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Abstract. Visual words have recently proved to be a key tool in image
classification. Best performing Pascal VOC and ImageCLEF systems use
Gaussian mixtures or k-means clustering to define visual words based on
the content-based features of points of interest. In most cases, Gaussian
Mixture Modeling (GMM) with a Fisher information based distance over
the mixtures yields the most accurate classification results.
In this paper we overview the theoretical foundations of the Fisher kernel
method. We indicate that it yields a natural metric over images character-
ized by low level content descriptors generated from a Gaussian mixture.
We justify the theoretical observations by reproducing standard measure-
ments over the Pascal VOC 2007 data. Our accuracy is comparable to the
most recent best performing image classification systems.
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1. Introduction

Image classification consists of assigning one or multiple labels to an image
based on its semantic content. Although much progress has been made, in
particular in the context of the PASCAL VOC [9] and ImageCLEF evaluation
campaigns [16], the problem remains challenging. Several approaches model
the distribution of low level features: bag of keypatches [7] or bag of visual
terms [15], irrespective of their absolute or relative location. Categorization
requires the estimation of the visual vocabulary, which is typically done by
k-means [22, 7, 23], Gaussian Mixture Modeling (GMM) [18], mean-shift [14]
or LDA [10].

Following the work of Jaakkola and Haussler [12], Perronnin and Dance [17]
introduced Fisher kernels over a Gaussian mixture generative image model.
The starting point of our experiments is the Perronnin-Dance method that
proved to be very powerful especially for concept type classes, including best
performance at the ImageCLEF and PASCAL VOC classification tasks [1, 19,
5]. In this paper we thoroughly define the generative model used in recent
image classification systems and indicate why Fisher kernels capture a natural
metric over the models. We give the theoretical background in Section 2. In
Section 3 we describe our own experiments over the Pascal VOC 2007 data.

2. Generative image models, Fisher kernel and the Fisher metric

Powerful methods for image similarity and classification are based on a
generative content model. Image regions or points of interest are generated
from a Gaussian mixture as seen in Fig. 1. In this section we show why the
Fisher distance is a natural metric to measure image dissimilarity under the
above generative model. The model assumes that the D dimensional low level
image descriptors originate from the mixture of N Gaussian distributions. We
may think of these Gaussians (denoted by N1, ...,NN ) as clusters.

Generative probability models (such as hidden Markov models) and dis-
criminative approaches (such as support vector machines) are very important
tools in the area of statistical classification of various types of data. Jaakkola
and Haussler [12] proposed a remarkable and highly successful approach to
combine the two, somewhat complementary approaches. Kernel methods for
discriminative classification employ a real valued kernel function K to measure
the similarity of two examples X,Y in terms of the value K(X,Y ). In many
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Figure 1. In the naive independence model, image regions are generated inde-
pendent of each other according to the Gaussian mixture P (X|θ).

cases the kernel can actually be viewed as an inner product:

K(X,Y ) = φT
XφY ,

where the feature vectors φX , φY ∈ Rk are obtained via a fixed, problem specific
mapX !→ φX which describes the examplesX in terms of a real vector of length
k.

The main innovation of Jaakkola and Haussler [12] is to obtain the kernel
function directly from a generative probability model and therefore obtain a ker-
nel quite closely related to the underlying model. They consider a parametric
class of probability models P (X|θ) where θ ∈ Θ ⊆ Rl for some positive inte-
ger l. In the image content generative model (Fig. 1) P (X|θ) is given by N
Gaussians N(μi, σi) with weights wi for i = 1,. . . ,N .

Provided that the dependence on θ is sufficiently smooth, the collection of
models with parameters from Θ can then be viewed as a (statistical) mani-
fold MΘ. MΘ can be turned into a Riemannian manifold∗ [13] by giving a
scalar product at the tangent space of each point P (X|θ) ∈ MΘ via a positive
semidefinite matrix F (θ), which varies smoothly with the base point θ. Such
positive semidefinite matrices are provided by the Fisher information matrix

F (θ) := E(∇θ logP (X|θ)∇θ logP (X|θ)T ),

∗A Riemannian manifold M is a smooth real manifold, where for each point p ∈ M there
is an inner product defined on the tangent space of p. This inner product varies smoothly
with p. One can define the length of a tangent vector via this inner product on the tangent
space. This makes possible to define the length of a curve γ(t) on M by integrating the
length of the tangent vector γ̇(t). This in turn allows to define a metric on M . The distance
between two points Q and Q′ is just the length of the shortest curve on M from Q to Q′.
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where the gradient vector ∇θ logP (X|θ) is

∇θ logP (X|θ) =
(

∂

∂θ1
logP (X|θ), . . . , ∂

∂θl
logP (X|θ)

)
,

and the expectation is taken over P (X|θ). In particular, if P (X|θ) is a proba-
bility density function, then the ij-th entry of F (θ) is

fij =

∫
X

P (X|θ)( ∂

∂θi
logP (X|θ))( ∂

∂θj
logP (X|θ))dX.

