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on their 75th anniversary

Communicated by Ferenc Schipp

(Received March 12, 2013; accepted May 10, 2013)

Abstract. Our main goal is to prove that every local minimizer of a
certain nonlinear optimization problem is global. For this, we use some
results from the theory of monotone operators and connected functions.
At last, we show applications of the main results in control theory.

1. Introduction

In optimization theory sufficient conditions have a great importance. In the
linear and convex cases the theory is well-developed, because the first order
necessary conditions usually become sufficient.

The situation is completely different if the problem is highly nonlinear (non-
convex). In these cases sufficient conditions ensure only local optimality.

This fact motivates the development of the following question: What kind
of problems possess the so-called local-global minimum property? With other
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words, when will all the local optimizers of the objective function be global as
well.

The starting point is analogous to the application of monotone operators
in the existence theory of PDE (see e.g. [12]). If f is a monotone real function
then every local minimizer of |f | is global. Our point is to generalize this
fact, when the function is a nonlinear monotone operator acting on a reflexive
Banach space with values from the dual space.

In the following two sections we summarize the most important definitions
and facts about monotone operators (§2) and connected functions (§3). We
need them to prove our main results (§4).

At last (§5), we present some possible applications in control theory.

2. Monotone operators

The theory of monotone operators is one of the main tools to prove existence
theorems on nonlinear PDE (see e.g. [12] and the references therin).

This concept was introduced by Minty in [8] and its use in the theory of
nonlinear PDE was developed at first by Minty and Browder (see e.g. [9] and
[3]). For more historical details see the survey of Borwein [2].

Throughout this paper X always denotes a real, reflexive Banach space, X∗

is its dual, namely the Banach space of all continuous linear functionals defined
on X, and 〈x∗, x〉 is the canonical pairing between X∗ and X.

An operator (not necessarily linear) S : X → X∗ is said to be monotone if

〈Sx − Sx̄, x − x̄〉 ≥ 0, x, x̄ ∈ X.

It is called strictly monotone if there is strict inequality above, when x �= x̄.

A sturdier concept than the previous two is strong monotonicity. An oper-
ator S : X → X∗ is said to be strongly monotone with modulus c if there exists
a positive real number c such that

〈Sx − Sx̄, x − x̄〉 ≥ c‖x − x̄‖2, x, x̄ ∈ X.

If we do not want to emphasize the role of c, then we simply call S strongly
monotone.

It is clear that strong monotonicity implies strict monotonicity, and the last
entails monotonicity, but the reverse implications are false in general.

The operator S : X → X∗ is called coercive if

〈Sx, x〉
‖x‖ → ∞ as ‖x‖ → ∞.
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If S is strongly monotone with a modulus c then it is coercive, but the reverse
is not true, not even if X = R.

The operator S is hemi-continuous if the real function

t !→ 〈S(x̄+ th), x〉

is continuous on R for all fixed x, x̄, h ∈ X.

Theorem 2.1 (see e.g. [12]). If X is reflexive and S is a monotone, hemi-
continuous operator, then S is a continuous operator with respect to the norm
topology in X, and with respect to the weak topology in X∗.

It is trivial that continuity implies hemi-continuity, but the reverse is untrue.

In later applications it will be useful to know more about the inverse of a
monotone operator.

Theorem 2.2 (see e.g. [5]). Let X be a reflexive Banach space, and S : X →
→ X∗ be a hemi-continuous strongly monotone operator with some modulus c.
Then S is bijective (that is, one-to-one and onto), and its inverse is continuous
from the strong topology of X∗ to the strong topology of X.

It is very important to note that S itself is not necessarily continuous with
respect to the strong topologies besides of the assumptions of the above theo-
rem. However, it is true in this case that S is a homeomorphism between the
Banach space X and the locally convex topological vector space (the topology
induced by a family of semi-norms) X∗.

Another important observation here is, that the space is reflexive which
simplifies the situation, because weak∗ topology does not come to play.

Theorem 2.3 (see e.g. [5]). Let S be strongly monotone and continuous with
respect to the strong topologies both in X and X∗, then S is a homeomorphism
between X and X∗ with the strong (norm) topologies.

In simply speaking, this theorem says that S is a homeomorphism between
the Banach spaces X and X∗.

3. Connected functions

The concepts of quasi-connected and connected functions were introduced in
[10] by the authors. These are far and useful generalizations of quasi-convexity
and convexity.
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Let D ⊂ X be a nonempty set. A function f : D → R is called quasi-
connected (connected) on D if for all x̄, x ∈ D there exists a continuous function
(a path joining x̄ and x) γ : [0, 1] → D such that γ and f fulfill the following
conditions:

(i) γ(t) ∈ D for all t ∈ [0, 1];

(ii) γ(0) = x̄ and γ(1) = x;

(iii) f(γ(t)) ≤ max{f(x̄), f(x)}
(
f(γ(t)) ≤ (1−t)f(x̄)+tf(x)

)
for all t ∈ [0, 1].

If there is strict inequality in (iii), when x̄ �= x, then f is called strictly quasi-
connected (strictly connected).

The order of the base points x̄, x is very important. A more correct notation
would be γx̄,x, but this is too troublesome, therefore we will use the simpler
notation, when there is no ambiguity.

