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Abstract. In this paper we study the details of sieving for Cunningham
chains of the first kind of length 3. To find such prime triplets larger than
the ones already known, we have to investigate the primality of 237 num-
bers, each in the magnitude of 234944 (more than 10 500 decimal digits).
This would not be feasible if it weren’t for the sieving process which re-
duces the estimated time of completion to only a few weeks on a grid or a
supercomputer with multiple cores.

1. Introduction

The goal of our research group led by Antal Járai is to set new prime
records, by developing effective computer programs which are able to find just
a few probable primes and prove their primality. Usually we look for special
prime combinations, e. g. twin primes, Sophie Germain primes and now we
are looking for Cunningham chains. Since 2005 we set six world records, more
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precisely, three by finding the largest known twin prime pairs [5, 7, 9] and three
by finding largest known Sophie Germain primes [8, 10, 11].

A prime-searching project always starts with the process of sieving. We
start with a large set of integers, and remove most of them by sieving out the
ones with small prime factors. The remaining integers are more likely to be
prime, and the primality tests are only executed on them. That is why the
initial numbers are called “candidates”.

A Cunningham chain of the first kind of length k is a sequence p1, p2, . . . , pk
of prime numbers, where p = p1 and pi+1 = 2pi + 1, for 1 ≤ i < k, that is:

{p, 2p+ 1, 4p+ 3, 8p+ 7, ..., 2k−1p+ (2k−1 − 1)}.

For example {2, 5, 11, 23, 47} is a Cunningham chain of the first kind of length
5. Let us observe that a Sophie Germain prime is the first member of a Cun-
ningham chain of the first kind of length 2.

In this paper we focus our attention on the Cunningham chains of the first
kind of length 3. In March 2013 the largest known prime combination of this
kind has 10 477 decimal digits, more precisely the third element of this chain
is 914546877 · 234774 − 1. Our goal is to set a new world record by finding even
larger primes, so we have to produce candidates with at least 10 500 decimal
digits. Since we are looking for prime-triplets, we use the triple sieve method
described below.

2. The generator polynomials

Let us consider the following three linear polynomials with positive integer
coefficients:

f1(x) = (h0 + c · x) · 2e − 1,

f2(x) = (h0 + c · x) · 2e+1 − 1,

f3(x) = (h0 + c · x) · 2e+2 − 1.

Using f1, f2, f3 we generate three series of positive integers from the set
{0, 1, 2, . . . H − 1}. Let us observe that

f2 = 2f1 + 1 and f3 = 2f2 + 1 = 4f1 + 3.

This means if f1(h), f2(h), f3(h) are simultaneously prime for a natural number
h, than we get a Cunningham chain of length 3 of the first kind.
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Since we do not want to sieve with primes 2, 3, 5, 7, 11, 13, we should have
c = 2 · 3 · 5 · 7 · 11 · 13 = 30030. Let us consider the following linear congruence:

(2.1) f1(x) = (h0 + c · x) · 2e − 1 ≡ 0 (mod p),

for p > 13 prime. From this we get that

c · x · 2e ≡ −h0 · 2e + 1 (mod p).

Since (c · 2e, p) = 1, the above congruence has exactly one solution, the excep-
tions being of course p = 2, 3, 5, 7, 11, 13 for which there are no solutions. We
can carry out the same calculations for f2 and f3 too.

A potential decrease in efficiency of the sieve would be the existence of a
sieving prime p > 13, which divides more than one of the numbers f1(h), f2(h)
and f3(h) for some integer h ∈ [0, H). It is easy to prove, that this situation can
not arise, because if there exists an integer h ∈ [0, H) that satisfies f1(x) ≡ 0
(mod p) and f2(x) ≡ 0 (mod p) simultaneously, the following would be also
true:

p | f2(h) − f1(h) = (h0 + c · h) · 2e.
But (2.1) implies that p|1, which is a contradiction. Extending this idea to
the other polynomials it can be shown, that for every prime p > 13, the three
congruences f1(x) ≡ 0 (mod p), f2(x) ≡ 0 (mod p) and f3(x) ≡ 0 (mod p)
always have three different solution. This observation is important because
sieving with one prime can always eliminate three different candidates which
are composite, thus increasing the effectiveness of the sieve.

