
Annales Univ. Sci. Budapest., Sect. Comp. 40 (2013) 183–200

SYMBOLIC INTERVAL MANIPULATION

Sándor Czirbusz (ELTE, Hungary)

Dedicated to Professors Zoltán Daróczy and Imre Kátai
on the occasion of their 75th birtday

Communicated by Antal Járai

(Received May 31, 2013; accepted June 16, 2013)

Abstract. When we are manipulating functions with computer pro-
grams, especially with computer algebra systems, we easily find ourselves
confronted with the problem of modifying the range and the domain of
a function with our program. If the underlying spaces are topological or
even more, finite dimensional euclidean spaces, the domains and ranges
are mostly topologically simple, i.e. closed, compact, or open sets. If the
space is one dimensional, the simplest case is that, the sets are intervals. In
numerical computations one of the classic methods is Interval Analysis or
Interval Arithmetics, but this method uses closed intervals and is mainly
interested in numerical accuracy. We care mostly about open sets and the
numerical precision is not too important. In this article we treat this by
modifying the method, to manipulate arbitrary intervals symbolically, and
we solved this problem in the Computer Algebra system MapleR©.

1. Introduction

In [4] we investigated the regularity properties of functional equations with
the Maple computer algebra system. The usual algebraic manipulation of equa-
tions requires computing the domain of the substituted independent variables.
These manipulations are often simple arithmetic operations and the domains

Key words and phrases: Interval arithmetics, symbolic computations.
2010 Mathematics Subject Classification: 65G40, 68W30.

184 S. Czirbusz

are simple real intervals. As a solution the application of interval arithmetics
arises naturally, but the standard interval analysis uses only closed intervals,
and in contrast we usually deal with open intervals. The necessity of using
interval methods on arbitrary intervals was mentioned in [4]. As a simple ex-
ample, let us consider the dilogarithm equation:

f (x) + f (y) + f (1− xy) + f

(
1− x

1− xy

)
+ f

(
1− y

1− xy

)
= 0 ,

where f :]0, 1[→ R and the variables are from the domain

{(x, y) : 0 < x, y < 1} .

We need to know the exact domain of the expressions in the brackets. When
we are solving or transforming functional equations we often introduce new
variables; in this case we must compute the domain of the new variables as
well. Naturally there are complicated equations, however the inner expressions
are usually rational arithmetic expressions.

2. Classic interval analysis at a glance

2.1. Arithmetics

The classic interval analysis is an efficient tool for numerical computations.
In 1966 Ramon E. Moore published his first book [12], which remains a standard
reference to this day. Ever since then, many books and articles were born, see
for example [15, 13, 10, 7, 8, 6, 5]. The proofs of properties stated in this
section can be found in almost all of them. The classic methods in essence can
be used to solve our problems and we do not need more general methods, like
directed intervals, modal intervals or affine arithmetics. In the classical sense
by an interval we mean a compact connected subset of the real line, and use
the so called end–point notation X = [X,X], where X 5 X are real numbers.
If the equality holds, we call it a degenerated interval, and it is straightforward
to identify this interval with the real number X = X. First we need the basic
arithmetic operators. If X,Y are intervals, then

(2.1) X � Y = {x� y : x ∈ X, y ∈ Y } ,

where � ∈ {−,+, ·, /}. Momentarily for the division we assume that 0 /∈ Y . In
the next section we will discuss the case when the divisor interval contains 0.

Symbolic interval manipulation 185

Based on the above definition, we can define for example, the reciprocal of an
interval:

1/Y = {1/y : y ∈ Y } ,

and we can define one-variable interval functions by

f(X) = {f(x) : x ∈ X} ,

if f : R → R is a function. In addition, we can use the set operations over
intervals, but obviously the union of two intervals is not an interval if their
intersection is empty. In this case sometimes we can use the interval hull of
these intervals:

X∪Y = [min (X,Y),max
(
X,Y

)
] .

The interval addition and multiplication are commutative and associative; the
degenerate intervals [0, 0] and [1, 1] are the additive and multiplicative identi-
ties. Generally, the inverses do not exist, but the addition satisfies the can-
cellation law. In additionally, instead of distributivity law we have only the
subdistributivity :

(2.2) X(Y + Z) ⊂ XY + XZ ,

where X,Y, Z are intervals. This property is crucial in interval analysis, it
serves as the basis of the later discussed fundamental theorem.

