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Abstract. We investigate both theoretically and numerically a simple

model for string instruments like the pianoforte emphasizing the formula-

tion of appropriate discrete conditions in the form of difference equations

at the junction point of string and frame.

1. Introduction

There exists a rather large number of papers on the mathematical modelling
of string instruments, see the diploma thesis [9] and the literature cited therein:
e.g., [1], [2], [5], [8]. These models are, generally, formulated as systems of
partial differential equations (especially hyperbolic equations), an approach we
shall follow below, too. For literature on the numerical solution of hyperbolic
equations see, e.g., [12], [4], [14] and [6].
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2. The basic model

We shall consider the beam equation for the (cast-iron) frame (normalized
to [0, 1]):

∂2
t u+ a∂4

xu = 0, 0 < x < 1, 0 < t ≤ T,(1)

u(0, t) = u(1, t) = 0, ∂xu(0, t) = ∂xu(1, t) = 0, 0 ≤ t ≤ T,(2)

u(x, 0) = 0, ∂tu(x, 0) = 0, 0 ≤ x ≤ 1,(3)

joint point conditions: u(xj , t) = v(0, t), ∂tu(xj , t) = ∂tv(0, t),(4)

0 ≤ t ≤ T,

where xj ∈ (0, 1) is the joint point of frame and string in which the solution
might be less smooth so that equation (1) has to be understood in a generalized
sense (to which we return later). Further, a > 0 is the stiffness of the beam
and v the solution of the string equation:

∂2
t v = b∂2

yv, 0 < y < L, 0 < t ≤ T,(5)

v(L, t) = 0, 0 < t ≤ T,(6)

v(y, 0) = v0(y), ∂tv(y, 0) = v1(y), 0 ≤ y ≤ L,(7)

compatibility conditions: v0(0) = 0, v1(0) = 0.(8)

Here b > 0 is the square of the signal velocity of the string (depending on the
density of its material, its cross section and the tension applied). The above
equations do not yet determine the solution u, v of (1)-(8). E.g., one could
prescribe the value of v(0, t), t > 0. This also becomes visible if considering
the conservation of energy – which should hold since there is no loss in the
system.

3. Conservation of energy

In this section, we assume that all derivatives in (1), (5) are continuous in
[0, 1]× [0, T ] (with the possible exception of the point xj) and multiply (1) by
∂tu and twice integrate by parts on the intervals [0, xj] and [xj , 1] (taking into
account the boundary conditions (2)). This gives, for t ∈ (0, T ),

1

2
∂t

∫ 1

0

[(∂tu)
2 + a(∂2

xu)
2]dx = a[∂tu∂

3
xu− ∂t∂xu∂

2
xu]

xj+0
xj−0 .

Similarly, from (5)-(6) we obtain by partial integration on [0, L]

1

2
∂t

∫ L

0

[(∂tv)
2 + b(∂yv)

2]dy = −b(∂tv∂yv)(0, t) = −b[∂tu(xj , t)∂yv(0, t)].
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Adding the two relations we have for the energy E(t) of the frame-string system

∂tE :=
1

2
∂t

{

∫ 1

0

[(∂tu)
2 + a(∂2

xu)
2]dx+

∫ L

0

[(∂tv)
2 + b(∂yv)

2]dy

}

=(9)

= a[∂tu∂
3
xu− ∂t∂xu∂

2
xu]

xj+0
xj−0 − b[∂tu(xj , t)∂yv(0, t)] =: V (t).(10)

Therefore, for conservation of energy we need V (t) = 0, 0 < t ≤ T . If this
holds true, we have from (3), (7) and (9)

E(t) = E(0) =
1

2

∫ L

0

[v21 + b(∂yv0)
2]dy = const .

Whether or not

(11) V (t) = a[∂tu∂
3
xu− ∂t∂xu∂

2
xu]

xj+0
xj−0 − b[∂tu(xj , t)∂yv(0, t)] = 0

is satisfied obviously depends on the function spaces in which we search for
a solution of (1)-(7). The appropriate spaces for generalized solutions are
u ∈ H1{0, T ;H2(0, 1)} and v ∈ H1{0, T ;H1(0, 1)}, see [15], chapter 23 (here
Hk are the usual Sobolev spaces). For these spaces, E(t) is well defined - but
not V (t). We consider the following possibilities:

1. For a solution u ∈ H2{0, T ;H4(0, 1)}, v ∈ H2{0, T ;H2(0, 1)}, V (t) is
well defined, moreover, the factor of a in V is zero. Namely then

∂(k)
x u is continuous at xj , k = 0, 1, 2, 3, 0 ≤ t ≤ T.