3. Theoretical background

In this section we describe how we chose the parameters for the sieve. First
of all we compute the expected value of the number of Cunningham chains.
Then we determine the compression factor of the triple sieve, and this provides
us with an approximate value for the number of candidates which are tested
for primality.

3.1. The expected value of the number of Cunningham chains

During the calculations we use the Bateman-Horn conjecture and Riesel
theorem which can be found in [13], so in this paper we do not give the full
presentation of these notions.



218 G. Farkas and E. Vatai

In the last seven years we have been searching for prime pairs (twin primes
and Sophie Germain primes), and now we would like to find one or more prime-
triplets which are even more infrequent then prime pairs. As a result, we have
to increase the initial value of H (the number of candidates) and this causes
some problems for the sieving algorithm. The solution for these problems is
discussed in section 4. Naturally the number of primality tests to be executed
also increase. In this project we choose H = 237.

In accordance with the Riesel test, we have h0 = 5775. The parameter e
sets the magnitude of the candidates, so having e = 34 944 means that the
numbers investigated have more than 10 500 decimal digits.

In this case we can estimate the probability of f1(h), f2(h) and f3(h) being
simultaneously prime with the following formula:

Cf1,f2,f3

ln(f1(h)) ln(f2(h)) ln(f3(h))
.

Since we carried out the sieving with linear polynomials, we can compute
Cf1,f2,f3 easily from

C3 =
∏
p>3

1 − 3/p

(1 − 1/p)3
∼ 0.6351664804.

Let us observe that if the first sieving prime is 17, then for

C =
∏

17>p∈P

(
1 − 1

p

)−3

we get that

Cf1,f2,f3 = C ·
∏

17≤p∈P

1 − 3/p

(1 − 1/p)
3 ,

which implies that

Cf1,f2,f3 =
C3(

1 − 1
2

)3 ·
(
1 − 1

3

)3 ·
(
1 − 3

5

)
·
(
1 − 3

7

)
·
(
1 − 3

11

)
·
(
1 − 3

13

) .
Finally we get that

Cf1,f2,f3 ∼ 134.1144099.

Now we can compute the expected value πf1,f2,f3(a, b) of the number of
integers h ∈ [a, b) for which f1(h), f2(h) and f3(h) are simultaneously prime:

πf1,f2,f3(a, b) ∼ Cf1,f2.f3 ·
b∫

a

du

ln(f1(h)) ln(f2(h)) ln(f3(h))
.
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For estimating the above integral we can use Simpson’s rule because the values
of f1(h), f2(h) and f3(h) are large, so their logarithms are almost constant.
Let

g(h) =
1

ln(f1(h)) ln(f2(h)) ln(f3(h))
.

Then we get that

πf1,f2,f3(a, b) ∼ Cf1,f2,f3 · H
6

·
(
g(a) + 4g

(
a+ b

2

)
+ g(b)

)
.

Substituting the concrete values we can compute the number of Cunningham
chains of the first kind of length 3 we can expect.

πf1,f2,f3(0, H) ∼ 134.1144099 · 2
37

6
·

· (0.7029147908 + 4 · 0.7006047545 + 0.7005446987) · 10−13 ∼
∼ 1.292084021.

This means that the expected value of the number of prime-triplets found is
more than one.

3.2. The compression factor of the sieve

We can compute that before sieving every j-th number is probably a mem-
ber of a Cunningham chain of length 3, for

j =
H

πf1,f2,f3(0, H)
= 106 369 981 600 .

Let us investigate how can the Cunningham chains density in the set of candi-
dates be increased by sieving. For this we use the method described in [13], so
we get the compression factor from the following formula:

(3.1) qa,b3 =
∏

a≤p<b

1

1 − 3
p

.