Now we summarize, how we can calculate the result intervals. Let X =
= [X,X], Y = [Y , Y] denote the operand intervals. Then it is easy to check
that

X + Y = [X + Y ,X + Y] ,

−Y = [−Y ,−Y] ,

X − Y = X + (−Y) = [X − Y ,X − Y] ,

X · Y = [minS,maxS],where S = {XY ,XY ,XY ,XY } ,
1/Y = [1/Y , 1/Y] , if 0 /∈ Y .

The division is the multiplication with the reciprocal. Later we discuss the case
of 0 ∈ Y .

There is an other representation of intervals, the midpoint–radius represen-
tation. For this we need some simple and useful functions: the midpoint of the
interval X is m(X) = 1

2 (X + X), the width is w(X) = X −X, the absolute–

value is |X| = max(|X|, |X|). In this representation we can use the midpoint
of the interval, and the radius, which is the half of the width.

186 S. Czirbusz

2.2. Analysis

As mentioned after equation (2.1), this definition is suitable for defining
the functions over the intervals. Naturally, we can generalize it for several
variables, namely if f is a function over Rn, and X1, . . . , Xn (n ∈ N) intervals,
then

f(X1, . . . , Xn) = {f(x1, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn} .

This is the special case of the usual extension of a function. This function is
sometimes called the united extension because it is the union of all the points
mapped by the function from the domain. Generally it is not a trivial task
to find this extension, but in some special cases it does not cause problems.
For example, if f : R → R is monotone, the image of an interval X will be
[min(f(X), f(X)),max(f(X), f(X))].

We would think that, if a function is defined via some formula the natural
extension (substituting the real variable with an interval variable) the resulting
function is the united extension of the original function. But this is not true,
and the situation is even worse, see the f(x) = x(1−x) simple real function as
an example [14]. We get different results depending on the evaluation method of
this expression. Let us substitute the real variable x with the interval variable
X = [0, 1]. If we evaluate it in its original form, the result of X · (1 − X) is
[0, 1]. But if we perform the multiplication first, that is we compute X−X2, the
result is [−1, 1]. So the resulting interval functions – obtained by substituting
an interval in place of the real variable – are different. We note that even the
square of an interval does not equal with the self multiplication.

We say that the function F is an interval extension of the real function f ,
if for all x F ([x, x]) = f(x), or more generally in case of several variables, if

F ([x1, x1], . . . , [xn, xn]) = f(x1, . . . , xn) .

Usually, we can say that there is no unique interval extension of a function.
It is easy to prove that interval arithmetic operators are satisfying the following
property: if Yi ⊂ Xi, i = 1, 2 then Y1 � Y2 ⊂ X1 � X2. This motivates the
following:

Definition 2.1. The F interval function is inclusion isotonic, if from Yi ⊂ Xi,
i = 1, . . . , n, n ∈ N follows that F (Y1, . . . , Yn) ⊂ F (X1, . . . , Xn) .

An important class of functions fulfills the criterion of the above definition:
the so–called rational interval functions, which can be computed with finite
interval arithmetic steps.

The next theorem highlights the central role of united extension in interval
arithmetics:

Symbolic interval manipulation 187

Theorem 2.1 (Fundamental Theorem of Interval Analysis). If function F is
an inclusion isotonic interval extension of function f , then

f(X1, . . . , Xn) ⊂ F (X1, . . . , Xn)

For the proof of this theorem see [14]. By this theorem, we can think about
united extensions as the “smallest” extensions.

We can define distance on the set of all closed intervals:

(2.3) d(X,Y) = max(|X − Y |, |X − Y |)

This is a metric, the proof is a simple calculation. Sometimes this metric
is called the Moore–metric. It is obvious that this distance is the well–known
Hausdorff–distance, and therefore we know that the above metric space is com-
plete, and the identification of the real numbers with the degenerated intervals
is an isometric embedding. It is an easy task to prove that the interval sequence
Xk converges to the interval X, if and only if the sequence of endpoints of the
Xk intervals converge to the endpoints of X.