It is quite straightforward that every connected function is also quasi-
connected.

The concepts above are a generalization of quasi-convexity (convexity) – just
take γ(t) = (1 − t)x̄ + tx – which have a very important role in optimization
theory (see e.g. [7] and the references therein).

In [1] the authors proved that connectedness, strict connectedness or strict
quasi-connectedness of a function implies that every local minimizer of this
function is also a global one. However, it was proved only in the case, when
X = Rn, the proof runs in a pretty similar way if X is a topological space.

Theorem 3.1 (Avrilel-Zhang). Let X be a topological space, D ⊂ X and
f : D → R be a function. If f is connected (strictly connected, strictly quasi-
connected) on D, then every local minimizer of f is also a global one.

The last theorem says, that connectedness remains untouched if the domain
is perturbed by a homeomorphism.

Theorem 3.2 ([4]). Let X and Y be metric spaces, or topological spaces,
S : X → Y be a homeomorphism, and f : Y → R be a quasi-connected (strictly
quasi-connected, connected, strictly connected) function, then f◦S is also quasi-
connected (strictly quasi-connected, connected, strictly connected).
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4. Main results

Formulation of the problem

Let X be a reflexive Banach space, S : X∗ → X be a continuous (with
respect to the norm topology both in X and in X∗), strongly monotone op-
erator, and g : X → R be a convex function. We investigate the local-global
minimum property of the following optimization problem besides the previous
assumptions.

(P) min
x∗∈X∗

f(x∗) := g(Sx∗)

Theorem 4.1. Every local minimizer of (P) is global.

Proof. According to Theorem 2.3 the operator S is a homeomorphism be-
tween X and X∗. All the assumptions of Theorem 3.2 are satisfied. Using this,
we immediately get the statement of our theorem from Theorem 3.1. �

If the underlying space is of finite dimension, then milder assumptions are
enough.

Corollary 4.1. If X is a finite dimensional Banach space, and S is a hemi-
continuous and strongly monotone operator, then every local minimizer of (P)
is also global.

Proof. Besides the required assumptions X is automatically reflexive, and S
is a continuous, strongly monotone operator. We get now the statement of the
corollary from the previous theorem. �

Let us consider a constrained version of (P).

min g(x)

s.t. Ax = x∗, x ∈ X,
(CP)

where g is assumed to be the same as in (P), and A : X → X∗ is a strongly
monotone, continuous operator (with respect to the norm topology both in X
and in X∗).

Theorem 4.2. Every local minimizer of (CP) is global.

Proof. According to Theorem 2.3 the operator A is a homeomorphism
between X and X∗. With S := A−1 we get from Theorem 3.2 that g ◦ S is
connected. At last, our result follows from Theorem 3.1. �
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In a very similar way, we get the finite dimensional version of (CP).

Corollary 4.2. If X is a finite dimensional Banach space, and A is a hemi-
continuous and strongly monotone operator, then every local minimizer of (CP)
is also global.

5. Applications

5.1. An optimal control problem governed by a nonlinear ODE

Let us minimize the following objective function subject to an ODE.

min ‖x‖2L2(0,1) :=

1∫
0

x2(t)dt

s.t. − x′′(t) + h(x(t)) = u(t), t ∈]0, 1[(5.1)

x(0) = x(1) = 0,

where the nonlinearity term h : R → R is a bounded, continuous, monoto-
ne function, and u ∈ L2(0, 1) are given. We would like to reformulate this
problem such that it fits better to our earlier scheme. For this, we need the
weak formulation of the above boundary value problem.

We denote with V = H1
0 (0, 1) the Hilbert space of such L2(0, 1) functions,

whose first weak derivative is also in L2(0, 1), and fulfill the previously given
boundary condition. This makes sense in this case, because the space is one
dimensional so, all the elements of V are continuous.

We called the function x ∈ V the weak solution of the above boundary value
problem if

1∫
0

x′ϕ′ +

1∫
0

h(x)ϕ =

1∫
0

uϕ for all ϕ ∈ V.

Let us define the operator A : V → V ∗, and the functional F : V → R in the
following way.

〈Ax, v〉 :=
1∫

0

x′v′ +

1∫
0

h(x)v, v ∈ V

F (v) :=

1∫
0

uv, v ∈ V.
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The operator A is continuous and strongly monotone moreover, F ∈ V ∗

(for the details see [6]).

According to Theorem 4.2 every local minimizer of (5.1) is global.

5.2. An optimal control problem governed
by a semilinear elliptic PDE

Let Ω ⊂ Rn be a bounded Lipschitz domain with boundary Γ,
g : R → R bounded, continuous and monotone, yΩ, u ∈ L2(Ω). Let us con-
sider the following optimal control problem governed by a semilinear elliptic
equation (in weak sense).

min ‖y − yΩ‖2L2(Ω) :=

∫
Ω

|y(x) − yΩ(x)|2dx

s.t. − Δy + g(y) = u in Ω

y = 0 on Γ.

Similarly as above, one can derive the same conclusion.

Remark 5.1. Both in this and in the previous (ODE) case, the above presented
process works with a more general boundary value problem. The interested
reader can consult with e.g. [12] and [11].
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