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Abstract. We study the dynamical properties of the complex number sys-
tems. A map is introduced on the transition graph by analogy of statistical
physics systems. We gain an estimation of the Kolmogorov entropy by the
Grassberger-Procaccia algorithm for a finite approximation of Bγ .

1. Introduction

The entropy plays important role in physics, mathematics and informatics.

The concept of entropy emerged in the thermodynamics by Clausius R.,
who also gave a mathematical form of entropy [1] in 1865. Boltzmann’s L. and
Ehrenfest’s T. results showed that the thermodynamic and statistical physics
entropy is identical.

In the 1950s, KolmogorovA.N. proposed the notion of the entropy to charac-
terize dynamical systems [2], he applied probability theory to solve the problem
of isomorphism of dynamical systems and point systems. Important question
was at this time that dynamical systems (deterministic time dependent flow)
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arising in probability theory are different from the metric point of view Shan-
non C. introduced the form of information entropy [3].

From the mathematical point of view, Rényi A. investigated generalized
entropies of order q to use arbitrary probability distribution within the infor-
mation theory [4].

In this article we apply the generalized order-q Rényi entropies K(q), where
K(1) is the Kolmogorov-Sinai entropy in the limit q → 1. The order-2 Rényi
entropy K(2) is studied by Grassberger P. and Procaccia I. [5]. They int-
roduced a method to obtain this quantity from correlation sums of time se-
ries. It gives an approximation to the Kolmogorov-Sinai Entropy K(1), where
limq→1+ K(q) = K(1).

The goal of this article is to study some dynamical system by Rényi entropy
which contains the element of Bγ with increasing the digits. We would know
the chaotic property of it.

We investigate the time dependent behaviour of generalized number sys-
tems by applying a map on the transition graph, and determine a numerical
estimation of the generalized entropy of order-2.

2. Generalized number systems

Kátai I. introduced the concept of generalized number systems [6] in the
1970s. This idea is considered and settled for Gaussian integers [7], real
quadratic fields [8], imaginary quadratic fields [9] and other important alge-
braic structures [10],[11],[12].

We give here the basic definitions.

In the case Zk is a ring of integer vectorial in Rk (k ≥ 1). Let M be a
k× k type matrix with integer entries and L = MZk. Then L is a subgroup in
Zk, O(Zk/L) = t the order, when t = |detM |. Let A = {a0 = 0, a1, . . . , at−1}
denote a complete set of the representation of the residue classes mod M for
(t ≥ 2), it is called as digit set. We say that (A,M) is a number system, if
every n ∈ Zk has a finite representation in the following form:

n = a0 +Ma1 + · · ·+Mh−1ah−1, aj ∈ A for h > 0.(2.1)

Let us define the function J : Zk → Zk in the following way. For every n ∈ Zk

there exists a unique a0 ∈ A and n1 ∈ Zk such that n = a0 + Mn1, i.e. let
J(n) = n1 be. Let us define the set H :

H =
{
z
∣∣z =

∞∑
i=1

M−ifi, fi ∈ A
}
.(2.2)
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The set H is compact, it plays fundamental role in the investigation of the
generalized number systems (A,M).

If (A,M) is number systems then

∪n∈Zk
(H + n) = R,(2.3)

and n1, n2 ∈ Zk, n1 �= n2 furthermore:

λ(H + n1 ∩H + n2) = 0,(2.4)

where λ is the Lebesques measure. We define a set S, which consists of those
γ ∈ Zk, γ �= 0 for which:

H ∩H + γ �= ∅.(2.5)

The set (2.5) is denoted by Bγ and

B = ∪γBγ .(2.6)

We would like to determinate the Kolmogorov entropy of Bγ . We shell do it in
the ring of quadratic integers in a given algebraic number fields. The detailed
description of it can be found in the section 4.

In the next subsection we introduce the transition graph that will help us
to investigate a walk along the graph which is analogous to dynamical systems.

2.1. Transition graph of number systems

We construct a finite directed labelled graph G(S), according to the article
[6], to use the function Q : S → S, where S ⊆ Zk \ {0}, define a walk P along
the transition graph.