Definition 2.2. We say that the interval function F Lipschitz is on the interval
X0, if for every X ⊂ X0 interval there exist an L nonnegative real number, for
which

(2.4) w(F (x)) 5 Lw(X) ,

where w is the width function.

It is easy to see the following

Facts:

1. The natural interval extension of real rational functions is Lipschitz.

2. If a real-valued function f is Lipschitz on an interval X0, then the united
extension of f is a Lipschitz interval extension on X0.

2.3. Implementations

There are many implementations of interval arithmetics, they are used for
numerical calculations. There is a comprehensive list of these methods at the
Interval and Related Software website [3]. A lot of books and articles deal with
some of these implementations, for example in [14] there are many examples
programmed in the Intpak package of MatLab. Because we are interested in
symbolic computations, we will talk about the Maple and Sage implementa-
tions.

http://www.cs.utep.edu/interval-comp/intsoft.html

188 S. Czirbusz

Intervals in Maple

In the CAS Maple, the question had not been settled satisfactorily. Maple
uses different approaches to implement interval arithmetics.

The INTERVAL object There is, an essentially undocumented feature in
Maple, the INTERVAL() object. Faithful to the traditions of Maple, it
is a polymorphic object. We can define with this object sequences of
closed intervals in form INTERVAL(a..b, c..d, . . .) or bounded variables
written in the form INTERVAL(x, a..b). The bounds may be infinite
values. This construction can be used as an argument or as the return
value of the evalr() function. For example, if we compute the value
evalr (sin (INTERVAL (2..7))) , then the result is INTERVAL (−1.. sin (2)).
As another example let us see the expression evalr(|x|). Maple evaluates
it to

INTERVAL (INTERVAL (x, 0..∞) ,−INTERVAL (x,−∞..0)) .

There is an other function which belongs to this construction, the shake()
function, which computes a bounding interval for a given value with a
given accuracy. For example shake(e, 5) is INTERVAL(2.718010..2.718554).

The range object In the previous construction there is a “hidden” range con-
struction: the“..” type. This may be considered as an interval constant,
but the usability of this construction is very limited. Its usage in Maple is
twofold. First, if the endpoints are integers, we can use it as an iterator.
The other application is to indicate the x and y ranges of drawings in
plots.

The RealRange() function This construction is closest to our demands,
with this function we can represent arbitrary intervals, because it uses
the Open() function, which is part of the Maple’s “assume” system. The
documentation of this facility is very poor. There are no operators for
this construction, and the inner automatic simplification makes it very
circumstantial.

intpakX package This is an excellent package for Maple from the University
of Wuppertal, but only for closed intervals and with numerical targets.
See the program, examples and documentation in [9].

Intervals in SAGE

Sage supports arbitrary precision real (and complex) closed interval arith-
metics for numerical computations. This is the SAGE implementation of the

Symbolic interval manipulation 189

MPFI library. It is somewhat surprising that the default representation is the
so-called “question” style, that is, the notation 1.414213562373095? means that
the preceding digit is possibly wrong by ±1. For details see [1, 2].

3. Dealing with arbitrary intervals

Reviewing these concepts so far, the restriction to closed intervals is mostly
unnecessary. The critical points are as follows:

Problems.

1. The identification of degenerate open or half–open intervals with real num-
bers is impossible.

2. The Moore–distance will only be a quasimetric, so the space of arbitrary
intervals is not a complete metric space.

3. The convergence of endpoints is problematic.

4. The inheritance of Lipschitz condition is not guaranteed.

These problems are not too dangerous for us. Our main goal is to handle the
rational functions, and in these cases the problems (2)-(4) are not significant.
The first problem is more interesting. We can not identify arbitrary degenerate
intervals with real numbers, because we get empty sets, if they are not closed.
So the most convenient solution is to keep them as pairs of numbers.

