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Abstract. Aczél, in his book, reported on the associativity equation
F(F(z,y),2) = F(z, F(y, 2))

on a real interval. Conditions leading to the quasi-sum representation
F(z,y) = f(f 7 @)+ ()

were obtained. We expand on this and obtain results for an m-place func-
tion.

1. Introduction

The associativity equation F(F(z,y),z) = F(z, F(y, z)) is featured in the
book of Aczél [1]. In the case of semigroups the main result is the following
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Theorem 1.1 (see [1], §6.2.2). Let I be an interval. If for all x, y in I, F(z,y)
always lies in I and F is reducible on both sides, (i.e. F is injective in both
variables), then

(1.1) F(z,y) = f(f~(2) + ' (y)

with continuous and strictly monotonic f is the general continuous solution of
the associativity equation

(1.2) F(F(x,y),2) = F(z, F(y, 2)).

Craigen and Péles (]2]) offered a new proof.

We shall extend the result to m-place functions. The following uniqueness
theorem will be invoked.

Theorem 1.2 (see [3]). Let X and Y be real intervals and T : X x Y — R
be a function continuous in each of its two variables. Consider the functional
equation

o(x) +Y(y) =n(T(z,y), ze€X,yey,

(1.3)
P X >R ¢Yv: Y >R np:T(XxY)—>R

If (¢, %0, m0) is a solution with non-constant continuous ¢o and non-constant
g, then

¢ = ago + P1, Y = ay + B2, n=ang + B1 + B2

where «, p1, B2 € R are constants, give the general solutions (¢,1,n) with
continuous ¢.

2. A result for m-place functions

Theorem 2.1. Let I be an interval. Let F : I"™ — I be a function having the
following properties:

(i) F(x1,x2, ..., Tm) is continuous in the variables (x1,x2), injective in x;
and in To.

(ii) F(z1,22,...,Tm) is symmetric in the variables xa, Ts3,..., Tp,.

(i)
(2.1) F(F(x1,Z2, ey Tm)y Timg1s oo T2m—1) =

= F(x1, F(T2, s Ty Tmt1), T2y ooy L2m—1)-
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Then F' admits the representation

m

(2.2) f(F(x1, @2, m)) = Y f(a:)

i=1

for some strictly increasing continuous bijective function f : I — J (for some
interval J).

Proof. Step 1. We claim that, for arbitrarily fixed z3, ..., 2, the function
H(mlv 1'2) = F(mlv T2, ... ‘rm)
satisfies the associativity equation

H(H(u,v),w) = H(u, H(v,w)).

Proof of the claim: If m = 2, there is really no zs, ..., z,, to fix, assumption
(ii) is redundant and H = F'. The associativity equation and the equation (2.1)
coincide.

We now work with m > 2.

H(H (u,v),w) = F(F(U, 0, T3, ..o, Tyn ), W, T3y vey Tyy) =
= F(u,F(v,23,...,; Tm, W), T3, ..., Tm) = by (2.1)
= F(u, F(v,w, x5, ..., Tpm), T3, ..., Tm) = by assumption (ii)
= H(u, H(v,w)).

Step 2. By Theorem 1.1 there exists a function f such that H has the
representation

H(u,v) = f7H(f(u) + f(0)).
As a consequence, H is symmetric.

If m = 2, we have arrived at the representation (2.2) as F = H and we are
done.

We now continue with the case m > 2.

To make clear that f may depend on the fixed x3, ..., z,, we denote it as
fas,...,z,, and write the above representation as

(2'3) F(Ilax% "'7xm) = 73, Tm(f”ﬂsy \Em (‘Tl) =+ fﬂﬂsy---ﬁfm (IQ))
The symmetry of H translates into

F(x1,xa,...,Ty) is symmetric in 21 and .
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Step 3. The symmetry of F(z1, 2, ..., Zm) in 21 and 25 and the symmetry
assumption (ii) imply that

(2.4) F is a symmetric function of all of its variables.

Step 4. Consider the function G : I?™~! — I induced by
G($17:’U27 cooy Ty 415 ---;$2m71) = F(F(.’L'17.’L'2, '-~>$m);$m+17 -~-7x2m71)~

The symmetry of F, (2.4), and the identity (2.1), along with combinatorial
manipulation, imply that

(2.5) G is a symmetric function of all of its variables.

Step 5. Let ¢ € I be arbitrarily fixed. Then (2.5) yields in particular

(2.6) F(F(x1,22, . Tm),C,Cy-enc) = F(F(x1,T2,¢,C, ..., C), C T3, weny Tup)-

Note that we do not require the existence of a common ¢ such that (2.6)
holds. In fact, one can fix x,,,+1 = C2,Tmi2 = C3,..,Tom—1 = Cp, arbitrarily
and the remainder of the proof can be adjusted by just adding extra subscripts
to c.

Step 6. The strict monotonicity of F in its first argument allows us to infer
from (2.6) that

(2.7) F(x1,22, oo, Tm) = ¢(F(21,%2,C,Cy ey C), T3y vy T,

for some function ¢.

In fact, let ¢ denote the inverse function of y — F(y, ¢, ¢, ..., c) and we may
take ¢ = o F.