Let S ⊆ Zk be the set and n ∈ S, if n �= 0 and H + n ∩H �= 0. S can be
computed by the following way:

Let S0 = {n| ‖ n ‖≤ 2L, n �= 0}, i.e. n satisfies this condition, where L is
an appropriate upper limit.

We can draw an edge from each n ∈ S0 to n1, if n = b+Mn1 holds with a
suitable b ∈ B(= A−A).

�n n1.b

At the end of this construction we delete all those nodes from which no edge
goes out i.e. deg−(n) = 0 or ends, remove all coinciding edges as well. Each
elements of the set S satisfy: deg+(n) > 0 and deg−(n) > 0. Finitely many
repeating these steps we obtain the directed transition graph G(S).
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Because Bγ = {z|z ∈ H, z ∈ H + γ} we can characterize the element z by
their expansions.

Let P := γ1
δ1−→ γ2

δ2−→ γ3 . . . γr−1
δr−1−−−→ γr . . . be a walk on the graph

G(S), it is labelled by (δ1, δ2, . . . δr−1 . . . ), (i.e. for finite path of length r
Q(r−1)(γ1) = γr). Each walk P along the transition graph can be represented
by a sequence of labels: δ1, δ2 . . . δr−1 . . . . The equation δj = fj−f ′

j is satisfied
by appropriate fi, f

′
i ∈ A. Thus z ∈ Bγ , if

z =

∞∑
i=1

M−ifi, fi ∈ A.(2.7)

for at least one sequence f1, f2, . . .

3. Kolmogorov-Sinai entropy

We will investigate the dynamical properties of measured time series which
is denoted as y1, . . . , yn and yi means the measurement of the quantity y at
time ti = t0+ iΔt, where the time interval Δt > 0 ∈ R. It can be characterized
by the generalized entropy of order q in natural sciences [14], [15], [16], [17].

We apply this idea on a lattice, similar to the sandbox method [18].

Let us consider a lattice C in the Rd with linear size ε (ε > 0, ε ∈ R)
such that Cj denotes the elementary box of lattice C, which fulfills the next
conditions:

C = ∪jCj , and Cj ∩ Ci = ∅ where j, i ∈ {0, . . . , Nd − 1}.(3.1)

The set of Cj provides a partition of [0, Nε[d⊂ Rd. Let K be a compact set,

Tj = K ∩ Cj �= ∅, where j = 1, . . . ,M and K ∩Cj = ∅ for any other Cj .

T = ∪M
j=1Tj , where Tj ∩ Ti = ∅, i �= j.

The x(n) denotes the path of length n in Rd i.e. time series of the measurement.

Let the kth point of the path of length n be denoted by x
(n)
k (k = 1, . . . n). We

shall consider the sequence of x
(n)
1 , x

(n)
2 , . . . , x

(n)
n as a time series on the lattice.

The set K contains the points of some trajectories x
(n)
k (k = 1, . . . , n).

We will use the notation of symbolic dynamics, because the concept of
entropy is applied in different sciences, and it can be formulated on lattice.
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Each path x(n) for a finite n can be associated to a symbolic sequence
On = (o1, o2, . . . on), where the symbol ok ∈ {1, . . . ,M} is represented by the
index of the lattice element Tk.

A given sequence On occurs with probability P (On). This quantity is inde-
pendent of time, and fulfils:

M∑
on+1=1

P (o1, o2, . . . on, on+1) = P (On),(3.2)

where M is the number of the boxes with non-zero probability.

The information of the sequences On is:

In(1) = −
∑
On

P (On) lnP (On),(3.3)

where n means the length of the symbol series and the summation is taken
over all sequences with non-zero probabilities (P (On) > 0). We can get back
the Rényi information of order-q I1(q) for n = 1 [4] and Shannon information
I1(1) in a special case q = 1 [3].

Sinai introduced themean rate of the created information, called the Kolmo-
gorov-Sinai entropy as follows

K(1) = lim sup
n→∞

In(1)/n.(3.4)

Further dynamical properties of the symbol sequences are described by the
Rényi information of order-q:

In(q) =
1

1− q
ln
∑
On

P (On)
q, q �= 1.(3.5)

It leads to the order-q Rényi entropy [4]:

K(q) = lim sup
ε→0

lim sup
n→∞

1

n

1

1− q
ln
∑
On

P (On)
q, q �= 1,(3.6)

where −∞ < q < ∞, the lattice size ε → 0, the length of the symbol sequent
n goes to ∞ and the unit of the time interval Δt equals a constant in this
definition.