About the operations

The definitions of interval arithmetic operations are independent from the
type of the interval, they are algebraic operations between subsets of R. Similar
operations with sets are well known for example in convex geometry or group
theory. In the case of intervals we can perform them simply on the number
pairs, i.e. on endpoints. If we used only open intervals, there would be no
problem, but it is not too hard to combine different interval types. The task
to be solved is only to decide the type of the endpoints. The open endpoints
are “greedy”, they “consume” the closed endpoints. We will talk about this
question more precisely and in more detail.
Hereafter we will say that an interval endpoint is closed or open weather that
it belongs to the interval or not. Next we examine the interval arithmetic

190 S. Czirbusz

operations in detail. If the real number x is an endpoint of some interval,
then Open(x) = true, if x is an open endpoint and Open(x) = false, if x is a
closed endpoint. The proposed and realized method can handle the unbounded
intervals too. Next we summarize all of these rules.

Addition

As we have seen, if we add two intervals, X and Y , the endpoints of the
result are X + Y and X + Y respectively. Naturally, if one of the endpoints is
open than the resulting endpoint is open as well. More precisely, if Z = X +Y ,
then

Open(Z) = Open(X) ∨Open(Y)

Open(Z) = Open(X) ∨Open(Y) ,

where ∨ is the logical disjunction.
The rules for addition, when there endpoints are not finite, can be found in
table 1 on page 190. The letters a, b are arbitrary real numbers.

+ −∞ a ∞
−∞ −∞ −∞ undef.
b −∞ a + b ∞
∞ undef. ∞ ∞

Table 1. Addition with infinite values

Subtraction

In this case as we have seen the calculation should be carried out with
opposite endpoints respectively. Therefore if Z = X − Y then X − Y =
= X + (−Y) = [X − Y ,X − Y] and

Open(Z) = Open(X) ∨Open(Y)

Open(Z) = Open(X) ∨Open(Y) .

In this case, the rules for calculating with infinite values are in Table 2.

Multiplication

The multiplication is relatively easy by the definition

Z = X · Y = [minS,maxS] ,

Symbolic interval manipulation 191

- -∞ a ∞
−∞ undef. −∞ −∞
b ∞ b− a −∞
∞ ∞ ∞ undef.

Table 2. Subtraction with infinite values

where S = {XY ,XY ,XY ,XY }. Although we do not care for the numerical
efficiency much, we use the well known fact that we do not need four multipli-
cations, see [14, 10]. The number of multiplications is three in the worst case.
The details are shown in Table 3, when the zero is not in both of the intervals.
In this situation we need only two multiplications.

Case Z Z

0 5 X and 0 5 Y X · Y X · Y
X < 0 < X and 0 5 Y X · Y X · Y
X <5 0 and 0 5 Y X · Y X · Y
0 5 X and Y < 0 < Y X · Y X · Y
X < 0 and Y < 0 < Y X · Y X · Y
0 5 X and Y 5 0 X · Y X · Y
X < 0 < X and Y 5 0 X · Y X · Y
X < 0 < X and Y 5 0 X · Y X · Y
X 5 0 and Y 5 0 X · Y X · Y
X < 0 < X and Y < 0 < Y See later

Table 3. Cases of interval multiplication 1

In this case it is easy to calculate the values of the Open() function, because
it is the logical or of Open() values of actually used endpoints.

When both of intervals contain the zero, we really need three multiplica-
tions. The calculation process is described in Table 4.

The calculation of Open() values for the endpoints is straightforward, but
it is much easier when represented as program code than a mathematical ex-
pression. This will be shown in the Realization section. The only thing that
remains is to see the multiplication with infinite values in Table 5. We note
that here we deviate from the IEEE 754 standard. The standard suggest that
the product of zero and an infinite value is undefined (not a number, NaN),
but it seems that it is more suitable for our purposes to have zero as the result.

192 S. Czirbusz

Case Z Z

0 5 |X| 5 X and 0 5 |Y | 5 Y min{X · Y ,X · Y } X · Y
0 5 X 5 |X| and 0 5 Y 5 |Y | min{X · Y ,X · Y } X · Y
0 5 |X| 5 X and 0 5 Y 5 |Y | X · Y max{X · Y ,X · Y }
0 5 X 5 |X| and 0 5 Y 5 |Y | X · Y max{X · Y ,X · Y }

Table 4. Cases of interval multiplication 2

· −∞ b < 0 0 b > 0 ∞
−∞ ∞ ∞ 0 −∞ −∞
a < 0 ∞ classical −∞

0 0 computing with 0
a > 0 −∞ finite values ∞
∞ −∞ −∞ 0 ∞ ∞

Table 5. Multiplying infinite values

Division

If we use definition 2.1 for interval division, we get the following expression

X/Y = {x/y : x ∈ X ∧ y ∈ Y }

for the case 0 /∈ Y . As mentioned before, in this case the operation is very
simple, because we just multiply with the reciprocal of Y . We can reformulate
this by eliminating the division:

(3.1) X/Y = {z : z · y = x ∧ x ∈ X ∧ y ∈ Y } .

