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Abstract. We prove a nonuniform bound for the deviation between a
distribution function and a nondegenerate stable law expressed in terms of
the Lévy distance.

1. Introduction

Let F and G be two distribution functions. Then the Lévy distance L(F,G)
between F and G is defined as follows:

(1.1) L(F,G) = inf H,

where H = {h ∈ [0, 1] : G(x− h)− h ≤ F (x) ≤ G(x+ h) + h for all x ∈ R}.
The Lévy distance in the space of distribution functions is much less popular

in probability theory than the uniform distance Δ(F,G) defined by

(1.2) Δ(F,G) = sup
x∈R

|F (x)−G(x)|.

Key words and phrases: Lévy distance, stable distribution, nonuniform bound.
2010 Mathematics Subject Classification: 60E07, 60F10.
Partially supported by a DFG grant



16 O.I. Klesov and J.G. Steinebach

The advantage of the Lévy distance appears in considering the weak conver-
gence Fn

w−→ G, n → ∞, which is equivalent to L(Fn, G)→ 0, n → ∞ (see, for

example, [4]). If G is continuous, then the weak convergence Fn
w−→ G, n → ∞,

is also equivalent to Δ(Fn, G) → 0, n → ∞, however the latter property may
fail if G has discontinuities. We also recall that, in general,

(1.3) L(F,G) ≤ Δ(F,G).

Having weak convergence in mind, we compare the deviation |F (x)−Gα(x)|
between an arbitrary distribution function F and a nondegenerate stable law
Gα of index α. The bound we obtain in Section 3 is nonuniform in x and
is expressed in terms of the Lévy distance L(F,G). The case of a Gaussian
distribution has earlier been considered in [6], [7], [8].

2. Deviation between a distribution function and a normal law

In this section, we discuss the case of Gα = Φ, where Φ is the standard
N (0, 1) normal law.

Bounds for |F (x) − Φ(x)| expressed in terms of the uniform distance have
been studied in many papers. The most popular case is when F corresponds
to the sum of independent random variables. For the origin of this topic we
refer to the paper by Esseen [3].

Kolodyazhnyi [9] extended the results of [3] by proving the following theo-
rem.

Theorem 2.1. Let F be an arbitrary distribution function and set Δ = Δ(F,Φ).
Let p > 0 and assume that F has a finite moment of order p. Denote

(2.1) λp =

∣∣∣∣∣∣
∞∫

−∞
|x|p dF (x)−

∞∫
−∞

|x|p dΦ(x)
∣∣∣∣∣∣ .

If

(2.2) 0 < Δ ≤ 1√
e
,

then there exists a universal constant c, depending only on p, such that

(2.3) |F (x)− Φ(x)| ≤ λp + cΔ(ln 1
Δ )

p/2

1 + |x|p
for all x ∈ R.
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A similar result has been obtained in [6] in terms of the Lévy distance L
instead of the uniform distance Δ.

Theorem 2.2. Let F be an arbitrary distribution function and set L = L(F,Φ).
Let p > 0 and assume that F has a finite moment of order p. If

(2.4) 0 < L ≤ 1√
e
,

then there exists a universal constant c, depending only on p, such that

(2.5) |F (x)− Φ(x)| ≤ λp + cL(ln 1
L )

p/2

1 + |x|p

for all x ∈ R, where λp is defined in (2.1).

Remark 2.1. Theorems 2.1 and 2.2 look very similar; in view of (1.3) and

the monotonicity of x → x
(
ln 1

x

)p/2
, the term L(ln 1

L )
p/2 in the bound of (2.5)

does not exceed the term Δ(ln 1
Δ )

p/2 in (2.3). The constants on the right-
hand sides of (2.3) and (2.5) are different, however their precise values do not
matter in many asymptotic results (see, e.g., [8] for a further discussion of the
relationship between (2.5) and (2.3)).

It turns out that the restriction (2.4) is crucial to have the term cL(ln 1
L )

p/2

on the right-hand side of (2.5). Nevertheless, a uniform upper bound in terms
of the Lévy distance is still available as proved in [6].

Theorem 2.3. Let F be an arbitrary distribution function and set L = L(F,Φ).
Let p > 0 and assume that F has a finite moment of order p. Then there exists
a universal function g, defined on [0, 1), depending only on p, and such that

lim
s↓0

g(s) = 0

and

(2.6) |F (x)− Φ(x)| ≤ λp + g(L)

1 + |x|p

for all x ∈ R, where λp is defined in (2.1).

