
Annales Univ. Sci. Budapest., Sect. Comp. 40 (2013) 233–244

RATIONAL HERMITE–FEJÉR INTERPOLATION
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Abstract. In this paper we construct rational orthogonal systems with
respect to the normalized area measure on the unit disc. The generat-
ing system is a collection of so called elementary rational functions. In
the one dimensional case an explicit formula exists for the corresponding
Malmquist–Takenaka functions involving the Blaschke functions. Unfor-
tunately, this formula has no generalization for the case of the unit disc,
which justifies our investigations. We focus our attention for such special
pole combinations, when an explicit numerical process can be given. In [4]
we showed, among others, that if the poles of the elementary rational func-
tions are of order one, then the orthogonalization is naturally related with
an interpolation problem. Here we take systems of poles which are of order
both one and two. We show that this case leads to an Hermite–Fejér type
interpolation problem in a subspace of rational functions. The orthogonal
projection onto this subspace is calculated and also the basic Hermite–
Fejér interpolation functions are provided. We show that by means of the
given process effective algorithms can be constructed for approximations
of surfaces.
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1. Introduction

In this paper we will investigate systems of rational functions that are an-
alytic on the closed unit disc D := {z ∈ C : |z| ≤ 1} of the complex plane
C. Rational functions turned to be very useful in several areas including sys-
tem and control theories [9], and signal and image processing [5], [6], [2]. The
members of these systems are those rational functions the poles of which are
located outside D. Let the set of analytic functions on D be denoted by A,
and the set of proper rational functions belonging to A by R. Clearly, R is
the set of linear combinations of the elementary rational functions

ra,m(z) :=
1

(1 − az)m

(a ∈ D := {z ∈ C : |z| < 1}, z ∈ D, m ∈ N∗ := {1, 2, . . . }), i.e.

(1.1) R = span{ra,m : a ∈ D, a �= 0, m ∈ N∗}.

The mirror image of a with respect to the unit circle is denoted by a∗ := 1/a /∈
/∈ D. Then a∗ is the pole of ra,m, of order m. It explains that the parameter a
is called the inverse pole of order m of the elementary rational function ra,m.
Taking the normalized area measure dσ(z) = dx dy/π (z = x + iy ∈ D) the
scalar product is defined as follows

(1.2) 〈f, g〉 :=
∫
D

f(z)g(z) dσ(z) (f, g ∈ A) .

For the general theory we refer to the works [1], [8], and [14] on Bergman
spaces.

We showed in [4] (Theorem 2.1) that the scalar product of an analytic
function f ∈ A, and an elementary rational function ra,m (a ∈ D,m = 1, 2)
can be expressed in an explicit form:

(1.3) 〈f, ra,1〉 = f (−1)(a), 〈f, ra,2〉 = f(a) (f ∈ A, a ∈ D) ,

where

(1.4) f (−1)(0) := f(0), f (−1)(z) :=
1

z

∫ z

0

f(ζ) dζ (z ∈ D, z �= 0, f ∈ A) .

Let the finite system of distinct nodes a1, a2, . . . , aN ∈ D be fixed. Set

R2 := span{raj ,2 : j = 1, 2, . . . , N},
R1,2 := span{raj ,1, raj ,2 : j = 1, 2, . . . , N} .

(1.5)
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R2 is an N dimensional, and R1,2 is a 2N dimensional subspace of rational
functions. By (1.3) we have that the orthogonal projection P2 : A → R2

can be characterized by Lagrange type interpolation properties. Namely, the
following three properties are equivalent

i) f − P2f⊥R2 , ii) 〈f − P2f, raj ,2〉 = 0 , iii) (P2f)(aj) = f(aj)

(f ∈ A, j = 1, 2, . . . , N). In [4] we constructed an orthogonal basis in the
subspace R2 by means of which the properties and the applications of the
projection P2 were investigated there. It turned out that the basis functions,
that can be considered as the two dimensional analogues of the Malmquist–
Takenaka functions, enjoy interesting interpolation properties. In this paper
we carry out a similar program for the projection P1,2, and the subspace R1,2.

It follows from (1.3) that the orthogonal projections P1,2 : A → R1,2 can be
characterized by Hermite type interpolation conditions. Indeed, the following
conditions are equivalent for any f ∈ A

i) f − P1,2f⊥R1,2 ,

ii) 〈f − P1,2f, raj ,1〉 = 0, 〈f − P1,2f, raj ,2〉 = 0 ,

iii) (P1,2f)
(−1)(aj) = f (−1)(aj), (P1,2f)(aj) = f(aj)

(1.6)

(j = 1, 2, . . . , N).