It is obvious that if 0 /∈ Y , this expression is equivalent to the previous one.
There are two trivial cases. The first case is, when 0 ∈ X. Then from the
reformulation follows that the result is the whole real line (because for every
x, x · 0 is 0). The second case is, when 0 /∈ X and Y = [0, 0]. In this case
there is no a nonzero number for which 0 ·x = a, so the result is the empty set.
The other cases are similar to the cases of multiplication: we need to examine
how each interval is situated with respect to zero. The details are in table 6.
In this table the angled brackets denote arbitrary interval endpoints. We must
clarify the cases when the table contains infinite values in its first column. The
rules are simple: if we divide zero or an infinite value with an infinite value,
the result is undefined, and is zero otherwise.

Symbolic interval manipulation 193

Case Result set

X < 0 and Y < Y = 0 〈X/Y ,∞)

X < 0 and Y < 0 < Y (−∞, X/Y 〉 ∪ 〈X/Y ,∞)

X < 0 and 0 = Y < Y 〈−∞, X/Y 〉
X > 0 and Y < Y = 0 (−∞, X/Y 〉
X > 0 and Y < 0 < Y (−∞, X/Y 〉 ∪ 〈X/Y ,∞)

X > 0 and 0 = Y < Y 〈X/Y ,∞)

Table 6. Cases of interval division

3.1. About the topology

We note first, that the definitions used in the previous section are indepen-
dent from the type of intervals. This means that we can use them without
changing such concepts as united extension, natural extension, interval exten-
sion, inclusion isotonic function, rational interval function. The fundamental
theorem remains true as well, because its proof depends only on set theoret-
ical considerations. We can use the Moore–distance, but the space is only a
quasimetric space. The Lipschitz property is more interesting, but for rational
interval functions it is straightforward.

4. Realization

In [4] a relatively simple solution for handling arbitrary intervals has been
implemented. There we used the RealRange() construction of Maple. Because
it is essentially undocumented, this new realization does not use this. Instead
we used the module technique of Maple, which resembles the object oriented
methods of modern programming environments. The structure of intervals is
defined by the following code:

Listing 1. The Interval Object

I n t e r v a l := proc (a , b , lO := true , rO := true)
module ()

export Left , Right , LeftOpen , RightOpen , Radius ,
Width ,

MidPoint , Magnitude , Closed , Open ,
ModulePrint , ModuleApply , i s I n t e r v a l ;

194 S. Czirbusz

i f i s (b < a) then
Le f t := b ; Right := a

else
Le f t := a ; Right := b

end i f ;
LeftOpen := lO ; RightOpen := rO ;
Width := abs (Left−Right) ;
Radius := (1/2) ∗Width ;
MidPoint := (1/2) ∗Le f t +(1/2)∗Right ;
Magnitude := max(abs (Le f t) , abs (Right)) ;
Open := LeftOpen and RightOpen ;
Closed := ‘ not ‘ (LeftOpen or RightOpen) ;
i s I n t e r v a l := true ;
ModulePrint := proc ()

local s ;
s := ”” ;
i f LeftOpen then s := cat (s , ” (”)
else s := cat (s , ” [”)
end i f ;
s := cat (s , convert (Left , s t r i n g) , ” , ” , convert (

Right , s t r i n g)) ;
i f RightOpen then s := cat (s , ”) ”)
else s := cat (s , ”] ”)
end i f ;

end proc ;
ModuleApply := proc ()

thismodule :−ModulePrint ()
end proc

end module
end proc :

