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Abstract. This article generalizes the in the theory of finite fields impor-
tant relation of r ∼ s defined on Z by the congruence s ≡ rqt (q−1), where
r and s are arbitrary integers, t is a non-negative integer and q is a power
of a prime.

1. Introduction

In the theory of the finite fields it is proved that if f ∈ Fq [x], where Fq

denotes the field containing q elements, and u is a root of f in an extension

field of Fq then also uqk is a root of the polynomial for any k ∈ N. The
multiplicative group of a finite field is cyclic, and a generating element is a
primitive element of the field. Let g be a primitive element of Fq, then the
order of g in the multiplicative group of Fq is equal to the cardinality of that

group, that is, to q−1. If u 6= 0 then u = gl and q−1 > l ∈ N . Now uqk = glq
k

,
and glq

i

= uqi = uqj = glq
j

if and only if lqi ≡ lqj (q − 1) for any l ∈ N and
non-negative integers i and j. Let us suppose that i ≤ j. Both sides of the
last congruence can be divided by qi, as q and q − 1 are coprimes, so we get
that glq

i

= glq
j

if and only if l ≡ lqj−i (q− 1). Let r and s be integers, and let
r ∼ s if and only if there exists a non-negative integer t with the property of
s ≡ rqt (q − 1). It is easy to see that this is a congruence on Z. This relation
will be generalized in the next section.
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2. New results

Definition 2.1. Let R = (R; +, ·) be a ring, ICR such an ideal in R that R =
= R/I, that is the factor ring of R by I is a ring with identity, and let S be such
a subset of R that its image in R, denoted by S is a subgroup in the centre of the
multiplicative semigroup of R. Then a ∈ R, b ∈ R are cyclically congruent
modulo (S, I), denoted by a≡̂b (mod (S, I)), or simply by a≡̂b (S, I) if and
only if there are such elements sa and sb in S that asa ≡ bsb (I), that is,
asa − bsb ∈ I. Similarly, if a ∈ R, b ∈ R, these elements are cyclically
congruent modulo S exactly in the case if asa = bsb, where sa and sb are in
S. This relation is denoted by a≡̃b (mod S), abbreviated by a≡̃b (S) (a is the
image of a ∈ R in the factor ring).

Theorem 2.1. Let a and b be arbitrary elements of R. Then a≡̂b (S, I) if and
only if a≡̃b (S).

Proof.

1. If a≡̂b (S, I), then asa ≡ bsb (I), where sa ∈ S and sb ∈ S, so sa and sb
belong to S and asa = bsb, and then a≡̃b (S);

2. a≡̃b (S) means that asa = bsb, where sa and sb belong to S. If sa and
sb are such elements of S that sa and sb are their images, respectively, in
S, then asa ≡ bsb (I) follows from asa = bsb, and then a≡̂b (S, I). �

The equivalence of the two relations implies that we can freely change from
one of them to the other one, that is, if we can prove something concerning one
of them, then the statement is true for the other one, too.

Theorem 2.2. The relation ≡̂, defined on the ring R is a congruence rela-

tion of R×, and similarly, ≡̃ is a congruence relation on R
×

(R
×

denotes the
multiplicative semigroup of R).

Proof. ≡̂ is defined on the pairs of the elements of R, so ≡̂ is homogeneous
binary relation on R as a set, and then on R×, too, as the base set of R× is R
again. First of all we prove that ≡̂ is an equivalence relation.