The vector UX = ∇θ logP (X|θ) is called the Fisher score of the example X.

Now the mapping X !→ φX of examples to feature vectors can be X !→ F−
1
2UX

(we suppressed here the dependence on θ). Thus, to capture the generative
process, the gradient space of the model spaceMΘ is used to derive a meaningful
feature vector. The corresponding kernel function

K(X,Y ) := UT
XF−1UY

is called the Fisher kernel.

An intuitive interpretation is that UX gives the direction where the pa-
rameter vector θ should be changed to fit best the data X (see Section 2 in
[17]).

2.1. Fisher distance: a univariate Gaussian example

The question arises why we use the Fisher metric on Θ instead of e.g. the
Euclidean distance inherited from the ambient space Rl? As a first step in
discussing this issue, we follow [6] to consider the family of univariate Gaussian
probability density functions

f(x, μ, σ) =
1√
2πσ

exp

(
−(x − μ)2

2σ2

)
,

parameterized by the points of the upper half-plane H of points (μ, σ) ∈ R2

with σ > 0. Fix values 0 < σ1 < σ2 and μ1 < μ2. The Euclidean distance
of A = (μ1, σ1) and B = (μ2, σ1) is μ2 − μ1, the same as the distance of
C = (μ1, σ2) andD = (μ2, σ2). At the same time, an inspection of the graphs of
the density functions shows† that the dissimilarity of the distributions attached
to C andD is smaller than the dissimilarity of the distributions with parameters
A and B. This suggests that a distance reflecting the dissimilarity of the

†Let fA, fB , fC , fD be the density functions corresponding to A,B,C,D and let I be a
small interval close to μ2. Then

∫
I |fC − fD|dx will be smaller than

∫
I |fA − fB |dx.
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distributions is not the Euclidean one. It turns out that the Fisher distance
reflects dissimilarity much better in this case. In fact, the Fisher distance
dF (P,Q) of two points P = (μ1, σ1) and Q = (μ2, σ2) is related nicely to the
hyperbolic distance dH(P,Q) measured in the Poincaré half-plane model of
hyperbolic geometry (formula (4) in [6]):

dF (P,Q) =
√
2dH

((
μ1√
2
, σ1

)
,

(
μ2√
2
, σ2

))
.

The significance of Fisher metric is highlighted by a fundamental result of
N. N. C̆encov [3] stating that it exhibits an invariance property under some
maps which are quite natural in the context of probability‡. Moreover it is
essentially the unique Riemannian metric with this property. This invariance
property is discussed in Campbell [2] and it is extended by Petz and Sudár to a
quantum setting [20]. We remark here that in the work [2] Campbell refers to
the monograph [8] by János Aczél and Zoltán Daróczy as the primary source
on information measures. Thus, one can view the use of Fisher kernel as an
attempt to introduce a natural comparison of the examples on the basis of the
generative model (see Section 4 in [12]).

2.2. The Fisher metric over general distributions

The Fisher metric over the Riemannian space

Δ = {(p1, . . . , pn); pi ≥ 0,
∑

pi = 1} ⊆ Rn

of finite probability distributions (p1, p2, . . . , pn) has a beautiful connection to
the metric of the sphere S ⊆ Rn of points (x1, . . . , xn) with

∑
i x

2
i = 4. This

goes back to Sir Ronald Fisher and is discussed in [2], [11] and [20]. A point
(p1, . . . , pn) of the probability simplex Δ corresponds to a unique point of the
positive “quadrant” of S+ of S via 4pi = x2

i , i = 1, 2, . . . , n. This is actually
an isometry if one considers the spherical metric on S+. In fact, let x(t) be a
curve on S+. Then the squared length of the tangent vector to x(t) is

‖ẋ(t)‖2 =

n∑
i=1

(ẋi(t))
2 =

n∑
i=1

((2
√
pi(t))

′)2 =

=

n∑
i=1

(
ṗi(t)√
pi(t)

)2

=

n∑
i=1

pi(t)((log pi(t))
′)2,

‡These maps are congruent embeddings by Markov morphisms.
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which is the squared length of ṗ(t) in the Fisher metric on Δ. The Fisher
distance dF (P,Q) between probability distributions P = (p1, . . . , pn) and Q =
= (q1, . . . , qn) can then be calculated along a great circle of S. It will be

dF (P,Q) = 2 arccos

(
n∑

i=n

√
piqi

)
.