Here we defined functions usually used in interval arithmetics mentioned
earlier. The ModulePrint and ModuleApply functions realize Maple’s familiar
echoing facility: it displays the interval in the usual form. The isInterval
variable indicates for other procedures that it is an interval object.
The interval type is defined as follows:

Listing 2. The Interval Type

i s I n t e r v a l := proc (x : : anything)
try

x:− i s I n t e r v a l
catch :

f a l s e

Symbolic interval manipulation 195

end try
end proc

TypeTools :−AddType(In t e rva l , I s I n t e r v a l)

And let us see a longer example:

Listing 3. The Interval Multiplication

‘ ∗ ‘ := over load ([
proc (A : : NotInterva l ,B : : I n t e r v a l)

option over load ;
i f i s (A > 0) then

I n t e r v a l (B:−Le f t ∗A, B:−Right∗A, B:−LeftOpen , B
:−RightOpen)

else
I n t e r v a l (B:−Right∗A, B:−Le f t ∗A, B:−RightOpen ,

B:−LeftOpen)
end i f

end proc ,
proc (A : : In t e rva l , B : : ‘ ∗∗ ‘)

option over load ;
A ∗ R e c i p r o c i a l (op (1 ,B))

end proc ,
proc (A : : In t e rva l ,B : : Not Inte rva l)

option over load ;
i f i s (B > 0) then

I n t e r v a l (A:−Le f t ∗B, A:−Right∗B, A:−LeftOpen , A
:−RightOpen)

else
I n t e r v a l (A:−Right∗B, A:−Le f t ∗B, A:−RightOpen ,

A:−LeftOpen)
end i f

end proc ,
proc (A : : In t e rva l , B : : I n t e r v a l)

local a1 , a2 , b1 , b2 , c1 , c2 , la , ra , lb , rb , l c
, rc , a01 , b01 , x , y ;

a1 := A:−Le f t ; a2 := A:−Right ; l a := A:−LeftOpen
; ra := A:−RightOpen ;

b1 := B:−Le f t ; b2 := B:−Right ; lb := B:−LeftOpen
; rb := B:−RightOpen ;

i f i s (0 <= a1) and i s (0 <= b1) then
c1 := a1∗b1 ; c2 := a2∗b2 ;
l c := l a or lb ; rc := ra or rb

196 S. Czirbusz

e l i f i s (a1 < 0) and i s (0 < a2) and i s (0 <= b1)
then

c1 := a1∗b2 ; c2 := a2∗b2 ;
l c := l a or rb ; rc := ra or rb

e l i f i s (a2 <= 0) and i s (0 <= b1) then
c1 := a1∗b2 ; c2 := a2∗b1 ;
l c := l a or rb ; rc := ra or lb

e l i f i s (0 <= a1) and i s (b1 < 0) and i s (0 < b2)
then

c1 := a2∗b1 ; c2 := a2∗b2 ;
l c := ra or lb ; rc := ra or rb

e l i f i s (0 <= a2) and i s (b1 < 0) and i s (0 < b2)
then

c1 := a1∗b2 ; c2 := a1∗b1 ;
l c := l a or rb ; rc := l a or lb

e l i f i s (0 <= a1) and i s (b2 <= 0) then
c1 := a2∗b1 ; c2 := a1∗b2 ;
l c := ra or lb ; rc := l a or rb

e l i f i s (a1 < 0) and i s (0 < a2) and i s (b2 <= 0)
then

c1 := a2∗b1 ; c2 := a1∗b1 ;
l c := ra or lb ; rc := l a or lb

e l i f i s (a2 <= 0) and i s (b2 <= 0) then
c1 := a2∗b2 ; c2 := a1∗b1 ;
l c := ra or rb ; rc := l a or rb

else #0<=a2<a01 and 0<=b01<b2
a01 := −a1 ; b01 := −b1 ;
i f i s (0 <= a01) and i s (a01 <= a2) and i s (0 <=

b01) and i s (b01 <= b2) then
c2 := a2∗b2 ; rc := ra or rb ; x := a1∗b2 ; y

:= a2∗b1 ;
i f i s (x <= y) then c1 := x ; l c := l a or rb
else c1 := y ; l c := ra or lb
end i f

e l i f i s (0 <= a2) and i s (a2 <= a01) and i s (0 <=
b2) and i s (b2 <= b01) then

c2 := a1∗b1 ; rc := l a or lb ; x := a1∗b2 ; y
:= a2∗b1 ;

i f i s (x <= y) then c1 := x ; l c := l a or rb
else c1 := y ; l c := ra or lb
end i f