Several applications of Theorems 2.2 and 2.3 to prove limit theorems in
probability theory, including the so-called global version of the central limit
theorem and complete convergence, can be found in [7] and [8].
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3. Deviation between a distribution function and a stable law

Let Gα be a nondegenerate stable law with index α. Several results are
known concerning the rate of convergence of normalized sums of independent,
identically distributed random variables to Gα. Most of them use the so-called
pseudo-moments as a measure of divergence (see, for example, [2]).

Below is a generalization of Theorem 2.2 for an arbitrary stable lawGα. The
right-hand side is expressed in terms of the Lévy distance and the difference of
moments.

Theorem 3.1. Let Gα be a nondegenerate stable law with index α. Let F be
an arbitrary distribution function and set L = L(F,Gα). Assume that 0 < p <
< α < 2, and that F has a finite moment of order p. Then there is a universal
constant c > 0, depending only on p and α, such that

(3.1) |F (x)−Gα(x)| ≤ λp + cL1−p/α

1 + |x|p
for all x ∈ R, where λp is defined in (2.1).

3.1. A global limit theorem

Let {Fn} be a sequence of distribution functions and assume r > 0. Ac-
cording to Agnew [1], the r-global limit theorem holds for the sequence {Fn}
if

(3.2)

∞∫
−∞

|Fn(x)−G(x)|r dx → 0, n → ∞,

for some distribution function G.

Agnew [1] treated the case of G = Φ in detail. Some extensions have been
given in [7] and [8]. Now we are able to prove an extension to the case of stable
limit laws.

Theorem 3.2. Let Gα be a stable law of index α. Let {Fn} be a sequence of
distribution functions such that

(3.3) Fn
w−→ Gα, n → ∞.

Let p < α and assume that

(3.4) sup
n≥1

∞∫
−∞

|x|p dFn(x) < ∞.

Then (3.2) holds for all r > 1/p with G = Gα.
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Moreover, we can extend the result to the boundary case of r = 1/p.

Theorem 3.3. Let Gα be a stable law of index α. Let {Fn} be a sequence of
distribution functions such that (3.3) holds. Let p < α and assume that (3.4)
holds. Then ∞∫

−∞

|Fn(x)−Gα(x)|r
(log(1 + |x|))1+δ

dx → 0, n → ∞,

for all δ > 0.

3.2. A weighted global limit theorem

Using the bound of (3.1) we can prove a bit more than (3.2).

Theorem 3.4. Let Gα be a stable law of index α. Let {Fn} be a sequence of
distribution functions such that (3.3) and (3.4) hold with some p < α. Then

∞∫
−∞

|x|δ · |Fn(x)−Gα(x)|r dx → 0, n → ∞,

for all r > 1/p and δ < rp− 1.

4. Proof of Theorem 3.1

We follow the lines of the proof in [6]. Without loss of generality we assume
that 0 < L < 1. Denote by C(F) the set of continuity points of F . For all
a > 0 such that ±a ∈ C(F) we have

(4.1)

∫
(−a,a)

|x|p dF (x) =

=

∫
(−a,a)

|x|pd[F (x)−Gα(x)] +

∫
(−a,a)

|x|pdGα(x) =

= ap[F (a)−Gα(a)]− ap[F (−a)−Gα(−a)]−
− p

∫
(0,a)

xp−1[F (x)−Gα(x)] dx+

+ p

∫
(−a,0)

|x|p−1[F (x)−Gα(x)] dx+

∫
(−a,a)

|x|p dGα(x).
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For all h ∈ H(F,Gα) and all x ∈ R it holds that

F (x)−Gα(x) = F (x)−Gα(x− h) + h− h+Gα(x− h)−Gα(x) ≥
≥ −h− [Gα(x)−Gα(x− h)].

By the mean-value theorem and the boundedness of the density of Gα (see [10]),
we conclude that there exists a constant d > 0 such that

Gα(x)−Gα(x− h) ≤ dh,

whence

(4.2) F (x)−Gα(x) ≥ −h (1 + d) , h ∈ H(F,Gα),

for all x ∈ R. In particular,

(4.3) F (a)−Gα(a) ≥ −h (1 + d) , h ∈ H(F,Gα).

