wagstaff
[3]). Furthermore the article of Baillie and Wagstaff gives a guideline to the
implementation of the Lucas pseudoprime test.

2.2. Factorisation of fundamental discriminants

Below we describe a method which allows us to compute a prime factor of
a natural number which can be represented on at most eight bytes. During the
algorithm we use Pollard’s �method (see section 8.5 in Cohen’s book). Pollard’s
� method uses an xm+1 = f(xm) iteration with some x0 initial value, where f is
a polynomial with integer coefficients. In practice, the f(x) = x2+c polynomial
is used with the x0 = 1 initial value. Here c ≥ 1 is an integer parameter which
can be chosen freely. Cohen notes in his book, that if one fails to apply the
method successfully, then it is worth to change the c parameter instead of
changing the x0 initial value. With the application of the described primality
test and Pollard’s � method, the main steps of the method that computes a
prime factor, are the following:

1. First, using small primes, we try to extract a prime factor from the num-
ber which we want to factorise, with trial division. If we succeed, then
we have found a prime factor of the number which we want to factorise
and the algorithm terminates.
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2. If we fail during the previous step, then we perform the described pri-
mality test on the number which we want to factorise. If we ensure the
reliability of the primality test with the Lucas pseudoprime test, then with
the trial division step, the applied primality test matches the one that is
recommended by Baillie and Wagstaff. If we find out that the number
which we want to factorise is a prime, then the algorithm terminates.

3. If the number which we want to factorise is not a prime, then we perform
another trial division step, but with greater primes this time.

4. If we can’t find a prime factor of the number which we want to factorise,
then we apply Pollard’s � method with an increasing c value, where c = 2
initially.

5. Now we test the non-trivial divisor which we have found during the ap-
plication of Pollard’s � method, for primality. If the non-trivial divisor
is a prime, then the algorithm terminates. Otherwise we apply this algo-
rithm recursively on the non-trivial divisor because we now know that it
is composite.

The bounds applied in the trial division steps during the algorithm (that is,
how many primes do we apply during the trial divisions) affects the reliability
and partly the speed of the factorisation. For example a preferable setting is
to use the primes lower than 256 during the first trial division, and the primes
greater than 256 but lower than 1000 during the second trial division. This way
the first trial division step can be performed quickly, and a significant amount
of composite numbers can be factorised in this step. It’s not worth to choose
a greater bound during the second trial division step, because it makes the
factorisation much slower. It’s advisable to stay near these bounds, because the
running time of Pollard’s � method is heuristically proportional to the square
root of the smallest prime factor of the number which we want to factorise, so
the bigger prime factors (or non-trivial divisors) can be found quickly too. The
reliability of the algorithm is influenced by the applied primality test. With the
application of the proper amount of primes during the Miller–Rabin primality
test or with the usage of the Lucas pseudoprime test, we can guarantee that
the primality test will not identify a composite number as a prime by mistake.
If the underlying primality test is reliable, then the algorithm will surely find
a prime factor of the number which we want to factorise. Namely because of
the magnitude of the numbers which we want to factorise, Pollard’s � method
will surely finds a non-trivial divisor sooner or later with some c parameter.
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3. Producing class numbers

After the production of a negative fundamental discriminant, we continue
with the computation of the related class number. Cohen, in the fifth chapter
of his book, gives a wide spectrum of algorithms, which allows us to compute
class numbers related to negative fundamental discriminants. By the nature
of the task we need such algorithms, which helps us to quickly compute vast
amount of class numbers. Another requirement is that the computation of the
class numbers related to different discriminants should be independent, so the
calculations could be parallelised. This way, if we want to produce negative
fundamental discriminants and the related class numbers from a big interval,
then we can divide the interval into smaller pieces, and we can schedule the
processing of these smaller pieces between several processors or cores. The
algorithms in Cohen’s book were examined with these consideration in mind.
According to these, we give two methods.

The most suitable algorithm in Cohen’s book for the task is in section
5.3.3, and it uses analytic formulas to compute class numbers. Louboutin gives
a faster variant of this method in his [11] article. With this method, we can
compute the exact value of a class number related to a negative fundamental
discriminant. But the application of this method depends on the size of D
(in absolute value). This method only worked with acceptable speed in the
case of negative fundamental discriminants representable on at most five bytes
during the tests on an Intel Core i5-460M processor. The second method is
an approximating one and it is based on section 5.4.3 in Cohen’s book. The
speed of this method is not influenced by the size of the D negative funda-
mental discriminant, so we can compute class numbers related to arbitrary D
discriminants with it, at least approximately. This is not necessarily a problem,
because while we want to compute the elliptic curve during the Atkin–Morian
primality test the probability of success depends on the magnitude of the class
number.

3.1. Producing exact class numbers

This method is based on the computation of the Dirichlet L-functions. Let
D be a negative discriminant (which is not necessarily fundamental). Now we
define the Dirichlet L-functions, using the Kronecker-symbol with the

LD (s) =
∑
n≥1

(
D

n

)
n−s
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formula. This series converges for ( (s) > 1, and defines an analytic function
which can be analytically continued to the whole complex plane to an entire
function. The connection between the L-functions and the class numbers is
due to the following theorem of Dirichlet.

Theorem 3.1 (Dirichlet). If D is a negative discriminant (not necessarily
fundamental), then

LD (1) =
2πh(D)

w(D)
√|D| ,

where

w(D) =

⎧⎨⎩ 2, if D < −4
4, if D = −4
6, if D = −3

and h(D) is the class number related to the D discriminant.