Step 7. Consider (2.3) which gives rise to

F(z1, 29, ..;Tm) = fa;;...,xm(fﬂfap--,ﬂcm (w1) + Jzgr o m (w2))

and
F(Q?l,l'g,c, ...,C) = ;cl’,,‘,c(fc,c,...,c(xl) + fc,c,...,(:(mZ))-

Putting them into (2.7) we get

:1:_3,1,.“,93,” (fx37“'11m (1‘1) + fISgmem ($2)) =
= ¢( cjcl,_,,Vc(fc,c,...,c(xl) + fc,c,...,c('TZ)), T3y eeny Im)
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It can be rewritten:

fw37...,xm (l’l) + fa:g,“.@,m (.’L‘z) -
:fﬂfs ----- 1m(¢( c_,cl ..... c(fc,c ,,,,, C(xl)"_fc,c ,,,,, C($2))7m37"'7$m)) =
= hxg,...,a:m (fc,c,.“,c(xl) + fc,c,...,c(zQ))

where hy,, . 4., is defined by

hm;;,...,zm (t) = fxg,...,mm((yb( cjcl c(t)71'33 axm))

The resulting equation

f:l)3,“.,£13m ((El) + fxg,..‘,zm (1'2) -
= hmg,...,zm (fc,c,...,c(zl) + fc,c,...,c(xQ))

is in a form to which Theorem 1.2 can be readily applied. It leads to the
existence of constants a(zs, ..., zm,) > 0 and S(zs, ..., ,,) such that

(28) fwz,...,mm (,’L‘) = OZ(.’I?g, ooy xm)fc,c,...,c(x) + ﬁ(x?n ) mm)

That is, fz,,..
first as

and f..,. .. are affine functions of each other. Rewrite (2.3)

M 7w1n

fxsw--JTm (F(z1’x27 "'7$m)) = fﬂf37~~-7$m (xl) + fxs,..-,ﬂcm (1’2)

and then replace fg, . ., using (2.8) we get

m

a(xffn ~~-,wm)fc,c,...,c(F(x1,$27 ,xm)) + B(:L'& axm) =
= a(x?n -~-axm)fc,c,...,c(x1) + ﬁ(1‘3, 7mm)+
+ (@3, s Tm) fere,...c(T2) + B(T3, 0y Tin).-

Eliminating a common term and dividing through by «(x3, ..., Z,,) we get
fc,c,.A.,c(F(xla L2y eeey xm)) =
(2.9) = fC,c,m,C(xl) + fc,c,...,c($2) + (23, ey Tpn)

where v := §/a.

Step 8. The symmetry of F' on the left side of (2.9) yields the symmetry of
v and the symmetry of fo. . (1) + fee,... c(@2) +7(23, ..., Zm) in all variables.
The latter further implies that

(210) ’Y(x?n ceey -rnl) - fc,c,...,c('r?)) + fc,c,“.,c(x4) +---+ fc,c,...,c(-rnb) + k

for some constant k. This is done by implicit simple induction as indicated
below.
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(a) The symmetry of fec . o(x1) + fee,...c(®2) +v(x3, ..., ) gives in par-
ticular

fc,c ..... c(x1)+fc,c ..... C(.’Ez)+’}/($3,.’£4,...,l’m) =
= fc,c,.“,c(xl) + fc,c,...,c(z?)) + 7(172; Tgy ey xm)~
Simplifying and rearranging terms we get
7(z2ax47 -~-axm) - fc,c,...,c(zZ) = 7('5537:547 7xm) - fc,c,...,c(x3)~

Because the left side does not depend on z3 and the right side does not depend
on xp we get

’}/(Il'g, T4, ,xm) - fC7C7~»-»C(‘T3) = 74(‘%47 ,IL‘m)
Hence
(2.11) V(T3, %4, ooy Tm) = fore,.. c(@3) +7a(Ta, ...y )

where, as mentioned earlier, v is symmetric.

(b) Repeating the scheme of step (a) we get from the symmetry of v and
(2.11) the symmetry of v, and that

'}/4(1'4, 7$m) = fc,c,...,c(zél) + 75($57 733m)

for some function ~s.
(¢) Repeating the above inductively till we reach

')/m(xm) = fc,c,...,c(-rm) + k.

This proves (2.10) following a sequence of substitutions.

Step 9. Putting (2.10) into (2.9) we obtain
fc,c,...,c(F(xla T2,y mm))

m

(212) = k“‘ch,c,.“,c(xi)'

=1

The constant k can be absorbed into the function f. . . .. In fact, letting

k
f(@) = feepel@) + ——
(2.12) becomes
FF(r 22, m)) = 3 F ).
i=1

This proves the representation (2.2) in the case m > 2. ]



Quasi-sum representation 143

References

[1] Aczél, J., Lectures on Functional Equations and their Applications, Aca-
demic Press, New York and London, 1966.

[2] Craigen, R. and Z. P4ales, The associativity equation revisited, Aequa-
tiones Math., 37 (1989), 306-312.

[3] Ng, C.T., On the functional equation f(z) + Yo gi(y;) =
hT(z,91,Y2,--Yn)), Ann. Polon. Math. 27 (1973), 329-336.

A.A.J. Marley
Department of Psychology
University of Victoria
Victoria, B.C. VW 3P5
Canada
ajmarleyQuvic.ca

C.T. Ng

Department of Pure Mathematics
University of Waterloo

Waterloo, Ontario N2L 3G1
Canada

ctng@uwaterloo.ca