Mechanically: at xj there is no hinge connection neither a support, see, e.g.,
[11], p. 218. Then, moreover, also

∂t∂
(k)
x u is continuous at xj , k = 0, 1, 0 ≤ t ≤ T,

holds, and to have V (t) ≡ 0, 0 ≤ t ≤ T , sufficient turns out to be ∂tu(xj , t) = 0,
i.e. u(xj , t) = const, but this would mean u(xj , t) = 0 by (3). Then the beam
remains in rest and the string oscillates independently (in dependence on its
own initial conditions) of the beam. A second string connected to the beam
and initially being in rest, would not start to cooscillate.

2. For the same spaces, the second possibility for the factor of b in V (t) to
be zero is ∂yv(0, t) = 0. With this Neumann boundary condition, the string
oscillates independently from the beam, but at least excitates the latter. This,
however, would mean that the spaces of 1. are not appropriate: the beam
equation has to be considered on [0, xj) ∪ (xj , 1] and continuity of say ∂3

xu at
xj is not assured, so (11) is questionable. A second string connected to the
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beam would, of course, lead to a second break point on the beam but to have
the string excitated by the beam would ask (among the classical boundary
conditions) for a Dirichlet or Robin condition at the beginning of the string.
Or, if u ∈ H2{0, T ;H3(0, 1)∩C3([0, xj))∪C3((xj , 1])}, v ∈ H2{0, T ;H2(0, 1)}
and ∂tu(xj , t) 6= 0, then (11) gives rise to a Neumann condition for that t.

3. Instead of looking for V (t) = 0, consider also the case of classical so-
lutions: u ∈ C2{0, T ;C4(0, 1)}, v ∈ C2{0, T ;C2(0, 1)}, when, obviously, V (t)
is well defined and equal to the b-part V (t) = −b[∂tu(xj , t)∂yv(0, t)], and for
V (t) ≡ 0 compare with 1. At the same time, from (4),

(∂2
t u)(xj , t) = (∂2

t v)(0, t), t ∈ [0, T ],

is plausible both mathematically and physically and yields

(12) −a(∂4
xu)(xj , t) = (∂2

yv)(0, t), t ∈ [0, T ].

In case of only piecewise differentiability of u with respect to x (i.e. v being
twice differentiable on [0, L] as above, but u four times differentiable on [0, xj ]
and [xj , 1]), one might require

(13)
1

2
a[∂4

xu(xj + 0, t) + ∂4
xu(xj − 0, t)] + b∂2

xv(0, t) = 0.

Conditions (12) or (13) would connected beam and string such that each of
them can react on the other.

Let us mention that in [3] the problem of biharmonic interpolation was
solved numerically where, along with the biharmonic equation, scattered data
are given and to be interpolated. The author reports success but the problem
is different from our’s since here u(xj) is not given.

4. The difference approximation

For the numerical solution of our problem, we introduce, on the frame, for
Nf ≥ 4, the equidistant grids

ωf
h := {xi = ihf , 0 ≤ i ≤ Nf = 1/hf},

ωf
h := {xi, 1 ≤ i ≤ Nf − 1}, ◦

ω
f
h := {xi, 2 ≤ i ≤ Nf − 2},

assuming that the (fixed) junction point belongs to ωf
h : xj = j(hf )hf .
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Correspondingly, for the parts of the frame divided by the junction point
xj(hf ), we have

ω−
h := {xi = ihf , 0 ≤ i ≤ j(hf )}, ω+

h := {xi, j(hf ) ≤ i ≤ Nf},

ω−
h := {xi, 1 ≤ i ≤ j(hf )− 1}, ω+

h := {xi, j(hf ) + 1 ≤ i ≤ Nf − 1},
◦

ω
−
h := {xi, 2 ≤ i ≤ j(hf )− 2}, ◦

ω
+
h := {xi, j(hf ) + 2 ≤ i ≤ Nf − 2}.

Likewise, on the string, for Ns ≥ 2, we use the equidistant grids

ωs
h := {yi = ihs, 0 ≤ i ≤ Ns = L/hs},

ωs
h := {yi, 1 ≤ i ≤ Ns}, ◦

ω
s
h := {yi, 1 ≤ i ≤ Ns − 1}.

Moreover, we shall need the time grids

ωτ := {tk = kτ, 0 ≤ k ≤ M = T/τ}, ωτ := {tk, 1 ≤ k ≤ M}.

