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Abstract. Aczél, in his book, reported on the associativity equation

F (F (x, y), z) = F (x, F (y, z))

on a real interval. Conditions leading to the quasi-sum representation

F (x, y) = f(f−1(x) + f−1(y))

were obtained. We expand on this and obtain results for an m-place func-
tion.

1. Introduction

The associativity equation F (F (x, y), z) = F (x, F (y, z)) is featured in the
book of Aczél [1]. In the case of semigroups the main result is the following
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Theorem 1.1 (see [1], §6.2.2). Let I be an interval. If for all x, y in I, F (x, y)
always lies in I and F is reducible on both sides, (i.e. F is injective in both
variables), then

(1.1) F (x, y) = f(f−1(x) + f−1(y))

with continuous and strictly monotonic f is the general continuous solution of
the associativity equation

(1.2) F (F (x, y), z) = F (x, F (y, z)).

Craigen and Páles ([2]) offered a new proof.

We shall extend the result to m-place functions. The following uniqueness
theorem will be invoked.

Theorem 1.2 (see [3]). Let X and Y be real intervals and T : X × Y → R
be a function continuous in each of its two variables. Consider the functional
equation

φ(x) + ψ(y) = η(T (x, y)), x ∈ X, y ∈ Y,

φ : X → R, ψ : Y → R, η : T (X × Y )→ R.
(1.3)

If (φ0, ψ0, η0) is a solution with non-constant continuous φ0 and non-constant
ψ0, then

φ = αφ0 + β1, ψ = αψ0 + β2, η = αη0 + β1 + β2

where α, β1, β2 ∈ R are constants, give the general solutions (φ, ψ, η) with
continuous φ.

2. A result for m-place functions

Theorem 2.1. Let I be an interval. Let F : Im → I be a function having the
following properties:

(i) F (x1, x2, ..., xm) is continuous in the variables (x1, x2), injective in x1

and in x2.

(ii) F (x1, x2, ..., xm) is symmetric in the variables x2, x3,..., xm.

(iii)

F (F (x1, x2, ..., xm), xm+1, ..., x2m−1) =(2.1)

= F (x1, F (x2, ..., xm, xm+1), xm+2, ..., x2m−1).
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Then F admits the representation

(2.2) f (F (x1, x2, ..., xm)) =

m∑
i=1

f(xi)

for some strictly increasing continuous bijective function f : I → J (for some
interval J).

Proof. Step 1. We claim that, for arbitrarily fixed x3, ..., xm, the function

H(x1, x2) := F (x1, x2, ..., xm)

satisfies the associativity equation

H(H(u, v), w) = H(u,H(v, w)).

Proof of the claim: If m = 2, there is really no x3, ..., xm to fix, assumption
(ii) is redundant and H = F . The associativity equation and the equation (2.1)
coincide.

We now work with m > 2.

H(H(u, v), w) = F (F (u, v, x3, ..., xm), w, x3, ..., xm) =

= F (u, F (v, x3, ..., xm, w), x3, ..., xm) = by (2.1)

= F (u, F (v, w, x3, ..., xm), x3, ..., xm) = by assumption (ii)

= H(u,H(v, w)).

Step 2. By Theorem 1.1 there exists a function f such that H has the
representation

H(u, v) = f−1(f(u) + f(v)).

As a consequence, H is symmetric.

If m = 2, we have arrived at the representation (2.2) as F = H and we are
done.

We now continue with the case m > 2.

To make clear that f may depend on the fixed x3, ..., xm we denote it as
fx3,...,xm

and write the above representation as

(2.3) F (x1, x2, ..., xm) = f−1
x3,...,xm

(fx3,...,xm
(x1) + fx3,...,xm

(x2)).

The symmetry of H translates into

F (x1, x2, ..., xm) is symmetric in x1 and x2.
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Step 3. The symmetry of F (x1, x2, ..., xm) in x1 and x2 and the symmetry
assumption (ii) imply that

F is a symmetric function of all of its variables.(2.4)

Step 4. Consider the function G : I2m−1 → I induced by

G(x1, x2, ..., xm, xm+1, ..., x2m−1) := F (F (x1, x2, ..., xm), xm+1, ..., x2m−1).

The symmetry of F , (2.4), and the identity (2.1), along with combinatorial
manipulation, imply that

G is a symmetric function of all of its variables.(2.5)

Step 5. Let c ∈ I be arbitrarily fixed. Then (2.5) yields in particular

F (F (x1, x2, ..., xm), c, c, ..., c) = F (F (x1, x2, c, c, ..., c), c, x3, ..., xm).(2.6)

Note that we do not require the existence of a common c such that (2.6)
holds. In fact, one can fix xm+1 = c2, xm+2 = c3, .., x2m−1 = cm arbitrarily
and the remainder of the proof can be adjusted by just adding extra subscripts
to c.

Step 6. The strict monotonicity of F in its first argument allows us to infer
from (2.6) that

F (x1, x2, ..., xm) = φ(F (x1, x2, c, c, ..., c), x3, ..., xm)(2.7)

for some function φ.