1. As S is a group, so S can’t be empty, and then as − as = 0 ∈ I for an
arbitrary element a in R and an arbitrary element in S, that is, as ≡
as (I), so a≡̂a (S, I), ≡̂ is reflexive;
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2. let a and b be two elements of R cyclically congruent modulo (S, I), that
is, a≡̂b (S, I). Then asa ≡ bsb (I) with appropriate elements sa, sb of S.
A congruence by an ideal is symmetrical, so bsb ≡ asa (I), that is, by the
definition of the cyclic congruence b≡̂a (S, I), ≡̂ is symmetrical;

3. let us suppose that for the three elements of R, for a, b and c, a≡̂b (S, I)
and b≡̂c (S, I) are true. In that case there exist such elements sa, su, sv
and sc in S that asa ≡ bsu (I) and bsv ≡ csc (I). susv ∈ S, as su ∈ S,
sv ∈ S and S is a group. Then there is such an element sb in S, that

sb = susv (and, as S is a subgroup of the centre of R
×

, sb = svsu). If
r = t then r ≡ t (I), so

asasv ≡ bsusv ≡ bsb ≡ bsvsu ≡ cscsu (I).

Similarly, we get that there are such elements si and sj in S, that sasv ≡
≡ si (I) and scsu ≡ sj (I). Then

asi ≡ asasv ≡ cscsu ≡ csj (I),

and, consequently, a≡̂c (S, I) that proves the transitivity of the relation
≡̂.

Finally we prove that this relation is compatible to the multiplication. Let
a1, a2, b1 and b2 be four elements of R, a1≡̂b1 (S, I) and a2≡̂b2 (S, I), that is,
a1s1 ≡ b1s2 (I) and a2s3 ≡ b2s4 (I). A congruence by an ideal is compatible
to the multiplication, so

(a1a2)(s1s3) ≡ (a1s1)(a2s3) ≡ (b1s2)(b2s4) ≡ (b1b2)(s2s4) (I).

We can find such elements sa and sb, that sa is congruent to s1s3 and sb is
congruent to s2s4, thus

(a1a2)sa ≡ (a1a2)(s1s3) ≡ (b1b2)(s2s4) ≡ (b1b2)sb (I) .

(a1a2)sa ≡ (b1b2)sb (I) is equivalent to a1a2≡̂b1b2 (S, I), so the product of
cyclically congruent elements is cyclically congruent, too.

The proof of the statement given in the second part of the theorem is a
simple transcription of the proof of the first part, as a ≡ b (I) if and only if
a = b. �

Theorem 2.3. If a ≡ b (I) where a ∈ R and b ∈ R, then a≡̂b (S, I).

Proof. S is not empty, as S is a group, and a congruence by an ideal is closed
for the multiplication. Then, with an appropriate s ∈ S, as ≡ bs (I) follows
from a ≡ b (I) and then a≡̂b (S, I). �
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Theorem 2.4. a≡̃b
(
S
)

if and only if there is such an s ∈ S, that b = as.

Proof. a≡̃b
(
S
)

if and only if ∃
(
sa ∈ S

)
∃
(
sb ∈ S

)
: asa = bsb. As S is a

group, there is an inverse s−1b of sb in S. If s = sas
−1
b , then b = be = bsbs

−1
b =

= asas
−1
b = as. Conversely, if b = as, then be = b = as, thus a≡̃b

(
S
)
. �

Theorem 2.5. ta = ta, and from a≡̃b
(
S
)

follows ta = tb, where ta is the

additive order of a ∈ R, while ta is the least positive integer with the property
that ka ∈ I.

Proof. If taa = 0 then taa ∈ I, thus ta ≥ ta, and from taa ∈ I follows
taa = 0, so ta ≥ ta , that is, ta = ta. a≡̃b

(
S
)

means that b = as with an

element s belonging to S, and then

tab = ta (as) = (taa) s = 0s = 0,

ta > tb. Similarly, multiplying both sides of the equation b = as by the inverse
of s existing in R, we get that ta < tb, thus ta = tb. �

Definition 2.2. Let U = U (R,I) be a representing system of R by the ideal

I of R, and let a be an element of U . Then C
(R;S,I,U)
a = {b ∈ U |a≡̂b (S, I)}

is the cyclic coset of R modulo (S, I, U) represented by a and C
(R;S)
a =

=
{
b ∈ U

∣∣a≡̃b (S)} is the cyclic coset of R modulo S represented by a.