Based on this equivalence we consider Hermite–Fejér type interpolation
problems in which the values of f (−1), and f rather than those of f, and
f ′ = f (1) are prescribed at the points a1, a2, . . . , aN . Moreover, rational func-
tions belonging to R1,2 are taken instead of polynomials. Since by (1.6) this
interpolation problem can be reformulated for orthogonal projections, we will
consider the representations of the projections P1,2 first.

In Section 2. we construct an orthogonal basis, called planar Malmquist–
Takenaka system (PMT), in R1,2 by applying Schmidt orthogonalization for
the elementary rational functions that generate the space. In Section 3. we
are concerned with the construction of the Hermite–Fejér type basic interpola-
tion functions. In Section 4 we present numerical tests for demonstrating the
effectiveness of the interpolation method.

2. Orthogonal projections

Two representations for the orthogonal projections P1,2 : A → R1,2 will
be provided in this section. One in the basis of the original elementary ra-
tional functions, the other one in the corresponding orthogonal basis. These
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representations will be applied in Section 3 for the construction of the basic
interpolation functions in the basis of the elementary rational functions. Let
the functions generating the subspace R1,2 be indexed as follows

(2.1) Rk := rak,1 , Rk+N := rak,2 (k = 1, 2, . . . , N) .

The orthogonal projection

(2.2) P1,2f :=

2N∑
k=1

xkRk

is characterized by the condition 〈f − P1,2f,Rk〉 = 0 (k = 1, 2, . . . , 2N). In
connection with biorthogonal expansions we refer to [7]. By (2.2) we have that
the coefficients xk of the projection satisfy the linear system of equations

(2.3)

2N∑
k=1

xk〈Rk,Rn〉 = 〈f,Rn〉 (n = 1, 2, . . . , 2N) .

In [4] we solved the corresponding equation in the case when the multiplicity of
the poles is 2. The proof presented below is organized in a similar way as the
one in [4]. Also, we adapt the notations used there. The reason was to make
it easy to compare the two cases.

Since the functions Rk (1 ≤ k ≤ 2N) are linearly independent we have
that the self adjoint Gram–matrix

Cn :=

⎛⎜⎜⎜⎝
〈R1,R1〉 〈R2,R1〉 · · · 〈Rn,R1〉
〈R1,R2〉 〈R2,R2〉 · · · 〈Rn,R2〉

... · · ·
...

〈R1,Rn〉 〈R2,Rn〉 · · · 〈Rn,Rn〉

⎞⎟⎟⎟⎠
is regular for every n ∈ N∗. By (1.3), (1.4), and (2.1) it is easy to see that the
equations

(2.4)

〈f,Rn〉 = f (−1)(an) ,

R
(−1)
k (z) = − log(1 − akz)

akz
,

〈f,Rn+N 〉 = f(an) ,

R
(−1)
k+N = Rk

hold for every n = 1, 2, . . . , N and z ∈ D. Introducing the functions

(2.5) s0(z) := − log(1 − z)

z
, sk(z) =

1

(1 − z)k
(z ∈ D, k ∈ N∗)
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the entries γkn := 〈Rk,Rn〉 (1 ≤ k, n ≤ 2N) of the matrix C2N can be written
in the following convenient form

(2.6) γk+iN,n+jN = 〈Rk+iN ,Rn+jN 〉 = si+j(akan)

(1 ≤ k, n ≤ N, i, j = 0, 1) .
Then projection P1,2f can be received by solving the linear system of equations
(2.3). In the space R1,2 we can construct an orthonormal basis by using
Schmidt–orthogonalization or the Householder–algorithm. Then the projection
is nothing but the Fourier–partial sum with respect to the given orthonormal
system.

The result of the Schmidt orthogonalization process applied for the linearly
independent system (Rk, 1 ≤ k ≤ 2N) with the scalar product (1.2) is Ma

n =
Mn (1 ≤ n ≤ 2N) which is the two dimensional analogue of the Malmquist–
Takenaka system. Therefore this system will be referred to as PMT system,
where P stands for planar. It is unfortunate that unlike the one dimensional
case the members of the PMT system can not be given in an explicit form.
It is known that the PMT system generated from (Rn, n ∈ N) by Schmidt–
orthogonalization can be characterized by the following two properties

i) span{Ri : 1 ≤ i ≤ n} = span{Mi : 1 ≤ i ≤ n} ,
ii) 〈Mi,Mj〉 = δij (1 ≤ i, j ≤ 2N) .

(2.7)

The relation in i) implies that there exist unique numbers

αnj , βnj (1 ≤ j ≤ n) , αnn > 0 , βnn > 0 (n ∈ N∗)

such that

(2.8) Mn =

n∑
j=1

αnjRj , Rn =

n∑
j=1

βnjMj (n ∈ N) .