In fact, let ψ denote the inverse function of y 
→ F (y, c, c, ..., c) and we may
take φ = ψ ◦ F .

Step 7. Consider (2.3) which gives rise to

F (x1, x2, ..., xm) = f−1
x3,...,xm

(fx3,...,xm(x1) + fx3,...,xm(x2))

and

F (x1, x2, c, ..., c) = f−1
c,c,...,c(fc,c,...,c(x1) + fc,c,...,c(x2)).

Putting them into (2.7) we get

f−1
x3,...,xm

(fx3,...,xm
(x1) + fx3,...,xm

(x2)) =

= φ(f−1
c,c,...,c(fc,c,...,c(x1) + fc,c,...,c(x2)), x3, ..., xm).
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It can be rewritten:

fx3,...,xm(x1) + fx3,...,xm(x2) =

= fx3,...,xm
(φ(f−1

c,c,...,c(fc,c,...,c(x1) + fc,c,...,c(x2)), x3, ..., xm)) =

= hx3,...,xm(fc,c,...,c(x1) + fc,c,...,c(x2))

where hx3,...,xm
is defined by

hx3,...,xm
(t) = fx3,...,xm

(φ(f−1
c,c,...,c(t), x3, ..., xm)).

The resulting equation

fx3,...,xm
(x1) + fx3,...,xm

(x2) =

= hx3,...,xm
(fc,c,...,c(x1) + fc,c,...,c(x2))

is in a form to which Theorem 1.2 can be readily applied. It leads to the
existence of constants α(x3, ..., xm) > 0 and β(x3, ..., xm) such that

(2.8) fx3,...,xm
(x) = α(x3, ..., xm)fc,c,...,c(x) + β(x3, ..., xm).

That is, fx3,...,xm and fc,c,...,c are affine functions of each other. Rewrite (2.3)
first as

fx3,...,xm
(F (x1, x2, ..., xm)) = fx3,...,xm

(x1) + fx3,...,xm
(x2)

and then replace fx3,...,xm using (2.8) we get

α(x3, ..., xm)fc,c,...,c(F (x1, x2, ..., xm)) + β(x3, ..., xm) =

= α(x3, ..., xm)fc,c,...,c(x1) + β(x3, ..., xm)+

+ α(x3, ..., xm)fc,c,...,c(x2) + β(x3, ..., xm).

Eliminating a common term and dividing through by α(x3, ..., xm) we get

fc,c,...,c(F (x1, x2, ..., xm)) =

= fc,c,...,c(x1) + fc,c,...,c(x2) + γ(x3, ..., xm)(2.9)

where γ := β/α.

Step 8. The symmetry of F on the left side of (2.9) yields the symmetry of
γ and the symmetry of fc,c,...,c(x1)+fc,c,...,c(x2)+γ(x3, ..., xm) in all variables.
The latter further implies that

(2.10) γ(x3, ..., xm) = fc,c,...,c(x3) + fc,c,...,c(x4) + · · ·+ fc,c,...,c(xm) + k

for some constant k. This is done by implicit simple induction as indicated
below.
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(a) The symmetry of fc,c,...,c(x1) + fc,c,...,c(x2) + γ(x3, ..., xm) gives in par-
ticular

fc,c,...,c(x1) + fc,c,...,c(x2) + γ(x3, x4, ..., xm) =

= fc,c,...,c(x1) + fc,c,...,c(x3) + γ(x2, x4, ..., xm).

Simplifying and rearranging terms we get

γ(x2, x4, ..., xm)− fc,c,...,c(x2) = γ(x3, x4, ..., xm)− fc,c,...,c(x3).

Because the left side does not depend on x3 and the right side does not depend
on x2 we get

γ(x3, x4, ..., xm)− fc,c,...,c(x3) =: γ4(x4, ..., xm).

Hence

(2.11) γ(x3, x4, ..., xm) = fc,c,...,c(x3) + γ4(x4, ..., xm)

where, as mentioned earlier, γ is symmetric.

(b) Repeating the scheme of step (a) we get from the symmetry of γ and
(2.11) the symmetry of γ4 and that

γ4(x4, ..., xm) = fc,c,...,c(x4) + γ5(x5, ..., xm)

for some function γ5.

(c) Repeating the above inductively till we reach

γm(xm) = fc,c,...,c(xm) + k.

This proves (2.10) following a sequence of substitutions.

Step 9. Putting (2.10) into (2.9) we obtain

fc,c,...,c(F (x1, x2, ..., xm))

= k +

m∑
i=1

fc,c,...,c(xi).(2.12)

The constant k can be absorbed into the function fc,c,...,c. In fact, letting

f(x) := fc,c,...,c(x) +
k

m− 1

(2.12) becomes

f(F (x1, x2, ..., xm)) =

m∑
i=1

f(xi).

This proves the representation (2.2) in the case m > 2. �
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