Theorem 2.6. Let U = U (R,I) be a representing system of R by the ideal I

of R, and let a and b be elements of U . Then either C
(R;S,I,U)
a = C

(R;S,I,U)
b or

C
(R;S,I,U)
a and C

(R;S,I,U)
b are disjoint, and similarly, if C

(R;S)
a and C

(R;S)
b

are

different sets then C
(R;S)
a ∩ C

(R;S)
b

= ∅.

Proof. The statements are direct consequences of Theorem 2.2. �

Definition 2.3. Let U = U (R,I) be a representing system of R by the ideal I

of R. Then
{
C

(R;S,I,U)
a |a ∈ U

}
is the cyclic partition of R modulo (S, I, U)

and T is a cyclic representing system of R modulo (S, I, U) if T contains

exactly one element of each class of the partition. Similarly,

{
C

(R;S)
a

∣∣a ∈ R

}
is the cyclic partition of R modulo S, and T is a cyclic representing

system of R modulo S if T ∩ C
(R;S)
a contains one and only one element for

every a ∈ R.
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Theorem 2.7. For all of the U mod I representing systems of the ring

R there exists a bijection between the two sets of
{
C

(R;S,I,U)
a |a ∈ U

}
and{

C
(R;S)
a

∣∣a ∈ R

}
.

Proof. There is a one to one correspondence between U and R that can be
transmitted to the partitionings of the two sets. Furthermore, if a partitioning
of R is a cyclic congruence, then from the fact that a≡̃b

(
S
)

if and only if
a≡̂b (S, I) follows that the corresponding partitioning of U is the corresponding
cyclic partitioning of R mod (S, I, U). This statement is right backwards,
too. �

Corollary 2.1. If T is a cyclic representing system of the ring R mod (S, I, U),
then T = {a |a ∈ T } is a cyclic representing system of R mod S. Reversely,
if T is a mod S representing system of R, then there is such a representing
system U of R by I that T =

{
a ∈ U

∣∣a ∈ R
}

.

Proof. In the previous theorem a one to one correspondence was established

between the two sets of
{
C

(R;S,I,U)
a |a ∈ U

}
and

{
C

(R;S)
a

∣∣a ∈ R

}
. As both

T and T , respectively, contain one and only one element from the two sets of

C
(R;S,I,U)
a and C

(R;S)
a for any a ∈ U and a ∈ R, so a 7−→ a (a ∈ U) results in

the bijection expected. �

Definition 2.4. c
(R;S)
a =

∣∣∣∣C(R;S)
a

∣∣∣∣ is the cyclic order of a modulo S, and

c
(R;S,I)
b =

∣∣∣C(R;S,I,U)
a

∣∣∣ is the cyclic order modulo (S, I) of any element satis-

fying the condition of b ≡ a ∈ U (I).

Theorem 2.8.

1. c
(R;S,I)
a = c

(R;S)
a ;

2. a≡̃b
(
S
)

=⇒ c
(R;S)
a = c

(R;S)
b

;

3. a ≡ b (I) =⇒ c
(R;S)
a = c

(R;S)
b

.
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Proof.

1. If two elements of C
(R;S,I,U)
a are incongruent mod I then the correspond-

ing elements in C
(R;S)
a are different, and this is true in the other direction,

too;

2. a≡̃b
(
S
)

is true if and only if a and b belong to the same cyclic coset;

3. a ≡ b (I) =⇒ a = b =⇒ c
(R;S)
a = c

(R;S)
b

. �

Theorem 2.9. Let Na =
{
s ∈ S

∣∣a (s− e) = 0
}

, then Na ≤ S and c
(R;S)
a =

=
∣∣S : Na

∣∣. If T a is a representing system of S by Na, then

C
(R;S)
a =

{
at
∣∣t ∈ T a

}
,

∣∣∣∣C(R;S)
a

∣∣∣∣ =
∣∣T a

∣∣,
and as1 = as2 ⇐⇒ s2 ∈ s1Na.