For any of these grids, say
◦

ωh ⊂ ωh with equidistant stepsize h, we also
introduce the following scalar products:

(w, z) ◦

ωh
:=

∑

xi∈
◦

ωh

w(xi)z(xi)h,(14)

(w, z)ωh
:=

∑

xi∈ωh

w(xi)z(xi)h.(15)

Since we will not investigate theoretically (but only numerically) the accu-
racy of our approximations, we use the same symbols u and v for the solution
of (1)-(8) and for their difference approximations, namely

uk
i ≈ u(xi, tk), xi ∈ ωf

h , vki ≈ v(yi, tk), yi ∈ ωs
h , tk ∈ ωτ .

We shall use the standard second and fourth order difference quotions on
◦

ω
s
h, resp.

◦

ω
f
h, see, e.g., [13] or [12],

vyy = vkyy,i :=
1

h2
s

(vki+1 − 2vki + vki−1),(16)

uxxxx = uk
xxxx,i :=

1

h4
f

(

uk
i+2 − 4uk

i+1 + 6uk
i − 4uk

i−1 + uk
i−2

)

.(17)

For our time dependent equations, we need also corresponding approxima-
tions of the first and second order time derivative and of a symmetric average
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operator, see, e.g., [14]:

wt = wk
t,i :=

wk+1
t,i − wk

t,i

τ
,(18)

wt =
wk

t,i − wk−1
t,i

τ
, w ◦

t
=

wk+1
t,i − wk−1

t,i

2τ
,

wtt = wk
tt,i :=

1

τ2
(ŵi − 2wi + w̌i),(19)

ŵi := wk+1
i , wi := wk

i , w̌i := wk−1
i ,

w(σ) = w
(k,σ)
i := σŵi + (1− 2σ)wi + σw̌i = wk

i + στ2wk
tt .(20)

Using these notations (where w = u, v), we have the following approximations
of (1) and (5):

utt = −au
(σ)
xxxx , (x, t) ∈ [ω−

h ∪ ω+
h ]× ωτ ,(21)

utt = −a
(

u
(σ)
xxxx + Vfs

)

, (x, t) ∈ {xj − hf , xj , xj + hf} × ωτ ,(22)

vtt = bv
(σ)
yy , (y, t) ∈ ωs

h × ωτ ,(23)

v0 = uj , t ∈ ωτ .(24)

To the terms Vfs in (22), which may depend on a, b and on our discrete solutions
u, v, we return in Subsection 5.2 below.

The corresponding initial and boundary values (at the beam’s two and the
string’s right end point) follow immediately below, but already here we see,
compared to the continuous case, that the grid functions v in y = 0 and u
in the three points xj−1, xj = y0, xj+1 are determined insufficiently. These
points shall be treated below in a separate section in analogy to Section 3.

The initial conditions will be replaced by

u0 = 0, u1 = 0, x ∈ ωf
h ,(25)

v0 = v0(y), v1 = v1(y), y ∈ ωs
h .(26)

Here, the values (25)-(26) on the first time level t = t1 = τ give, at best, only
a first order approximation and, for test aims, will be replaced by exact values
of u and v on that time level.

From (4) and (6), the boundary conditions for the string are clearly, for any
t ∈ ωτ ,

(27) v0 = uj , vNs
= 0.

The question of the difference form of the boundary conditions (2) is decisive
and solved by the following result.
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Theorem 1. The matrix corresponding to uxxxx,i for xi ∈ ◦

ω
f
h and to the

boundary conditions

u0 = 0, uNf
= 0,(28)

u1 = (4u0 + 4u2 − u3)/7, uNf−1 = (4uNf
+ 4uNf−2 − uNf−3)/7,(29)

is, after elimination of the boundary conditions, symmetric and positive defi-
nite. Moreover, (28)-(29) give second order approximations to (2).

Proof. a) Second order: It is sufficient to consider the left-hand condition
(29) and to omit the dependence of u on t, moreover, we may assume that u(x)
is six times differentiable with respect to x since then yxxxx,i = u(4)(xi)+O(h2

f ).

We start from a 4-parameter formula

(30)

1

hf
(αu(x0) + βu(x1)+γu(x2) + δu(x3)) =

1

hf
u(0)(α+ β + γ + δ)+

+u′(0)(β + 2γ + 3δ) +
hf

2
u′′(0)(β + 4γ + 9δ)+

+
h2
f

6
u′′′(0)(β + 8γ + 27δ) +O(h3

f ),

because then the first three multiplyers on the right-hand side can be selected
to give

α+ β + γ + δ = 0,

β + 2γ + 3δ = 1,

β + 4γ + 9δ = 0.