By writing pq = p exp(q − 1) ln p and expanding the exponent, the quan-
tity limq→1+ K(q) = K(1) and limq→0+ K(q) ≤ h, where h is the topological
entropy [5].

We can conclude by the Rényi entropy that the investigated system behaves
chaotically or not.

It is known K(1) = 0 in an ordered system, but K(1) is constant�= 0 in
chaotic (deterministic) system and K(1) is infinite in a random system. Note
K(2) > 0 is sufficient condition for chaos [15].
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4. Numerical procedure

We determine the generalized entropy of order 2 denoted by K(2) which
provides an estimation of the Kolmogorov-Sinai entropy.

The idea of the generalized number system for Zk, introduced in the section
(2), is equvivalent to the ring of the integer Z[θ] in Q[θ], where θ is an algebraic
integer and the element of the set forms f(θ) = v0+v1θ+· · ·+vn−1θ

n−1, vj ∈ Z.

There exists a σ ∈ Z[θ] and Iθ = {σθ∣∣σ ∈ Z[θ]}, supposing γ1 − γ2 = θσ,
for γ1, γ2 ∈ Z[θ] i.e. γ1, γ2 congruent modulo θ. The digit set is defined as
A = {a0, a0, . . . , at−1} (⊂ Z[θ]).

The map J : Z[θ] → Z[θ] is introduced as J(α) = α1, where there exists a
unique b ∈ A in (A, θ) and a unique α1 ∈ Z[θ] for wich α = b + θα1 and the
expansion of α is defined by αl = J (l)(α).

This identity between the Zk and Z[θ] was proved [6].

Kátai I. and Szabó J. studied the canonical number system for Gaussian
complex integers [7]. They proved that (θ,A) is a canonical number system
if and only if �θ < 0 and �θ = ±1, where θ is a Gaussian integer and A =
= {0, 1, . . . , N(θ)− 1} (N(θ) = θθ).

The definition of fundamental set H (2.2), introduced in section (2), holds
in this field. Let ρ = 1/θ, where ρ ∈ C, 0 < |ρ| < 1 and A = {0, 1}. Then the
analogue set H :

H =
{
z
∣∣z =

∞∑
i=1

ρifi, fi ∈ A
}
.(4.1)

Because Bγ = H ∩H + γ,

Bγ =
{
z
∣∣z ∈ H, z − γ ∈ H

}
.(4.2)

Therefore all expansions of γ appear as

γ = ρ1e1 + ρ2e2 . . . ,(4.3)

where e1, e2 · · · ∈ B = A − A. Then ei = fi − f ′
i holds, where fi, f

′
i ∈ A,

(i = 1 . . . ). We determine all of possible values of the digit set fi which follows
from expressions (4.1),(4.2):

z = ρ1f1 + ρ2f2 . . . .(4.4)

The important results were published in the articles Indlekofer K.-H., Kátai I.,
Racsko P. [11] and Indlekofer K.-H., Járai A., Kátai I. [12].
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The elements of the set Bγ are defined by (4.4), which contains z over

infinite sums, we will approximate them with finite sums. The set B̃γ contains
these elements for some fixed k and γ, which are written as

x =

k∑
i=1

ρifi, fi ∈ A.(4.5)

We applied the Grassberger-Procaccia method for B̃γ , whose every element
corresponds to a subset of Bγ .

In the article [18] we determined the sandbox dimension of the set Bγ

approximately. Then we calculated the digits of the element of the set Bγ for
finite limit.

The question arises, whether our calculation how reliable. Because the
system shows chaotic behaviour, than the result of our calculation could lead
to inaccurate.

4.1. Grassberger-Procaccia method for finite set

We shall give an estimation of the Kolmogorov-Sinai entropy on the time
series to use the article [5]. This method is introduced on finite sets to find a
good approximation of the quantity K(2).

