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Abstract. In this short note we propose a generalization of the so called
lonely runner problem to complex times. We give definitions, prove some
basic results and formulate open questions.

1. Introduction

Suppose n + 1 runners are running along a circular track of unit length
with distinct constant speeds v0, v1, . . . , vn ∈ R. They all start at the same
starting position. We say that runner k is ε-lonely at time t if all other runners
are at least ε distance away at time t, the distances being measured on the
circle. The lonely runner problem asks how lonely the runners can get, more
precisely, what is the supremum value of ε for which each runner gets ε-lonely
some time. It is conjectured that for all choices of v0, v1, . . . , vn, this supremum
is at least 1/(n + 1). It is not too hard to verify that for the choice v0 = 0,
v1 = 1, . . . , vn = n, this value is sharp.

We formulate the conjecture in mathematical form using modulo 1 real
numbers for describing positions on the track, placing the starting position in
0, focusing on the loneliness of the 0th runner and assuming that v0 = 0 <
< v1 < v2 < · · · < vn. The last assumption means no restriction since adding or
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subtracting the same amount from everyone’s speed does not affect distances.
Using the notation ‖x‖ for the distance of x from the nearest integer, the
distance of runners k and l at time t is ‖vkt − vlt‖. The formal statement of
the conjecture then says

(1.1) inf
0<v1<···<vn∈R

sup
t∈R

min
k=1,...,n

‖vkt‖ =
1

n+ 1
.

The purpose of the present paper is to give a possible generalization of
the lonely runner problem for complex speeds and times, basically by allowing
complex values in 1.1 and defining ‖x‖ appropriately.

The paper is built up as follows: we review some results about the original
conjecture in Section 2, we investigate possible generalizations to complex times
and speeds in Section 3, we consider n = 2 in Section 4, give computational
results in Section 5, then summarize and pose open questions in Section 6.

2. Former results

The lonely runner problem dates back to [2] and independently to [5] where
it was formulated as a diophantine approximation question and a view obstruc-
tion problem, respectively. These papers both prove the conjecture for n ≤ 3.
The n = 4 case was covered in [6]. The n = 5 case was proved in [4] and later
simplified in [7]. The current largest value for which the conjecture is known
to hold is n = 6, see [1]. Note that the number of runners in the titles of the
cited papers is n+ 1 rather than n.

A good overview of the theoretical background and connections to other
problems is found in [3]. We will need two simple observations. The first one
states that we may restrict the investigation to rational or – by rescaling –
integer speeds, see e.g. [4].

Lemma 2.1. The lonely runner conjecture is equivalent to

(2.1) inf
0<v1<···<vn∈Z

sup
t∈R

min
k=1,...,n

‖vkt‖ =
1

n+ 1
.

Note that the supremum here is taken above integer speed tuples.

The other observation is an almost trivial one, but we make it explicit.

Lemma 2.2. Fix v1 < v2 < · · · < vn ∈ N+ and r, s ∈ Z. Then

sup
t∈R

min
k=1,...,n

‖vkt‖ ≥ r

s
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is eqivalent to

sup
t∈ 1

mN∩[0,1]
min

k=1,...,n
‖vkt‖ ≥ r

s
,

with m = lcm(v1, v2, . . . , vn, s).

The lemma states that for determining if (r/s)-loneliness is achieved, one
is allowed to consider time in discrete steps of 1/m. This is straightforward
since by the definition of m, every runner steps in and out of the “loneliness
interval” [−r/s, r/s] at times that are multiples of 1/m. The intersection with
the time interval [0, 1] can be taken because motion is periodic with the period
of one time unit. We will use this lemma for computational purposes.

3. Generalization to complex values

First note that if we allow complex speeds but time is still real, then this
just doubles the dimension of the problem. So we generalize to complex speeds
and complex time. We let the speeds be arbitrary (distinct) nonzero complex
numbers (even if not stated explicitly later), we let the time be complex and we
identify positions on the “track” with complex numbers modulo the Gaussian
integers, that is taking both coordinates modulo 1.

The most challenging part is defining loneliness. We do this by defining ‖z‖
on the complex plane. There are several ways to proceed. First consider the
situation when ‖z‖ is the ∞-distance from the nearest Gaussian integers, that
is

(3.1) ‖z‖∞ = ‖x+ yi‖∞ = max(‖x‖, ‖y‖)

This definition seems promising first but we claim that it is uninteresting
for n = 2 in most cases.