We compute the exact value of the product up to the prime L = 1000 003,
and from L to the largest sieving prime (PL ∼ 248) we use the approximation

∏
L≤p<PL

1

1 − 3
p

∼
(
ln(PL)

ln(L)

)3

.
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So we get that the compression factor of the triple sieve is

(3.2) q17,PL

3 =
∏

17≤p<PL

1

1 − 3
p

∼
∏

17≤p<L

1

1 − 3
p

·
(
ln(PL)

ln(L)

)3

.

After the substitution the result is

q17,PL

3 ∼ 1551.743160.

Thus after sieving, the number of candidates would be reduced from H to

H

q17,PL

3

∼ 88 570 684,

and divided by the expected value calculated above, we get that after the triple
sieve the number of expected candidates for Cunningham chains of the first kind
of length 3 is

H

q17,PL

3 · πf1,f2,f3(0, H)
∼ 68 548 703.

4. Sieveing details

The sieving of the candidates is done in two phases. As mentioned earlier
we need primes up to PL ∼ 248 and producing these primes is the first phase of
the process. This is done using the usual sieve of Eratosthenes, which produces
the small primes (p < 224) and the large primes (224 < p < 248). There are
numerous ways of optimizing this sieve (see [12]), but it is not as important as
the second phase.

The second phase is sieving the candidates, eliminating the h ∈ [0, H)
integers for which fi(h) yields a composite. Up until now, in similar projects,
the sieve table containing the candidates was much smaller, and the sieving
approach was to put the large primes into so called prime sieve tables, which
can be generated on separate computers (nodes). The first node would sieve the
candidates with the small primes, and send a list of the remaining candidates
to the other nodes. Each node would sieve this list with the primes from its
prime sieve table. After all nodes finished, the partial sieving results would be
merged into the list of potential primes meant for the Fermat test.

But now we have a set of H = 237 candidates, which is represented by 128
Gbits, that is 32Gbytes. This amount of RAM can not be found in computers
at our disposal and transmitting such amount of data would waste a lot of time.
There were different approaches to compress the sieve table e. g. switching



Cunningham chains of length 3 221

from a bit table representation to an array of integer values, but this would
still be quite slow due to the vast amount of candidates. However, this is the
scenario where the inverse sieve [14] can be beneficial.

The absolute number of candidates left after sieving with small primes is
very big, however it is quite small compared to the sieve table. In other words
the sieve table becomes very sparse after sieving with small primes because
of the triple sieve (and the plethora of small primes). As a direct result, the
probability of a large prime eliminating a candidate which hasn’t already been
eliminated is very small, and this is exploited by the inverse sieve.

The idea behind the inverse sieve, is to “smear” the bits left in the sieve
table, and represent these smears in a compressed bit table. Of course, it is most
efficient to shrink the table by a power of two e. g. shrinking the 32Gbyte table
by 16 reduces it to a 2Gbyte table which can fit in most of today’s computer’s
RAM. Shrinking by 16 is done, by dividing the original sieve table into 16 bit
segments and each segment containing at least one potential prime would be
represented by 1 (this is a smear) and each segment containing only composites
would be represented by 0.∗

After receiving the compressed smear table the nodes can sieve with their
prime sieve table, i. e. large primes. The offset in the smear table can be easily
obtained by a binary shift operation. If the bit in the compressed table at
that offset is 0, then the actual offset would sieve in a segment which contains
only 0’s, that is candidates already eliminated by small primes. These offsets
can be discarded†, and using this method the only offsets remaining are ones
which could (potentially) eliminate some of the candidates from the sieve table.
Hopefully most of the offsets are be discarded. The remaining offsets are sent
back to the first node where they can be merged with the results from the other
nodes. This method is especially useful when sieving with primes 237 < p < 248,
because these primes produce at most one offset in the sieve table, and if it is
not near a potential prime, it can be thrown away all together.
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