The compact set K ⊂ Rd consists of each point of some orbit x
(n)
k of length

n (k = 1 . . . n). Each path corresponds to the series of the indices j for which

x
(n)
k ∈ Tj and j ∈ {1, . . . ,M}.
Let us define the distance on this lattice, where the linear size ε of a box is

taken as the unit length i.e. usually euclidean distance times 1/ε. We introduce
two constant values a and L, where a means the minimal distance between two
points a = min{|x − y| : x �= y, x, y ∈ K} and L is the diameter of the set K
i.e. L = max{|x − y| : x, y ∈ K}. Let us introduce a closed ball with center
x ∈ K and the radius r (a ≤ r ≤ L, r ∈ R):

B(x, r) = {y∣∣|x− y| ≤ r, y ∈ K}.(4.6)

We denote by D(x(n), r) the set which includes that path whose distance from
the x(n) of length n is less than or equals to r (a ≤ r ≤ L). It is defined as

D(x(n), r) = {y(n) ∣∣ |x(n)
1 − y

(n)
1 | ≤ r, |x(n)

2 − y
(n)
2 | ≤ r, . . . ,

. . . , |x(n)
n − y(n)n | ≤ r},

(4.7)

where x
(n)
i and y

(n)
i are the ith points of trajectories x(n) and y(n) (i = 1, . . . n).
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Let I ′ denote all sequences of the indices, where n′ = (n′
1, n

′
2 . . . n

′
n) ∈ I ′

and n′
1, n

′
2, . . . n

′
n ∈ {1, . . . ,M} ⊂ {1, . . . , Nd}. The set T

(n)
n′ contains the orbit

of length n:

T
(n)
n′ =

{
(x

(n)
1 , x

(n)
2 . . . x(n)

n )
∣∣x(n)

1 ∈ Tn′1
, x

(n)
2 ∈ Tn′2

, . . . x(n)
n ∈ Tn′n

}
.

Analogously to the article [18] we define the map μ(T
(n)
n′ ) as measure

μ(T
(n)
n′ ) =

|T (n)
n′ |

|T (n)| , where T (n) = ∪n′∈I′T
(n)
n′ .(4.8)

We note T
(n)
m′ ∩ T

(n)
n′ = ∅, if n′ �= m′, n′,m′ ∈ I ′ and 1 < |I ′| ≤Mn and

∑
n′∈I′

|T (n)
n′ |

|T (n)| = 1.(4.9)

We can derive the quantity ν(D(x(n), r) on the set T (n) in the following way:

ν(D(x(n), r) =
∑

n′∈I′,|x(n)−y(n)|≤r

|T (n)
n′ |

|T (n)| =
∑

n′∈I′,|x(n)−y(n)|≤r

μ(T
(n)
n′ ),

where a ≤ r ≤ L. The generalized entropy (3.6) in this case:

K(q) = lim sup
ε→0

lim sup
n→∞

1

n

1

1− q
ln

∑
n′∈I′

μ(T
(n)
n′ )q, q �= 1,(4.10)

which is for q = 1 the Kolmogorov entropy:

K(1) = − lim sup
ε→0

lim sup
n→∞

1

n
μ(T

(n)
n′ ) lnμ(T

(n)
n′ ),(4.11)

because μ is a probability measure. It can be seen that K(q) > K(q′) for every
q′ > q and K(2) is numerically close to K(1). It is difficult to determine K(1)
directly from the series of elements of trajectories, therefore we approximate
this quantity by K(2).

4.1.1. The Grassberger-Procaccia method

Let us investigate the correlations between points of the long-time trajecto-

ries. Choose the orbits x(n)of length n, points x
(n)
i , (i = 1, . . . , n) are elements

of the set K.
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The correlation sum C2(r, n) is defined as

C2(r, n) =
2

n(n− 1)

∑
x(n)∈T (n)

|D(x(n), r)|,(4.12)

which means the number of pair of the orbits, where the maximum distance
between any two paths of length n is less than or equals to r. Let us suppose
that C2(r, n) scales like C2(r) ∼ rη and that up to a factor of order unity

C2(r, n) �
∑

n′∈I′ μ
2(T

(n)
n′ ), where η has been called the correlation exponent.