Symbolic interval manipulation 197

e l i f i s (0 <= a01) and i s (a01 <= a2) and i s (0
<= b2) and i s (b2 <= b01) then

c1 := a2∗b1 ; l c := ra or lb ; x := a1∗b1 ; y
:= a2∗b2 ;

i f i s (y <= x) then c2 := x ; rc := l a or lb
else c2 := y ; ra := ra or rb
end i f

else
c1 := a1∗b2 ; l c := l a or rb ; x := a1∗b1 ; y

:= a2∗b2 ;
i f i s (y <= x) then c2 := x ; rc := l a or lb
else c2 := y ; ra := ra or rb
end i f ;

end i f ;
end i f ;
I n t e r v a l (c1 , c2 , l c , r c)

end proc
]) ;

This process overwrites the standard multiplication, so we can use the mathe-
matical symbols for intervals too. In this code, the case, when we multiply an
interval with a real number was handled as well. The full source code in Maple
and Sage, and examples can be found at the the author’s homepage:
https://compalg.inf.elte.hu/~czirbusz/.

4.1. Applications

We mentioned above that the interval extension is not unique. We can
compute the expression X · (1−X) in two ways. In Maple:

Listing 4. The Interval Function X · (1−X)

with (In t e rva lOpera to r s) ;
[‘ ∗ ‘ , ‘+ ‘ , ‘− ‘ , ‘ / ‘ , ‘< ‘ , ‘> ‘ , Hull , I n t e r s e c t ,

Rec ip roc i a l , Union , ‘ ˆ ‘]
X := Interval(0, 1, false, false) ;

X := ” [0 , 1] ”
X · (1−X) ;

” [0 , 1] ”
X −X2 ;

” [−1 ,1] ”
unwith (In t e rva lOpera to r s) ;

https://compalg.inf.elte.hu/~czirbusz/
https://compalg.inf.elte.hu/~czirbusz/

198 S. Czirbusz

The interval operators are defined in the package IntervalOperators, so we can
use it with the with function (and the function unwith removes it from the
memory). We overloaded the standard arithmetic operators, so we can use the
standard addition, subtraction, etc. symbols. The

X := Interval(0, 1, false, false)

statement declares the closed unit interval.

Examples for basic operations

We illustrate the basic operators in the following listing:

Listing 5. Using the Basic Operators

A := Interval(1, 2, false, false);B := Interval(5, 4) ;
A := ” [1 , 2] ”
B := ” (4 , 5) ”

A ·B ;
” (4 , 10) ”

A

2
;

” [1 / 2 , 1] ”
1

B
;

” (1/5 ,1/2) ”
A

B
;

” (1/5 ,1/2) ”

4.2. A symbolic example

This example illustrates the advantages of symbolic computation, as a part
of examining regularity of the functional equation below

(f (t (x + y))− f (tx)) (f (x + y)− f (y))

= (f (t (x + y))− f (ty)) (f (x + y)− f (x)) .

We try to construct some special compact subset of the interval [a, b], where
a is an arbitrary positive real constant, and b will be later determined. The
most important step is to create subdivisions of this interval, this can be done
in essence automatically, see the code.

Symbolic interval manipulation 199

Listing 6. A Symbolic Example

assume(a :: realcons); additionally(a > 0) ;
assume(b :: realcons); additionally(b > a) ;
assume(t :: realcons); additionally(t > 0) ;
assume(y :: realcons); additionally(y > 0) ;
assume(t1 :: realcons); additionally(t1 > 0) ;
assume(y1 :: realcons); additionally(y1 > 0) ;
assume(x :: realcons); additionally(a <= x and x <= b) ;

dmn := Interval(a, b) ;
dmn := ” (a ˜ ,b˜) ”

Divs := Divisions(dmn, 4) ;
Divs := [” (a ˜ ,3/4∗ a+1/4∗b) ” , ” (3/4∗ a+1/4∗b ,1/2∗ a

+1/2∗b) ” , ” (1/2∗ a+1/2∗b ,1/4∗ a+3/4∗b) ” , ” (1/4∗
a+3/4∗b , b˜) ”]

with(IntervalOperators) ;
Evaluate(g7, x,Divs[1]) ;

” ((a+y) ∗ t1 , (3/4∗ a+1/4∗b+y) ∗ t1) ”

In this code the function Divisions computes the subintervals, the function
Evaluate replaces the variable in function g7 with the subinterval, where g7 is
the function t1 ∗ (x + y) computed previously.

