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Abstract. It was a long time open problem the almost everywhere con-
vergence of the Cesàro (C, 1)-means of integrable functions σnf → f for
f ∈ L1(I), where I is the group of 2-adic integers. In his paper the author
verified [2] this a.e. relation with the help of an inequality for the integral of
the maximal function of the Fejér kernels. Later, the author also discussed
[3] the almost everywhere convergence of the Cesàro (C,α)-means for every
α > 0. In general, in the investigation of the Fejér means with respect to
convergence or divergence issue, a formula for the kernel function plays an
important role. In the Walsh-Paley case see [1] or alternatively [7]. The
Walsh-Kaczmarz version is due to Skvortsov [10], [9]. For the time being,
there is no known formula for this 2-adic integers case. This paper fills this
gap.

1. Introduction

We follow the standard notions of dyadic analysis introduced by mathe-
maticians F. Schipp, P. Simon, W. R. Wade (see e.g. [7]) and others. Denote
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by N := {0, 1, ...},P := N \ {0}, the set of natural numbers, the set of positive
integers and I := [0, 1) the unit interval. Denote by λ(B) = |B| the Lebesgue
measure of the set B(B ⊂ I). Denote by Lp(I) the usual Lebesgue spaces and
‖.‖p the corresponding norms (1 ≤ p ≤ ∞). Set

I :=

{[
p

2n
,
p+ 1

2n

)
: p, n ∈ N

}
,

the set of dyadic intervals and for given x ∈ I and n ∈ N let In(x) denote
the interval In(x) ∈ I of length 2−n which contains x. Also use the notion
In := In(0) (n ∈ N). Let

x =

∞∑
n=0

xn2−(n+1)

be the dyadic expansion of x ∈ I, where xn = 0 or 1 and if x is a dyadic rational
number (x ∈ { p2n : p, n ∈ N}) we choose the expansion which terminates in 0
’s. For n ∈ N let nk be the kth coordinate of n with respect to number system
based 2. That is,

n =

∞∑
k=0

nk2k,

where nk ∈ {0, 1} (k ∈ N). Also use the notation

n(s) =

∞∑
k=s

nk2k (n, s ∈ N).

The notion of the Hardy space H(I) is introduced in the following way [7, 8].
A function a ∈ L∞(I) is called an atom, if either a = 1 or a has the following
properties: supp a ⊆ Ia, ‖a‖∞ ≤ |Ia|−1,

∫
I
a = 0, for some Ia ∈ I. We say

that the function f belongs to H, if f can be represented as f =
∑∞
i=0 λiai,

where ai’s are atoms and for the coefficients (λi) the inequality
∑∞
i=0 |λi| <∞

is true. It is known that H is a Banach space with respect to the norm

‖f‖H := inf

∞∑
i=0

|λi|,

where the infimum is taken over all decompositions f =
∑∞
i=0 λiai ∈ H.

The 2-adic (or arithmetic) sum a + b :=
∑∞
n=0 rn2−(n+1) (a, b ∈ I), where

bits qn, rn ∈ {0, 1}(n ∈ N) are defined recursively as follows : q−1 := 0,
an + bn + qn−1 = 2qn + rn for n ∈ N. (Since qn, rn take on only the val-
ues 0, 1, these equations uniquely determine the coefficients qn and rn.) The
group (I,+) is called the group of 2-adic integers. Set

ε(t) := exp(2πıt) (t ∈ R),
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where ı = (−1)
1
2 . Set

v2n(x) := ε
(xn

2
+ · · ·+ x0

2n+1

)
(x ∈ I, n ∈ N)

and

vn :=

∞∏
n=0

v
nj

2j ,

where N 3 n =
∑∞
i=0 ni2

i (ni ∈ {0, 1} (i ∈ N)). It is known [4] that the system
(vn, n ∈ N) is the character system of (I,+). Denote by

f̂(n) :=

∫
I

fv̄ndλ , Dn :=

n−1∑
k=0

vk , Kn :=
1

n+ 1

n∑
k=0

Dk

the Fourier coefficients, the Dirichlet and the Fejér or (C, 1) kernels, respec-
tively. It is also known that the Fejér or (C, 1) means of f is

σnf(y) :=
1

n+ 1

n∑
k=0

Skf(y) =

∫
I

f(x)Kn(y − x)dλ(x) =

=
1

n+ 1

n∑
k=0

∫
I

f(x)Dk(y − x)dλ(x) (n ∈ N, y ∈ I).

It is known that [5, 6, 2] for n ∈ N, x ∈ I

D2n(x) =

{
2n, if x ∈ In,
0, if x /∈ In

and also that [5]

Dn(x) = vn(x)

∞∑
k=0

D2k(x)nk(−1)xk .