Hence we have

(2.9) βnk = 〈Mk,Rn〉 =
k∑

j=1

αkjγjn (1 ≤ k ≤ n) .
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Let us introduce the triangular matrices An, Bn ∈ Cn×n as follows

An : =

⎛⎜⎜⎜⎝
α11 0 0 · · · 0
α21 α22 0 · · · 0
... . . · · ·

...
αn1 αn2 αn3 · · · αnn

⎞⎟⎟⎟⎠ ,

Bn : =

⎛⎜⎜⎜⎝
β11 0 0 · · · 0
β21 β22 0 · · · 0
... . . · · ·

...
βn1 βn2 βn3 · · · βnn

⎞⎟⎟⎟⎠ .

By definition we have A−1
n = Bn . We note that this sequence of matrices can

be calculated recursively by means of (2.9). Indeed, we have

M1 = R1/‖R1‖ , ‖R1‖ =
√
s0(|a1|2) = β11 = 1/α11 ,

and let us suppose that the matrices An−1, Bn−1 have already been deter-
mined. For indices k < n the numbers βnk can be calculated by (2.9). Then
βnn > 0 follows from the decomposition of Rn in (2.8):

|βnn|2 = 〈Rn,Rn〉 −
n−1∑
k=0

|βnk|2 > 0 .

This way we obtain the nth row of the matrix Bn. Hence An can be received
by inversion.

We note that the solution of the equations

(2.10) αnn = 1/βnn ,

n∑
j=k

αnjβjk = 0 (k = n − 1, n − 2, . . . , 1)

yields the nth row of An. These equations can be deduced from AnBn = En,
where En ∈ Cn×n is the unit matrix.

It is clear that (2.9) is equivalent to the condition

(2.11) B∗n = AnCn , or in other form Cn = BnB
∗
n (n ∈ N) .

Consequently, the inverse of Cn can be expressed by An = B−1
n :

(2.12) C−1
n = A∗nAn .

Hence we can infer that the solution of the equation (2.3) can explicitly be
given. Then by (2.2) we have the decomposition of the projection Sa

nf in
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the basis Ra
k (0 ≤ k ≤ 2N). For the scalar products on the right sides of the

equations in (2.3) we can use the formulas in (2.4) that involve the values of
f and f (−1) taken only at the points aj (j = 1, 2, . . . , N). This implies that
no integration is needed for the calculation of the orthogonal projection Sa

nf.

Using the PMT system the orthogonal projection Sa
nf can be understood

as the partial sum of the Fourier series:

Sa
nf =

n∑
k=1

〈f,Ma
k〉Ma

k (1 ≤ k ≤ 2N) .

By (2.8) we have that the Fourier coefficients with respect to the PMT system
can be written as

〈f,Ma
k〉 =

k∑
j=0

αkj〈f,Ra
j 〉 .

Then it follows from (2.4)

〈f,Ma
k〉 =

k∑
j=1

αkj f
(−1)(aj) (1 ≤ k ≤ N) ,

〈f,Ma
k〉 =

N∑
j=1

αkj f
(−1)(aj) +

k∑
j=N+1

αkjf(aj) (N ≤ k ≤ 2N) .

3. Basic interpolation polynomials

It is known (see e.g. [3], [10]) that the classic Hermite-Fejér interpolation
polynomials are of special importance in both the theory and the application
of approximation theory. In this section we are concerned with the following
Hermite–Fejér type interpolation problem with respect to rational functions:
Let the nodes a1, a2, . . . , aN ∈ D and numbers y1, y2, . . . , y2N ∈ C be given.
Find the function f ∈ R1,2 for which

(3.1) f (−1)(an) = yn , f(an) = yN+n (n = 1, 2, . . . , N)

holds. If the function is written in the form

(3.2) f =

2N∑
k=1

xkRk
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then it follows from (2.4) that (3.1) is equivalent to

yn = f (−1)(an) = 〈f,Rn〉 =
2N∑
k=1

xk〈Rk,Rn〉 (1 ≤ n ≤ N),

yn+N = f(an) = 〈f,Rn+N 〉 =
2N∑
k=1

xk〈Rk,Rn+N 〉 (1 ≤ n ≤ N).

Set

x2N :=

⎛⎜⎜⎜⎝
x1

x2

...
x2N

⎞⎟⎟⎟⎠ , y2N :=

⎛⎜⎜⎜⎝
y1
y2
...

y2N

⎞⎟⎟⎟⎠ .

By the definition and of C2N and by (2.12) this system of equation can be
written in the following form

(3.3) x2N = C−1
2Ny2N = A∗2NA2Ny2N .