The computer environment

First of all, we note that Maple follows the standard IEEE 754, so we re-
defined the multiplication. Various computers were used during development
of the program, mainly a Fujitsu Siemens Amilo PI2530 notebook, with 2x In-
tel(R) Core(TM)2 Duo CPU 1.50GHz with multiple versions of 64 bit Ubuntu
Linux operating systems and various Linux kernels, 2059716 kB of total mem-
ory, and 71892 kB of swap. The question of speed is not significant, on this
machine with Maple c©v15 the required time was only 0.01− 0.03 seconds. For
information about the mentioned computer algebra systems, see their home
pages, ie. Maple at [11] and Sage at [16].

References

[1] Arbitrary Precision Real Intervals.
"http://www.sagemath.org/doc/reference/sage/rings/real_mpfi.

html".

"http://www.sagemath.org/doc/reference/sage/rings/real_mpfi.html"
"http://www.sagemath.org/doc/reference/sage/rings/real_mpfi.html"

200 S. Czirbusz

[2] MPFI, a multiple precision interval arithmetic library based on MPFR.
"http://perso.ens-lyon.fr/nathalie.revol/software.html".

[3] Interval Computations. Interval and Related Software.
"http://www.cs.utep.edu/interval-comp/intsoft.html".

[4] Czirbusz, S., Testing regularity of functional equations with computer,
Aequationes mathematicae.

[5] Hansen, E. and G.W. Walster, Global Optimization Using Interval
Analysis, Marcel Dekker inc., 2004.

[6] Hickey, T., Q. Ju and M.H. van Emden, Interval arithmetic: from
principles to implementation. Journal of the ACM, 48(5) (2001), 1038–
1068.

[7] Jaulin, L. and G. Chabert, Resolution of nonlinear interval problems
using symbolic interval arithmetic, Engineering Applications of Artificial
Intelligence, 23(6) (2010), 1035–1040.

[8] Jaulin, L., M. Kieffer, O. Didrit, and A. Walter, Applied Interval
Analysis, Springer, 2001.

[9] Krämer, W. and W. Hofschuster,
intpakX – Verified Numerics meets Computer Algebra,
http://www2.math.uni-wuppertal.de/~xsc/software/intpakX/.

[10] Ulrich, W., Kulisch and Universität Karlsruhe, Complete Interval Arith-
metic and its Implementation on the Computer.

[11] Maplesoft, Mmaple (Version 15.0), 2012. http://www.maplesoft.com/.

[12] R. E Moore. Interval Analysis. Prentice Hall Inc., Englewood Cliffs, 1966.

[13] Moore, R.E., Methods and Applications of Interval Analysis, SIAM,
1979.

[14] Moore, R.E., R.B. Kearfott and M.J. Cloud, Introduction to Inter-
val Analysis, SIAM, 2009.

[15] Neumaier, A., Interval Methods for Systems of Equations, Encyclopedia
of Mathematics and its Application, Cambridge University Press, 1990.

[16] Stein, W.A. et al., Sage Mathematics Software (Version 5.5), The Sage
Development Team, 2013. http://www.sagemath.org.

S. Czirbusz
ELTE University
Budapest
Hungary
czirbusz@compalg.inf.elte.hu

"http://perso.ens-lyon.fr/nathalie.revol/software.html"
"http://www.cs.utep.edu/interval-comp/intsoft.html"
http://www2.math.uni-wuppertal.de/~xsc/software/intpakX/

	Introduction
	Classic interval analysis at a glance
	Arithmetics
	Analysis
	Implementations

	Dealing with arbitrary intervals
	About the topology

	Realization
	Applications
	A symbolic example