Denote by Kα
n the kernel of the summability method (C,α), and call it the

(C,α) kernel, or the Cesàro kernel for α ∈ R:

Kα
n =

1

Aαn

n∑
ν=0

Aα−1n−νDν , Aαk =
(α+ 1)(α+ 2) · · · (α+ k)

k!
(α 6= −k).

It is well-known [12, Ch. 3] that Aαn =
∑n
k=0A

α−1
n−k, Aαn − Aαn−1 = Aα−1n ,

Aαn ∼ nα. The (C,α) Cesàro means of the integrable function f is

σαnf(y) :=
1

Aαn

n∑
k=0

Aα−1n−kSk =

∫
I

f(x)Kα
n (y − x)dλ(x).



260 Gy. Gát

It was a question of Taibleson [11] open for a long time, that does the Fejér-
Lebesgue theorem, that is the a.e. convergence σnf → f hold for all integrable
function f . In 1992 Schipp and Wade proved [5] the L1 norm convergence
σnf → f for all f ∈ L1.

In 1997 Gát proved [2] the a.e. convergence σnf → f for every integrable
function. He also proved that the maximal operator of the Fejér means, that
is, σ∗f is of type (H,L1). In other words, there exists an absolute constant
C > 0 such that ‖σ∗f‖H ≤ C‖f‖L1 for all f ∈ H.

Later, Gát proved [3] for all α > 0 the a.e. relation σαnf → f for each
integrable function f . In the proofs of these results a key lemma was [2, Lemma
3]: Let B ≥ t be fixed natural numbers. Then,

(1.1)

∫
It\It+1

sup
N≥2B

|KN (z)|dλ(z) ≤ C
(
2t−B

) 1
2 .

In this paper we essentially improve inequality (1.1). Moreover, for the time
being there is no formula for the Fejér kernels. This paper aims to fill this gap.
For more details on the Fourier theory with respect to the character system of
the group of 2-adic integers see for instance [5, 6]. In this paper C denotes an
absolute constant which may be different from line to line.

2. The results

For k ∈ N and x ∈ I let product < k, x > be defined as

< k, x >:=
k0x0
21

+
k1x1
21

+
k1x0
22

+
k2x2
21

+
k2x1
22

+
k2x0
23

+ · · · =

=

∞∑
i=0

ki

i∑
j=0

xj
2i−j+1

.

For any x ∈ I and s ∈ N use the notation

τsx =
xs−1
21

+
xs−2
22

+ · · ·+ x0
2s
.

The main tool in the proof of the main result is the following lemma.

Lemma 2.1. Let x ∈ I and s ∈ N. Then the following equality holds:

2s−1∑
k=0

vk(x)ε

(
< k, 12 >

2

)
= 1 + ı cotπ

(
τsx+

1

2s+1

)
.
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Proof. Since

vk(x) = ε (< k, x >) =

= ε

(
k0x0
21

+
k1x1
21

+
k1x0
22

+ · · ·+ ks−1xs−1
21

+ · · ·+ ks−1x0
2s

)
,

then by < k, 1/2 >= k0/2
1 + k1/2

2 + · · ·+ ks−1/2
s for k < 2s we have

2s−1∑
k=0

vk(x)ε

(
< k, 12 >

2

)
=

=
∑

k0,...,ks−1∈{0,1}

ε

(
1

2s+1

(
ks−1(2sxs−1 + 2s−1xs−2 + · · ·+ 21x0 + 20)+

+ ks−2(2sxs−2 + 2s−1xs−3 + · · ·+ 22x0 + 21) + · · ·+

+ k1(2sx1 + 2s−1x0 + 2s−2) + k0(2sx0 + 2s−1)
))

.

Set Lx = 2s+1τsx + 1 = 2sxs−1 + 2s−1xs−2 + · · · + 21x0 + 20 which is an odd
natural number. The function ε( 1

2s+1 ·) is periodic modulo 2s+1. The equalities

Lx = 2sxs−1 + 2s−1xs−2 + · · ·+ 21x0 + 20,

2Lx = 2sxs−2 + 2s−1xs−3 + · · ·+ 22x0 + 21 ( mod 2s+1),

22Lx = 2sxs−3 + 2s−1xs−4 + · · ·+ 23x0 + 22 ( mod 2s+1),

. . . ,

2s−2Lx = 2sx1 + 2s−1x0 + 2s−2 ( mod 2s+1),

2s−1Lx = 2sx0 + 2s−1 ( mod 2s+1)

give

2s−1∑
k=0

vk(x)ε

(
< k, 12 >

2

)
=

=
∑

k0,...,ks−1∈{0,1}

ε

(
Lx

2s+1
(ks−1 + 21ks−2 + · · ·+ 2s−1k0)