Proof. Na is not empty, as e belongs to it: S is a group, so e ∈ S,

and a (e− e) = 0. If s and t is two elements of Na , then a
(
st
−1 − e

)
=

=
(
a (s− e)− a

(
t− e

))
t
−1

= 0, st
−1 ∈ Na, therefore Na is a group with the

multiplication of the similar operation of S, so Na ≤ S. Now

as = at⇐⇒ a
(
st
−1 − e

)
t = 0⇐⇒ a

(
st
−1 − e

)
= 0

⇐⇒ st
−1 ∈ Na ⇐⇒ s ∈ Nat,

that is, two elements of C
(R;S)
a =

{
b
∣∣a≡̃b (S)} =

{
as
∣∣s ∈ S

}
differ from

one another if and only if they are generated by such elements that belong to

different cosets by Na, hence c
(R;S)
a =

∣∣S : Na

∣∣, and the other statements of
the theorem hold, too. �

Theorem 2.10. If a is at least one sided regular in R, then c
(R;S)
a =

∣∣S∣∣, and

if S is finite then c
(R;S)
a | c.

Proof. In the first case Na contains only e (it is obvious if a is a left sided
regular element, and in the case of the right sided regularity it comes from the
fact that s and e, and then s− e, too, are in the center of R), then S=̃S/Na,

so c
(R;S)
a =

∣∣S : Na

∣∣ =
∣∣S/Na

∣∣ =
∣∣S∣∣. The second statement is true, too, as

the index of a subgroup divides the order of the group, if this group is finite.�
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Theorem 2.11. If a is not a left sided zero divisor or b is not a right sided

zero divisor, then c
(R;S)
ab

= c
(R;S)
b

and c
(R;S)
ab

= c
(R;S)
a , respectively, otherwise

if both c
(R;S)
a and c

(R;S)
b

are finite, then c
(R;S)
ab

∣∣∣∣(c(R;S)
a , c

(R;S)
b

)
.

Proof. An element of S, say s belongs to Nab, if
(
ab
)

(s− e) = 0. Then

a
(
b (s− e)

)
= 0, and it can be seen that if a is not a left sided zero divisor

then a
(
b (s− e)

)
= 0 if and only if b (s− e) = 0, that is, if s ∈ Nb. In the other

case we can refer to the fact again that s− e is in the centre, so

0 =
(
ab
)

(s− e) = a
(
b (s− e)

)
= a

(
(s− e) b

)
= (a (s− e)) b,

and if b is not a right sided zero divisor, then (a (s− e)) b = 0 coincides to
a (s− e) = 0, and that means that s ∈ Na. In general, if s ∈ Na or s ∈ Nb,
then s ∈ Nab, and then Na ≤ Nab and Nb ≤ Nab, furthermore the order of
a subgroup of a finite group is finite and divides the order of the group, and

these facts imply that c
(R;S)
ab

∣∣∣∣(c(R;S)
a , c

(R;S)
b

)
. �

Theorem 2.12. If c ∈ R and a≡̃b
(
S
)

then ca≡̃cb
(
S
)

és ac≡̃bc
(
S
)
, and, if

c 6= 0, then a≡̃b
(
S
)

follows from ca≡̃cb
(
S
)

or ac≡̃bc
(
S
)

if and only if c is
not a left sided or right sided zero divisor, respectively.

Proof.

a≡̃b
(
S
)
⇐⇒

(
∃
(
s ∈ S

)
: b = as

)
=⇒

(
∃
(
s ∈ S

)
: cb = c (as) = (ca) s

)
⇐⇒ ca≡̃cb

(
S
)
,

and we get the similar result in the other case, too, considering (as) c = (ac) s,
as s is in the center of R.