Similarly,

F (x)−Gα(x) = F (x)−Gα(x+ h)− h+ h+Gα(x+ h)−Gα(x) ≤
≤ h+ [Gα(x+ h)−Gα(x)]

and thus

(4.4) F (x)−Gα(x) ≤ h (1 + d) , h ∈ H(F,Gα),

for all x ∈ R. In particular,

(4.5) F (−a)−Gα(−a) ≤ h (1 + d) , h ∈ H(F,Gα).

Applying (4.4) we obtain, for every h ∈ H(F,Gα), that∫
(0,a)

|x|p−1[F (x)−Gα(x)] dx ≤
∫

(0,a)

|x|p−1h (1 + d) dx =

=
1

p
aph (1 + d) .

Similarly, from (4.2), we derive∫
(−a,0)

|x|p−1[F (x)−Gα(x)] dx ≥ −1
p
aph (1 + d) .

Combining the latter estimates with (4.3), (4.5) and inserting them into (4.1),
we obtain ∫

(−a,a)

|x|pdF (x) ≥ −hBp +

∫
(−a,a)

|x|pdGα(x),
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where

(4.6) Bp = 4 (1 + d) ap.

Recalling the definition of λp, we have

λp ≥
∫

|x|<a

|x|p dF (x)−
∫

|x|<a

|x|p Gα(x)+

+

∫
|x|≥a

|x|p dF (x)−
∫

|x|≥a

|x|p dGα(x) ≥

≥ −hBp +

∫
|x|≥a

|x|p dF (x)−
∫

x≥a

|x|p dGα(x),

whence ∫
|x|≥a

|x|pdF (x) ≤ λp + hBp +

∫
|x|≥a

|x|pdGα(x).

Further, if x ≥ a, then∫
|y|≥a

|y|pdF (y) ≥
∫

y≥x

yp dF (y) ≥ xp(1− F (x)) ≥ xp[Gα(x)− F (x)].

Therefore, for every h ∈ H(F,Gα),

(4.7) xp[Gα(x)− F (x)] ≤ λp + hBp +

∫
|y|≥a

|y|pdGα(y).

Now,

(4.8)

F (x)−Gα(x) ≤ 1−Gα(x) ≤
≤

∫
|y|≥x

dGα(y) ≤ 1

xp

∫
|y|≥x

|y|pdGα(y), x ∈ R,

whence, for all x ≥ a,

xp[F (x)−Gα(x)] ≤
∫

|y|≥a

|y|pdGα(y).

Combining this bound with (4.7) we get, for x ≥ a and h ∈ H(F,Gα), that

(4.9) |x|p|F (x)−Gα(x)| ≤ λp + hBp +

∫
|y|≥a

|y|pdGα(y).
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A similar bound holds for x ≤ −a. Finally, in view of (4.2) and (4.4), it also
holds for |x| < a. Therefore (4.9) holds for all x ∈ R. The same reasoning
applies for p = 0. Note that λ0 = 0. Thus

(4.10)

(1 + |x|p)|F (x)−Gα(x)| ≤
≤ λp + hBp + hB0 +

∫
|y|≥a

|y|p dGα(y) +

∫
|y|≥a

dGα(y).

The right-hand side of this estimate is a continuous function of a (see (4.6)),
therefore one can remove the assumption that ±a ∈ C(F). Thus (4.10) holds
for all a > 0. Moreover, on taking the infimum with respect to h ∈ H(F,Gα),
we have, for all x ∈ R and all a > 0, that

(4.11)

(1 + |x|p)|F (x)−Gα(x)| ≤
≤ λp + LBp + LB0 +

∫
|y|≥a

|y|p dGα(y) +

∫
|y|≥a

dGα(y),

where L is the Lévy distance between F and Gα. Since there is a constant
κ > 0 such that

1−Gα(x) +Gα(−x) ∼ κ

xα
, x → ∞,

we get ∫
|y|≥a

|y|p dGα(y) � 1

ap−α
,

∫
|y|≥a

dGα(y) � 1

aα
.

Substituting a = L−1/α in (4.11) we see that its right-hand side is

� λp + L1−p/α + L+ L(α−p)/α + L � λp + L1−p/α + L � λp + L1−p/α,

where we also made use of 0 < L < 1. �
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