)
=

=

2s−1∑
l=0

ε

(
Lx

2s+1
l

)
=

=
exp

(
2πıLx

2

)
− 1

exp
(
2πı Lx

2s+1

)
− 1

=

=
2

1− ε
(
Lx

2s+1

) .
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Recall that Lx is odd and consequently ε(Lx/2) = −1. Since 1
1−exp(ıφ) =

1/2 + ı/2 cotφ/2, then

2s−1∑
k=0

vk(x)ε

(
< k, 12 >

2

)
= 1 + ı cot

(
π
Lx

2s+1

)
.

This completes the proof of Lemma 2.1. �

The following theorem is the main result of the paper. It gives a formula
for the Fejér kernel functions with respect to the character system of the group
of 2-adic integers.

Theorem 2.1. For n, t ∈ N, x ∈ It \ It+1 we have

nKn(x) =

t∑
s=0

ns2
s

(
Dn(s+1)(x) + vn(s+1)(x)

2s − 1

2

)
+

+

∞∑
s=t+1

ns2
2t(1 + ı cot(πτsx))vn(s+1)(x).

Proof. Let 2A ≤ n < 2A+1. Then we have

nKn(x) =

=

A∑
s=0

n(s)∑
k=n(s+1)

Dk(x) =

=

A∑
s=0

ns

n(s+1)+2s−1∑
k=n(s+1)

Dk(x) =

=

A∑
s=0

ns

2s−1∑
k=0

(Dn(s+1)(x) + vn(s+1)(x)Dk(x)) .

For s ≤ t and k < 2s x ∈ It gives Dk(x) = k and consequently

t∑
s=0

ns

2s−1∑
k=0

(Dn(s+1)(x) + vn(s+1)(x)Dk(x))

=

t∑
s=0

ns2
s

(
Dn(s+1)(x) + vn(s+1)(x)

2s − 1

2

)
.

In the sequel we turn our attention to the case s > t. Use the formula for the
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Dirichlet kernel Dn(x) given by Schipp ([5]).

Kn(s+1),2s(x) :=

n(s+1)+2s−1∑
k=n(s+1)

Dk(x) =

=

n(s+1)+2s−1∑
k=n(s+1)

(

t−1∑
j=0

kj2
j)vk(x) +

n(s+1)+2s−1∑
k=n(s+1)

kt2
t(−1)vk(x) =:

1∑
+

2∑
.

Since 2s+1 is a divisor of n(s+1), then k = n(s+1)+l (0 ≤ l < 2s). Consequently,
we have

vk(x) = vn(s+1)+l(x) = vn(s+1)(x)vl(x).

Thus, (in the case of s > t)

1∑
= vn(s+1)(x)

1∑
ls−1=0

· · ·
1∑

l0=0

(

t−1∑
j=0

kj2
j)vl(x) = vn(s+1)(x)

1∑
lt=0

vlt2t(x)φ(x),

where φ does not depend on lt. Since x ∈ It \ It+1, vlt2t(x) = ε(lt(xt/2 + · · · +
+x0/2

t+1)) = ε(lt/2) = (−1)lt , then we get
∑1

= 0. Consequently,

n(s+1)+2s−1∑
k=n(s+1)

Dk(x) = vn(s+1)(x)

1∑
ls−1=0

· · ·
1∑

l0=0

lt2
t(−1)vl(x).

For j < t (recall that x ∈ It \ It+1) we have

v
lj
2j (x) = ε

(
lj

(xj
21

+
xj−1
22

+ · · ·+ xt+1

2j−t

))
ε

(
lj

1

2j−t+1

)
.

These assumptions imply the equality

n(s+1)+2s−1∑
k=n(s+1)

Dk(x) =

= vn(s+1)(x)22t
1∑

ls−1=0

1∑
ls−2=0

· · ·
1∑

lt+1=0

ε
(
lt+1

xt+1

21

)
ε

(
lt+1

1

22

)
×

× ε
(
lt+2

(xt+2

21
+
xt+1

22

))
ε

(
lt+2

1

23

)
· · · ×

× ε
(
ls−1

(xs−1
21

+ · · ·+ xt+1

2s−t−1

))
ε

(
ls−1

1

2s−t

)
Use the notation

k = lt+120 + lt+221 + · · ·+ ls−12s−t−2 < 2s−t−1



264 Gy. Gát

and
xt+1

21
+
xt+2

22
+ · · ·+ xs−1

2s−t−1
+

xs
2s−t

· · · = {2t+1x}.