Let Hn (1 ≤ n ≤ 2N) stand for the Hermite–Fejér basic functions. They are
defined by the conditions

H(−1)
n (ak) = δkn , HN+n(ak) = δkn (1 ≤ k ≤ N) ,

where δkn is the Kronecker symbol. Let ek = (δk,2N , k = 1, 2, . . . , 2N)T

denote the canonical basis of the space C2N . Then the basic functions Hn can
be decomposed in the basis formed by the elementary rational functions:

Hn =

2N∑
k=1

hn
kRk (1 ≤ n ≤ 2N) ,

where
hn = C−1

2Ne2N (1 ≤ n ≤ 2N)

holds true for the coefficients hn := (hn
1 , h

n
2 , . . . , h

n
2N )T . By means of the basic

Hermite–Fejér functions we introduce the operators

F1
nf =

N∑
k=1

f (−1)(ak)Hk , F2
nf =

N∑
k=1

f(ak)HN+k (f ∈ A) ,

which are the analogues of the operators used in the original Hermite–Fejér
interpolation process.

It is known that with special choice of the nodes, for example with Cheby-
shev abscissas, the Hermite–Fejér interpolation process converges uniformly for
every continuous function. This implies the question: Under what combina-
tions of nodes will the F1

nf process have such good approximation properties?
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(a) f(z) = (1− bz)2 (b) f(z) = Bb(z)

(c) f(z) = log(1− bz) (d) f(z) = cos(z)

Figure 1: Overview of ‖.‖∞ approximation errors.

4. Numerical tests

In this section we show some test results. Our aim was twofold. Namely,
we wanted to demonstrate the good approximation properties of the projec-
tions generated by rational function systems considered above, and to make
comparison with the construction given in [4]. Recall that in [4] every pole was
of order two while in this paper the poles that generate the system had poles
both of order one and two. According to this purpose we used the same test
functions and basic pole configurations as in [4].

Let the function R0(z) := 1 (z ∈ D) that corresponds to the inverse pole
a0 := 0 be added to the system (Rk, 1 ≤ k ≤ 2N) introduced in Section 2.
Then also the functions that do not vanish at 0 can be represented. By the
scalar product (1.2) the orthogonal projection onto the subspace spanned by the
system is given in (2.2). The xk coefficients in (2.2) is calculated numerically
from the system of linear equations (2.3). The test functions used are:

f1(z) = (1− bz)2 , f2(z) =
z − b

1 − bz
= Bb(z) ,

f3(z) = log(1 − bz) , f4(z) = cos z ,
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(a) f(z) = (1− bz)2 (b) f(z) = Bb(z)

(c) f(z) = log(1− bz) (d) f(z) = cos(z)

Figure 2: Overview of ‖.‖∞ approximation errors of f (−1).

where b = 0.5, and Bb is the Blasckhe-function.

The inverse poles 0 = a0, . . . , aN were distributed uniformly on concentric
circles around the origin according to the pseudo-hyperbolic distance

ρ(z, w) = |Bz(w)|

as follows

a2k−1+j = rke
ı2π j

2k ,

where 0 ≤ k < K ∈ N+, 0 ≤ j < 2k, N = 2K − 2, and ρ(rk, rk+1) = R
(0 ≤ k < K − 1). These pole combinations are justified by their role in the
construction of hyperbolic wavelets [11], [12], [13]. The tests were performed
for the values K = 2, 3, 4, 5, and R = 0.05, 0.1, . . . , 0.3.

On Figure 1. the error

(4.1) ‖fl − Sa
2Nfl‖∞ (l = 1, 2, 3, 4)

is displayed for the different values of the parameters R, and K. The errors are
approximated by uniformly sampling the error function on the unit circle and
taking the maximum of the sampled values. We note that by the maximum
modulus principle it is sufficient to consider the unit circle.
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(a) f(z) = (1− bz)2 (b) f(z) = Bb(z)

(c) f(z) = log(1− bz) (d) f(z) = cos(z)

Figure 3: Comparison of ‖.‖∞ approximation errors.

Similarly, on Figure 2. the approximation of the error

(4.2) ‖f (−1)
l − (Sa

2Nfl)
(−1)‖∞ (l = 1, 2, 3, 4)

of the integral functions are shown.

On Figure 3. we compare the method presented here with the one discussed
in [4]. Each cell corresponds to a pole configuration. The shading of the
cell represents the magnitude, while the sign indicates the direction of the
difference. A minus sign means the error of the method proposed here is smaller.
We note, that only the function values are compared here, as the system in [4]
does not approximate the integrals.

We can conclude that the system generated by poles of order one and two
can approximate both the value and the integral of a given analytic function.
Using this system compared to the one proposed in [4] can in some cases result
in an insignificant increase of the approximation error in terms of the function
values, but in most cases it outperforms the one in [4] even in this sense.
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[3] Fejér, L., Über Interpolation, Göttinger Nachrichten, (1916), 66–91.

[4] Fridli, S., Z. Gilián and F. Schipp, Rational orthogonal systems on
the plane, Annales Univ. Sci, Budapest, Sect. Comp., 39 (2013) 63–77.
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Eötvös Loránd University
H-1117 Budapest, Pázmány Péter sétány 1/C
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