If c is regular from the left side or the right side, respectively, then in the
previous chain we can exchange =⇒ by ⇐⇒. But if c is not a left sided zero
divisor, then there exists such a 6= 0, that ca =0=

(
c0
)
s and then ca≡̃c0

(
S
)
,

while 0s = 0 implies that C
(R;S)
0

=
{

0
}

, and consequently a≡̃0
(
S
)

is not true.
The case if c is not a right sided zero divisor is similar. �

Example 2.13. Let R = Z, k ∈ N+, r ∈ N+, (k, r) = 1, I = kZ, S = {r}
(r ∈ R). Then

1. c
(R;S,I)
i = ordti (r) |ordk (r)|ϕ (k);
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2. (i, k) = 1 =⇒ c
(R;S,I)
i = ordk (r);

3. i≡̂j (S, I) =⇒ ti = tj ;

4. ti = tj =⇒ c
(R;S,I)
i = c

(R;S,I)
j ;

5. iru ≡ irv (k)⇐⇒ u ≡ v
(
c
(R;S,I)
i

)
,

where i ∈ Z, j ∈ Z, u ∈ N, v ∈ N, ti = o+
(
i
)

= k
(i,k) , and ords (t) =

= min
{
l ∈ N+

∣∣tl ≡ 1 (s)
}

.

Proof.

1. Let U = {u ∈ N |i < k }. c
(R;S,I)
i =

∣∣{j ∈ U
∣∣∃ (l ∈ N) : j ≡ irl (k)

}∣∣,
that is, the cyclic order of i is equal to the number of the integers of the
form irl incongruent by modulo k.

iru ≡ irv (k)⇐⇒ ru ≡ rv
(

k

(i, k)

)
⇐⇒ rv−u ≡ 1

(
k

(i, k)

)
,

as k and r are coprimes (and we supposed that u ≤ v). If t is the least

positive integer with the property that rt ≡ 1
(

k
(i,k)

)
, and t > l ∈ N, then

irl is not congruent to i = ir0 mod k, but for every t ≤ l ∈ N there exists

such t > s ∈ N that rl ≡ rs
(

k
(i,k)

)
, and then c

(R;S,I)
i = t = ord k

(i,k)
(r).

If rs ≡ 1 (k) then rs ≡ 1
(

k
(i,k)

)
holds, too, and then k

(i,k) divides both

rs − 1 and rt − 1, consequently their greatest common divisor, r(s,t) − 1,

too, and this results in the relation of r(s,t) ≡ 1
(

k
(i,k)

)
. But t is the least

positive integer having this property, so t ≤ (s, t), and, on the other hand,
t ≥ (s, t), as t 6= 0, that means, that t = (s, t), and that is only possible if
t |s . The last divisibility follows from the Euler-Fermat theorem, namely,
if an integer is relatively prime to k, then its order by modulo k divides
ϕ (k), where ϕ is the Euler’s totient function;

2. if i and k are coprimes then k
(i,k) = k, and then ord k

(i,k)
(r) = ordk (r);

3. i≡̂j (S, I) =⇒ j ≡ irl (k) =⇒ tij ≡ tiir
l ≡ 0 (k) =⇒ tj |ti . 0 ≡

≡ tjj ≡ tjir
l (k), and we can divide by rl, as (k, r) = 1, so tji ≡ 0 (k),

consequently ti |tj , and ti = tj , as both of them are positive;

4. if ti = tj then obviously ordti (r) = ordtj (r);

5. the proof of this statement is a part of the proof of the first point of the
theorem. �
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Example 2.14. Let R = Z, m ∈ N+, n ∈ N+, I = (mn − 1) Z, S = {m}
(m ∈ R). Then c

(R;S,I)
i |n , and, if (i,mn − 1) = 1 then c

(R;S,I)
i = n.

Proof. mn − 1
∣∣∣mn′ − 1 if and only if n |n′ , and the least such integer is

equal to n′, so, the second assertion is a special case of the second point of the
previous example.

iml ≡ i (mn − 1) if and only if mn−1 divides i
(
ml − 1

)
. mn−1 evidently

divides i (mn − 1), so iml ≡ i (mn − 1) if and only if mn − 1
∣∣i (m(l,n) − 1

)
,

that is, if and only if im(l,n) ≡ i (mn − 1), and this congruence is equivalent

to the condition that c
(R;S,I)
i |(l, n)|n, so, the first statement holds, too. �
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