Lemma 3.1. Let v1 and v2 be two complex speeds that are not collinear as real
vectors. Let 0 < ε < 1/2. Then ε-loneliness is achieved for some time t ∈ C,
that is ‖vkt‖∞ ≥ ε for k = 1, 2.

Proof. Let Tk = {t ∈ C | ‖vkt‖∞ ≥ ε} for k = 1, 2. Then Tk contains the
infinite strip between the lines {(ε+yi)/vk | y ∈ R} and {(1−ε+yi)/vk | y ∈ R}.
Since these two strips are not parallel by the choice of v1 and v2, they have
nonempty intersection. �

Since in dimension 2 any two different norms are equivalent, we get similar
results if we use the 1-distance or 2-distance from the nearest Gaussian integer,
making the amount of loneliness essentially independent of the chosen speeds.
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For obtaining interesting results we therefore use the following definition
for ‖z‖. In the rest of the paper, this notation is only used in the now defined
meaning. The original distance function defined on the reals (distance from
the nearest integer) wiil be denoted by ‖x‖R.

Definition 3.1. Let z = x+ yi ∈ C. We define ‖z‖ as the minimum of ‖x‖R
and ‖y‖R.

Informally, a runner is considered lonely if the others are far away in both
the real and imaginary coordinates. The points that are at least at ε distance
from the Gaussian integers form a set S(ε), which is a union of squares with side
length 1− 2ε, centered at the points of the plane with half-integer coordinates.

For convenience we also define the maximal loneliness function on n-tuples
of complex speeds. In the original conjecture, the infimum of this quantity is
taken over all speed tuples. For brevity, a speed tuple v1, . . . , vn is denoted by
V , and if there is no danger of confusion, V will also stand for the set of speeds.

Definition 3.2. Let v1, v2, . . . , vn ∈ C \ {0} be distinct complex speeds. The
maximal loneliness of this speed sequence is defined as

maxlon(V ) = sup
t∈C

max
k=1,...,n

‖vkt‖ .

A third definition is convenient for speaking about the time instants when
a specific runner is farther away than a prescribed value.

Definition 3.3. Let v be a complex speed and ε > 0 a real number. The
away-time for runner with speed v with distance ε is defined as

away(v, ε) = {t ∈ C | ‖vt‖ ≥ ε} .

The away-time is a union of squares whose centers form a translated lattice.
We have away(1, ε) = S(ε), here the centers of the squares are at points with
half-integer coordinates. If the speed is v, the away-time is S(ε)/v = {t/v | t ∈
∈ S(ε)}.

We also have

maxlon(V ) ≥ ε if and only if
⋂

k=1,...,n

away(vk, ε) �= ∅ .

We illustrate this fact in Figure 1.
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Figure 1. The figure shows the sets away(v, 0.17) for v = 1, v = 1 + i and
v = 1 + 2i. The final picture shows the three sets overlayed, or otherwise
expressed, the sum of their characteristic functions. The lightest areas indicate
the non-empty intersection.

We finally state an analogue of a result for the original lonely runner prob-
lem.

Theorem 3.1. For a given n, the infimum of the maximum loneliness value
is attained at a speed tuple of Gaussian integer speeds, that is

inf
V⊆C\{0},|V |=n

maxlon(V ) = min
V⊆Z[i]\{0},|V |=n

maxlon(V ) .
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Therefore from now on we only consider speeds in the Gaussian integers.
The proof is essentially identical to the classical case, we refer to e.g.[4].

4. Three complex runners (n = 2)

In this section we analyze the case n = 2. We prove that the maximal
loneliness is always at least 1/4. First we prove that this value is sharp.

Theorem 4.1.

maxlon(1, 1 + i) =
1

4
.

Proof. The away-times for runner 1 and runner 2 with ε are the sets S = S(ε)
and S/(1 + i), respectively, see Figure 2. Since time is doubly periodic with
periods 1 and i, we only consider the intersection of the away-times in [0, 1]2.
It is visible in the figure, and an easy but technical calculation shows that
S ∩ S/(1 + i) ∩ [0, 1]2 = {1/4 + i/2, 1/2 + i/4, 1/2 + 3i/4, 3/4 + i/2} when
ε = 1/4, and this intersection is empty when ε > 1/4. We leave the details to
the reader. �

Figure 2. The figure shows the sets away(v, 1/4) for v = 1 and v = 1 + i.
It is visible that the intersection in [0, 1]2 consists of 4 points. Also, it is
plausible from the picture that increasing ε (shrinking the squares) will make
the intersection empty.
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Theorem 4.2. For every speed pair v1, v2 ∈ C, we have

maxlon(v1, v2) ≥ 1

4
.