2.3. The Fisher metric over Gaussian mixtures: the image classifi-
cation setup

For classification tasks Perronnin and Dance [17] proposed the Fisher metric
over the Gaussian mixture image content generative model as a content based
distance between two images. Let X = x1, .., xT be a set of samples extracted
from a particular image IX . In the naive independence model, the probability
density function of X is equal to

(2.1) P (X|θ) = ΠT
t=1P (xt|θ).

We obtain that the Fisher score of X is a sum over the Fisher scores of the
samples of X

UX = ∇θ logP (X|θ) = ∇θ

T∑
t=1

logP (xt|θ).

The GMM assumption means that

P (xt|θ) =
N∑
i=1

wiPi(xt|θ),

where (w1, . . . , wN ) is a finite probability distribution and Pi is the density
of Ni, a D dimensional Gaussian distribution with mean vector μi ∈ RD and
diagonal covariance matrix with diagonal σi ∈ RD.

By introducing the occupancy probability

γt(i) = P(i|xt, θ) =
wiPi(xt|θ)∑N

j=1 wjPj(xt|θ)
,
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Figure 2. In this variant of the naive independence model, image regions are
generated by first selecting one component of the mixture from a discrete distri-
bution and then the low level descriptors are given by the selected multivariate
Gaussian N(μi, σi).

the following formulae are obtained in [17] for the final gradients:

∂ logP (X|θ)
∂wi

=

T∑
t=1

[
γt(i)

wi
− γt(1)

w1
],(2.2)

∂ logP (X|θ)
∂μd

i

=

T∑
t=1

γt(i)[
xd
t − μd

i

(σd
i )

2
],(2.3)

∂ logP (X|θ)
∂σd

i

=

T∑
t=1

γt(i)[
(xd

t − μd
i )

2

(σd
i )

3
− 1

σd
i

],(2.4)

where in the first equation (2.2) we consider i > 1 only, since
∑

i wi = 1. The
superscript d refers to the d-th coordinate of a vector from RD.

Despite the compact form of the above derivatives, the computation of the
Fisher information remains a challenging problem. To overcome this difficulty,
Perronnin and Dance further simplified the naive independence model of Fig. 1
as follows. In the model illustrated in Fig. 2, they assume that the sample xt for
image region t ∈ {1, . . . , T} is generated by first selecting one Gaussian Nj from
the mixture according to the distribution (w1, . . . , wN ) and then considering xt

as a sample from Nj . In other words, they assume that the distribution of the
occupancy probability is sharply peaked [17], resulting in only one Gaussian
per sample with non-zero (≈ 1) occupancy probability. They also assume that
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T , the number of regions generated for an image, is constant. We note that
the assumptions on sharp peaks and a constant T are not entirely valid in our
experiments, nevertheless we used the above formulas.

The final representation of image IX is

(2.5) GX = F−
1
2UX .

For this computation in practice a diagonal approximation of F is used.
The diagonal terms of this approximation are

fwi ≈ T (
1

wi
+

1

w1
);(2.6)

fμd
i

≈ Twi

(σd
i )

2
;(2.7)

fσd
i

≈ 2Twi

(σd
i )

2
.(2.8)

For images IX , and IY the Fisher kernel K(IX , IY ) is the following bilinear
kernel over the Fisher vectors GX and GY :

(2.9) K(IX , IY ) = UT
XF−1UY = UT

XF−1/2F−1/2UY = GT
XGY .

The dimension of the Fisher vector is 2ND+N − 1, where D is the dimension
of the samples. Since this value depends on N , the number of Gaussians in the
mixture, one has to find a good balance between the accuracy of the mixture
model and the computational cost.

2.4. Learning via the Fisher kernel

Jaakkola and Haussler in [12] propose the use of Fisher kernels for classifi-
cation tasks. They introduce the notion of differential extension of models and
show under reasonable assumptions that in this framework logistic regression
with the Fisher kernel provides at least as powerful classification method as
the underlying generative model.

Fisher kernels can be applied for image classification by computing the
parameters of the generative model in Fig. 1 and then by using these parameters
in the equations of the preceding subsection.