It has been proved that η estimates the fractal dimension D of the set S as r
goes to zero. Furthermore C2(r, n) ∼ rη exp(−nKn(2)Δt), where Kn(2) is the
order-2 Rényi entropy:

Kn(2) =
1

2

[
lnC2(r, n+ 1)− lnC2(r, n)

]
.(4.13)

In the next section we determine this quantity for a set B̃γ .

4.2. Application of the Grassberger-Procaccia algorithm to a finite
set B̃γ

In this section we present the numerical results which is obtained for a
generalised number systems in quadratic integers.

In the article [11] it was proved that θ ∈ C is a root of the f(x) = x2−ax+2
polinom, where a = 0,±1,±2. The smallest ring is Δ = {1,Θ}. Then

∪γ∈Δ(H + γ) = C(4.14)

λ((H + γ1) ∩ (H + γ2)) = 0, γ1 �= γ2, γ1, γ2 ∈ Δ.(4.15)

Here γ =
∑l

ν=0 aνΘ
ν , aν ∈ A holds. For all these Θ values (Θ,A) is a canonical

number system in a quadratic field extensions.

First, we construct the transition graph G(S) as can be seen in Figure 1.
The base is chosen to be θ = −1− i and the digit set A = {0, 1} and the edge
is labelled by element of set B = {−1, 0, 1} according to the article [11].

The steps of graph construction are the following:

- Every γ ∈ Z[Θ] which fulfils the condition |γ| ≤ √
2 + 1, we calculate

η = γΘ− δ for δ ∈ B. A directed edge fits from γ to η, if |η| ≤ √2 + 1 holds.

-That γ is deleted which has no edge from γ and remove all edges which
are directed to γ.

This process results the graph G(S).
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Figure 1. Transition graph for θ = −1− i and B = {−1, 0, 1}.

Each element of set B̃γ which is introduced by the expression (4.5), corre-
sponds to a walk of length finite k P along the transition graph, it is labelled
by (δ1, δ2, . . . , δk), δi ∈ B.

Let us take into consideration the process of the graph walking.

As a first step we choose one vertex along the graph G(S) randomly. The
basic idea of the graph walking is the minimal length orbit P , which contains
all of possible edges at least ones (δ1, δ2, . . . δk). Let us take in account that the
outgoing degree of vertices q can be larger than 1 and the graph walking need to
contain all edges, therefore the same node can appear more times resulting the
perfect series of all directed ones. We consider all of series f1, . . . , fr, (fi ∈ A)
to the sequence of labels of edges accordance with section 2.1.

The correlation sum C2(r, n) is determined along the orbits of finite length
n, where the distances between any trajectories of length n are smaller than r
choosing for a fixed n. The quantity ln(C2(r, n)) vs ln(r) is plotted in Figure 2.
for two cases (n = 3, 9), where the slope of these lines means the correlation

exponent η of the set B̃γ .

We present the entropy spectrum Kn(2) vs n/N in Figure 3. on logarithmic
scale, where N is maximal length of some orbits, in this case we choose 5
different lengths N . Increasing the value N of the graph walking, the entropy
Kn(2) decreases strictly monotonically with fix n/N and Kn(2) converges to
the theoretical value K(2) for N →∞. The value of Kn(2) goes to zero in the
limit N →∞, therefore supposedly there is not chaos int this system.
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Figure 2. Correlation sum ln(C2(r, n)) vs ln(r) with N = 20160 and n = 3, 9.

Figure 3. Kn(2) vs n/N plotted on logarithm scale for 5 different length
N = 56, 336, 1680, 6720, 20160 and 1 < n < N .

5. Summary

In this paper we study the dynamical behaviour of generalized number sys-
tems in analogy to statistical physical phenomenon. We investigate a map on
the transition graph to determine the entropy Kn(2) using the correlation sum
along the trajectories. The value K(2) equals to 0 and this quantity is numeri-
cally close to K(1), therefore we give a good approximation to the Kolmogorov-
Sinai entropyK(1). The conclusion of our calculation of the sandbox dimension
[18] is correct, because this system does not show chaotic behaviour.
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eralized number systems, Acta Sci. Math., 57 (1993), 543–553.
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