Proof. We can make a few assumptions. If we rescale time or speeds by a
constant, the the intersection of away-times is only multiplied by the scaling
constant. Therefore, we assume v1 = 1. Also, by symmetry we assume |v| ≤ 1.
It remains to prove that for all v with |v| ≤ 1, there exists a time t ∈ C such
that ‖t‖ ≥ 1/4 and ‖vt‖ ≥ 1/4. Also, by rotational and mirror symmetry, we
may assume that 0 ≤ arg(v) ≤ π/4. We distinguish two cases.

Case 1: v is small. We first give an intuitive description of this case. If v is
small, then S = S(1/4) and S/v always intersect, since the latter one consists
of so large squares that do not fit in the holes between the squares in S. We
make this remark quantitative below. Suppose v = vx + ivy with vx + vy ≤ 1.
Consider the following problem: let S = S(1/4). How large can a square be
on the plane without intersecting S? What if we prescribe the slope α of one
of the sides of the square? The best that one can achieve is to place the larger
square between 4 neighboring smaller cells, with the sides of the large square
touching the vertices of the smaller squares. One obtains that the maximal
ratio of the large and the small squares is

√
1 + sin(2α). One can verify that

the set of v for which this reasoning shows a non-empty intersection of the
away-sets is exactly those v for which vx + vy ≤ 1.

Case 2. We have to cover the case of v = vx + vy with |v| ≤ 1, vx + vy ≥ 1
and 0 ≤ vy ≤ vx. Denote the set of such values by U . We will show that there
exists times for each v ∈ U with loneliness at least 1/4. Let t1, t2 and t3 denote
the times 1/2 + i/2, 1/2 + i/4 and 3/4 + i/4, respectively. These times are in
S, the away-time of runner 1. Let T be the square in S centered at 1/2 + i/2.
If vtj ∈ T for some j, then the intersection of the away-times contains tj , so
we have proved the statement for v. But one can verify symbolically – which
we did by computer – and it is visible in Figure 3 that U ⊆ T/t1 ∪T/t2 ∪T/t3.

This finishes both cases of the proof. �

Corollary 4.1. From Theorems 4.1 and 4.2 it follows that

inf
|V |=2

maxlon(V ) =
1

4
.
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Figure 3. This figure illustrates the proof of case 2 in theorem 4.2. The set
U is the half-banana-shaped region bordered by the circular arc and the two
darker straight lines. The three squares (one of which is only partially visible)
are T/t1, T/t2 and T/t3.

5. Computational results for n = 3

Lemma 2.2 about discretizing time steps cannot be carried over easily to the
complex setting. Although it is true that if the intersection of the away-times
is non-empty, then there is a point in the intersection whose coordinates are
rational with denominators bounded above a priori by some calculable constant
depending only on V and the rational ε , but this bound is usually large.

Nevertheless, we can discretize time in small steps (1/100, for example),
and calculate the maximal loneliness over the discrete time instants. This
gives a lower bound very fast. To verify that a lower bound is the exact value
of maximal loneliness, symbolic calculations or linear program solvers can be
used, which are slower but give exact results.

In the table below we list the maximal loneliness for some speed tuples
(mainly triplets) of Gaussian integers with small coordinates. The calculations
were carried out on a single desktop machine running a sage server.

Numerical evidence is not satisfactory at the moment to formulate conjec-
tures.
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Speed tuple Maximal loneliness
1, 1+i 1/4
1, 2 1/3

1, 2, 3 1/4
1, 2, 1+i 1/5
1, 2, i 1/3

1, 1+i, 1+2i 1/5
1, 2, 3, 4 1/5

1, 1+i, 1+2i, 1+3i 1/6

Table 1. Table with maximal loneliness values for a few speed tuples.

6. Summary

We considered a possible generalization of the lonely runner problem to
complex valued speeds and times. We examined the n = 2 case mathematically
and gave computational results for n = 3.

We pose the following questions:

• Find an efficient method for finding the maximal loneliness for given
speeds.

• Determine the exact value of infV maxlon(V ) for n = 3 and possibly for
n = 4, with the aid of a computer if needed (possible candidate values
are 1/5 and 1/6).

• Based on numerical calculations, formulate a conjecture for all values of
n.

• Explore the connections and implications (if any) between the original
conjecture and the generalization.

Our further work will also focus on these questions, primarily on the n = 3
case.
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