Since

ε

(
lt+1

1

22

)
ε

(
lt+2

1

23

)
· · · ε

(
ls−1

1

2s−t

)
=

= ε

(
k0

1

22

)
ε

(
k1

1

23

)
· · · ε

(
ks−t−2

1

2s−t

)
= ε(< k, 1/2 > /2)

and since all functions v2j is periodic modulo 1, then

n(s+1)+2s−1∑
k=n(s+1)

Dk(x) =

= vn(s+1)(x)22t
2s−t−1−1∑
k=0

vk(2t+1x)ε(< k, 1/2 > /2).

By Lemma 2.1 we get

2s−t−1−1∑
k=0

vk(2t+1x)ε(< k, 1/2 > /2) =

= 1 + ı cotπ

(
(2t+1x)s−t−2

21
+ · · ·+ (2t+1x)0

2s−t−1
+

1

2s−t

)
=

= 1 + ı cotπ

(
xs−1
21

+ · · ·+ xt+1

2s−t−1
+

1

2s−t

)
=

= 1 + ı cotπ
(xs−1

21
+ · · ·+ xt+1

2s−t−1
+

xt
2s−t

+ . . .
)

=

= 1 + ı cot(πτsx).

Consequently,

n(s+1)+2s−1∑
k=n(s+1)

Dk(x) = vn(s+1)(x)22t(1 + ı cotπ(τsx)).

Finally, for s > t we write

A∑
s=t+1

ns

n(s+1)+2s−1∑
k=n(s+1)

Dk(x) =

=

A∑
s=t+1

ns2
2tvn(s+1)(x)(1 + ı cotπ(τsx)).

This completes the proof of Theorem 2.1. �
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Theorem 2.1 immediately gives the following estimation for the absolute
value of the kernel.

Corollary 2.1. For x ∈ It \ It+1, n > 2t, n, t ∈ N we have the estimation for
the Fejér kernel:

|nKn(x)| ≤ C22t
∞∑

s=t+1

ns(1 + | cotπτsx|).

Besides, Corollary 2.1 implies an estimation for the kernel depending only
on the integer part of the binary logarithm of n, that is, on A = blog2 nc and
not depending on the coordinates of n.

Corollary 2.2. For x ∈ It \ It+1, n > 2t, n, t ∈ N we have the estimation for
the Fejér kernel:

|nKn(x)| ≤ C22t
A∑

s=t+1

(1 + | cotπτsx|).

The following corollary of Theorem 2.1 improves the result in paper [2]
which played a key role in the proof of the a.e. convergence of the (C, 1) means
of the Fourier series of integrable functions on the group of 2-adic integers. This
result is essentially better than inequality (1.1), that is, in paper [2, Lemma 3].

Corollary 2.3. For B ≥ t, B, t ∈ N we have the estimation for the Fejér
kernel: ∫

It\It+1

sup
n≥2B

|Kn(x)|dλ(x) ≤ C (B − t)2

2B−t
.

Proof. In the proof we use the inequality in Corollary 2.2. For s > t and
j = 1, . . . , s− t− 1 set

Jj = (It \ It+1) ∩ {x ∈ I : xs−1 = 0, . . . , xs−j = 0, xs−j−1 = 1} .

For j = 0 let
J0 = (It \ It+1) ∩ {x ∈ I : xs−1 = 1} .

Then we have

It \ It+1 =

s−t−1⋃
j=0

Jj .

On the set Jj the following inequality holds:

| cotπτsx| ≤
C

τsx
=

=
C2s

2s−1xs−1 + 2s−2xs−2 + · · ·+ 2s−j−1xs−j−1 + · · ·+ 2txt
≤

≤ C2s

2s−j−1
≤ C2j .
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Consequently, we get∫
It\It+1

|1 + cotπτsx|dλ(x) ≤

≤ C
s−t−1∑
j=0

(
1

2t
+ 2j

1

2j+t

)
≤ C(s− t) 1

2t
.

This inequality by Corollary 2.2 gives∫
It\It+1

sup
n≥2B

|Kn(x)|dλ(x) ≤

≤
∞∑
A=B

∫
It\It+1

sup
{n:2A≤n<2A+1}

|Kn(x)|dλ(x) ≤

≤ C
∞∑
A=B

22t−A
A∑

s=t+1

∫
It\It+1

1 + | cotπτsx|dλ(x) ≤

≤ C
∞∑
A=B

22t−A
A∑

s=t+1

(s− t) 1

2t
≤ C

∞∑
A=B

(A− t)2

2A−t
≤ C (B − t)2

2B−t
.

This completes the proof of Corollary 2.3. �
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