So the computation of a class number related to a given D negative funda-
mental discriminant can be reduced to the computation of the value of LD(1).
Cohen in section 5.3.14 in his book gives the

h(D) =
∑
n≥1

(
D

n

)(
erfc

(
n

√
π

|D|
)
+

√|D|
πn

e−πn2/|D|
)

formula for D < −4 fundamental discriminants, where the erfc function is the
complementary error function. Moreover, Cohen gives the bound depending
on the given D discriminant, for which we have to compute the sum in the
formula to achieve a smaller relative error than 0.5, so the sought h(D) will be
the nearest integer to the result.

Louboutin gives a faster variant of this method in his article, which elimi-
nates the computation of the complementary error function and it shows that
the repeated, direct computation of the exponential function can be omitted
too. Let χ be a primitive Dirichlet character modulo f > 1. Using Louboutin’s
notations, let

L(s, χ) =
∑
n≥1

χ(n)

ns
and Sn(χ) =

n∑
k=1

χ(k),

furthermore let α =
√
π/f , en = e−α2n2

and finally let

B(t,M, f) =

√
f (t log (f/π) +M)

π
= α−1

√
M − 2t logα.

The following theorem is due to Louboutin.
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Theorem 3.2 (Louboutin). Let M ≥ 1 be given, let χ be a primitive odd
Dirichlet character of conductor f , let m be the least rational integer greater
than or equal to B

(
1
2 ,M, f

)
= O (

f0.5+ε
)
and set

LM (0, χ) =
1√
π

(
W (χ)

α

m∑
n=1

χ(n)

n
en + α

m∑
n=1

(en + en+1)Sn(χ)

)
.

Then,

|L(0, χ)− LM (0, χ)| ≤ 3

2
√
π
e−M +

3

8
√
f
.

If f = |D|, then χ = χ is the (D|n) Kronecker-symbol, W (χ) = 1 and
L(0, χ) is equal to the h(D) class number related to D negative fundamental
discriminant, so it can be approximated with LM (0, χ). If we set M to 1
then the absolute error will be less than 0.5, even in the case of f = 4, so
after the computations, the nearest integer to the result will be the required
class number. Because the difference sequence of the square numbers form an
arithmetic sequence, using the identities of exponentiation, the computation of
en can be reduced to multiplication, so we can avoid the computation of the
exponential function after the first few steps.

The m bound in the theorem increases fast as f increases, so in the case
of negative fundamental discriminants with big absolute values, the method
shows a significant slowdown. The tests were performed on an Intel Core i5-
460M processor, where the boundary for which the method should be applied
turned out to be approximately 240. Around this boundary the method can
only compute a few (around 10) class numbers under a second on the mentioned
processor.

3.2. Estimating class numbers

If we want to compute the class numbers for negative fundamental discrim-
inants with big absolute value, the preceding method becomes useless because
of the increased computation time. Cohen gives an approximation method in
section 5.4.3 of his book, which he uses during the implementation of Shank’s
baby-step giant-step method. We can read about this approximation method
in more detail in the article of Bach [2], and the advantage is that it only uses
prime numbers for the computations. The LD(s) function can be written as
the

LD(s) =
∏
p∈P

⎛⎝1−
(

D
p

)
ps

⎞⎠−1
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Euler-product, where P is the set of prime numbers. So, using the connection
between the value of LD(1) and the value of h(D), if we compute the⎢⎢⎢⎢⎢⎣

√|D|
π

∏
p∈P
p≤P

⎛⎝1−
(

D
p

)
ps

⎞⎠−1
⎥⎥⎥⎥⎥⎦

product to a given P boundary, then we get an estimating value of the class
number related to the D < −4 discriminant. In practice, Shank noticed ex-
perimentally that the relative error is around 0.001 when P = 217, but Cohen
recommends the P = 218 boundary during the computations. Bach, based on
the extended Riemann hypothesis, gives the

| lnLD(1)− lnB(P )| = O
(
ln(|D|P )√

P

)
equality in his article, where

B(P ) =
∏
p∈P
p≤P

⎛⎝1−
(

D
p

)
ps

⎞⎠−1

,

when the P ≥ 2 inequality holds. Moreover, Bach gives the explicit version of
this error estimate, which can be written as the

| lnLD(1)− lnB(P )| ≤ A · ln |D|+B · lnP√
P

inequality, where the A and B constants depend on the given P boundary.
These constants can be found in the 4th table of Bach’s article. Let us denote
the right side of the previous inequality with C(P ). Based on section 9.3.4 in
the book of Buchmann and Vollmer [5], if C(P ) < log 2, then∣∣∣∣LD(1)

B(P )
− 1

∣∣∣∣ < C(P )

1− C(P )
.

Using this with the P = 218 boundary (in this case A = 1.562 and B = 0.655
according to Bach’s article) the method’s relative error is less than 0.18 in the
case of the negative fundamental discriminants we want to process. So with
this method, we can give an estimate on the order of the magnitude of the class
number related to a given discriminant.

Because the chosen P boundary is independent from the given negative
fundamental discriminant, the running time of this algorithm is nearly the same
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for all discriminants. During the tests, while using the P = 218 boundary, the
algorithm was able to compute about 300 class numbers in a second. Bach gives
another method in his article (this is the one that is discussed and analysed
by Buchmann and Vollmer), which provides a better relative error, but this
method requires much more computation.

4. Conclusion and results

With the presented method, we are able to quickly produce negative funda-
mental discriminants which can be represented on at most eight bytes. Using
the method of Louboutin, we can quickly compute the class numbers related
to these negative fundamental discriminants with absolute value up to 240, de-
pending on the underlying processor. Above this boundary, we can give an
estimate on the magnitude of the class numbers. If we have access to more
processors or cores, we can parallelise the computations.

With the methods presented in this article, all the negative fundamental
discriminants from 7 to 230 were produced and the class numbers related to
these discriminants were computed. This interval is processed in 228 slices on
the mentioned processor with three or four threads. The computations took
around seven days.
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