The mixture parameters in the generative model (Fig. 1) can be determined
by Gaussian mixture decomposition via the standard expectation maximiza-
tion (EM) algorithm [24]. In a popular interpretation, the mixture gives vo-
cabularies of visual words in a “bag-of-words” representation of the image. In
particular in the simplified model of Fig. 2, each Gaussian is a word of an
N -element vocabulary and each region represents one visual word.
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Table 1. Average MAP on Pascal VOC 2007
LLC SV IFK IFK IFK Exp Exp
[5] [5] [19] [19] [5] 1 2

Fine sampling yes yes no no yes yes very
Descriptor SIFT SIFT SIFT SIFT SIFT HOG HOG
Codebook size 25k 1024 256 256 256 507 507
Spatial Pooling yes yes no yes yes no no
Dimension 200k 1048k 41k 327k 327k 97k 97k
MAP .573 .582 .553 .583 .617 .579 .588

3. Experiments

We carried out our experiments by using the Pascal VOC 2007 data set [9],
the most popular benchmark for image categorization. The Pascal VOC 2007
task uses 5011 training images and a test set with 4952 images, each image
annotated manually into predefined object classes such as cat, bus, person or
airplane. Our choice of dataset gave us an opportunity to compare our experi-
ments to the winner methods (without detection) of later challenges including
the SuperVector coding (SV) and Locality-constrained Linear Coding (LLC)
[5]. To justify our experiments, we compare them to the Improved Fisher
Kernel (IFK) results in [19] and [5].

3.1. Feature generation and modeling

We extracted multiple feature vectors per images to describe the visual
content. We employed two different fine sampling procedures, the very dense
sampling (Exp. 2 in Table 1) resulting in approximately 300,000 while the
other (Exp. 1) about 72,000 (step size is equal to 3, similarly to [5]) keypoints
(regions) per image. To describe the keypoints, we calculated HOG (Histogram
of Oriented Gradients) with different sub-block sizes (4x4, 8x8, 12x12, 16x16
for Exp. 2 and 4x4, 6x6, 8x8, 10x10 for Exp. 1 as suggested in [5]). We reduced
the original dimension (144) of the samples (low-level descriptors) to 96 by
PCA. The Gaussian Mixture Model (GMM) was trained on a sample set of
3 million descriptors with 512 Gaussians. Our overall procedure is shown in
Fig. 3.

We used the resulting kernels after applying the normalizations suggested
in [19] with α = 0.125 for training linear SVM models by the LibSVM package
[4] for each of the 20 Pascal VOC 2007 concepts independently.
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Figure 3. Our classification procedure
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Table 2. MAP on Pascal VOC 2007 data set

a
ir

p
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e
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cl
e

b
ir
d
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t

b
o
tt
le

Exp.2 fine no SP .801 .665 .509 .738 .279
IFK no fine SP [19] .757 .648 .528 .706 .300
IFK fine SP [5] .789 .674 .519 .709 .307

b
u
s

ca
r

ca
t

ch
a
ir

co
w

Exp.2 fine no SP .646 .811 .608 .520 .390
IFK non fine SP [19] .641 .775 .555 556 .418
IFK fine SP [5] .721 .799 .613 .559 .496

d
in
in
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le

d
o
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e
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o
to
r

b
ik
e

p
er
so
n

Exp.2 fine no SP .511 .453 .780 .643 .843
IFK non fine SP [19] .563 .417 .763 .644 .827
IFK fine SP [5] .584 .447 .788 .708 .849

p
ot
te
d

p
la
n
t

sh
ee
p

so
fa

tr
a
in

tv
/

m
o
n
it
o
r

Exp.2 fine no SP .293 .446 .499 .779 .529
IFK non fine SP [19] .283 .397 .566 .797 .515
IFK fine SP [5] .317 .510 .564 .802 .574

3.2. Evaluation

Although spatial pooling is a widely used and effective extension to naive
bag-of-words models [21, 19, 5], we did not apply it. Our consideration is
based on the fact that the standard spatial pooling methods (split the images
into 1x1, 3x1, 2x2 regions) contribute a huge increase in the dimension of
the representation per image (8 times in [19, 5]). Despite the 3.3 times lower
dimension of Exp. 2 the results are comparable to IFK fine SP [5] in five
categories (within 5 percent range) and are better in four categories (airplane,
boat, car and dog).

4. Conclusion

In this paper we described a Fisher kernel based approach of image clas-
sification. We gave theoretical background and provided experimental results.
The resulting image classification system is comparable to the best performing
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PASCAL VOC systems using SIFT descriptors (see Table 1), in some cate-
gories outperforming the best published Fisher vector based systems to date
[5, 19] without Spatial Pooling and with 3.3 times lower dimension. Further
improvement could be a better approximation of the Fisher information and
a generative model capturing the intra image structure. The latter issue is
quite serious. If we rearrange the samples (patches of a particular image) in an
arbitrary way, then the Fisher vector of the resulting image will be the same
as before, while the new image may be radically different.

As the scale of the research collections increases, researchers can no longer
afford to spend days of CPU time on refined analysis and have to use simpler
methods as fallback. As Gaussian mixture decomposition is one of the most
time consuming tasks, we make our very fast graphical coprocessor (GPGPU)
source code along with preprocessed visual classification data available for re-
search purposes§.
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Institute of Computer Science and Control
Hungarian Academy of Sciences (MTA SZTAKI)
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