(31)

A fourth condition will arise from the condition of symmetry of the matrix:

(32) γ = −4δ,

after which we obtain the (unique) solution of (31)-(32):

(33) α = −2, β =
7

2
, γ = −2, δ =

1

2
.

From here and (30) we have

1

2hf
(−4u(x0) + 7u(x1)− 4u(x2) + u(x3)) = u′(0) +

h2
f

6
u′′′(0) +O(h3

f ),

and remembering that u′(0) = 0, the discrete boundary condition becomes (29).
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b) Symmetry: Let Ãhf
denote the matrix corresponding to uxxxx,i for

xi ∈ ◦

ω
f
h and to the boundary conditions (28), and, instead of (29), to the

boundary condition αu0 + βu1 + γu2 + δu3 = 0, and the corresponding mir-
rored condition at x = 1. Since these boundary conditions are homogeneous, a
common factor is not important. Also, only the first 5 lines of the matrix are
of interest. Therefore we may write
(34)

Ãhf
=

1

h4
f



















1 0 0 0 . . . . . . . . . 0
α β γ δ 0 . . . . . . 0
1 −4 6 −4 1 0 . . . 0
0 1 −4 6 −4 1 0 . . .
0 0 1 −4 6 −4 1 . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .



















∈ R
(Nf+1)×(Nf+1).

Due to the second line, only the first four columns are important, and after
eliminating the first line and column (and in the same way eliminating the last
line and column) we get

˜̃Ahf
=

1

h4
f















β γ δ 0 . . .
−4 6 −4 1 . . .
1 −4 6 −4 . . .
0 1 −4 6 . . .
. . .

. . .
. . .

. . .
. . .















∈ R
(Nf−1)×(Nf−1).

Assuming now β 6= 0 (remember that above β = 7
2 ), we eliminate here the first

and last line and column, denoting the result by Ahf
:

(35) Ahf
=

1

h4
f











6 + 4γ
β −4 + 4δ

β 1 . . .

−4− γ
β 6− δ

β −4 . . .

1 −4 6 . . .
. . .

. . .
. . .

. . .











∈ R
(Nf−3)×(Nf−3).

Therefore, to get a symmetric matrix, we need (32).

c) Positive definiteness: For this investigation, it is more convenient to
start from Ãhf

(see (34)) and y = (y0, . . . , yN )T and then taking into account
(28)-(29).

To obtain our result, basic is the following identity of partial summation,
see, e.g., [11], p. 257, or also [13] (proof of Theorem 11.14.), which we shall use

for grid functions w and z defined on ωf
h of step size hf , and referring to the

corresponding scalar products (14)-(15) of Section 4:

(36) (wxxxx, z) ◦

ω
f

h

= (wxx, zxx)ωf

h

+[wxxzx − wxxxz]1+[wxxxz − wxxzx]Nf−1 .
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Now consider the boundary terms and assume that w and z satisfy the bound-
ary conditions (28)-(29), see also (40) below. Then

[wxxzx − wxxxz]1 + [wxxxz−wxxzx]Nf−1 =

=
[

(wxx,1 −
1

hf
(wxx,2 − wxx,1)hf )zx,1+

+(
1

hf
(wxx,Nf−1 − wxx,Nf−2)(−hf )− wxx,Nf−1)zx,Nf−1

]

=

= [(2wxx,1 − wxx,2)zx,1 + (wxx,Nf−2 − 2wxx,Nf−1)zx,Nf−1] =

=
hf

2
[(2wxx,1 − wxx,2)(2zxx,1 − zxx,2)+

+(2wxx,Nf−1 − wxx,Nf−2)(2zxx,Nf−1 − zxx,Nf−2)].

This shows (together with (36)) once more the symmetry, and for z = w = y
gives

(yxxxx, y) ◦

ω
f

h

= (yxx, yxx)ωf

h

+
hf

2

[

(2yxx,1 − yxx,2)
2 + (2yxx,Nf−1 − yxx,Nf−2)

2
]

,

or, in other words,

(37) (Ahf
y, y) ◦

ω
f

h

= (yxxxx, y) ◦

ω
f

h

≥ (yxx, yxx)ωf

h

= ‖yxx‖2ωf

h

=: ‖y‖2
2,ωf

h

.

Now we can refer to the discrete embedding theorem from [11], p. 292,
according to which, for grid functions w on ωh being 0 in the end points, i.e.
w0 = wN = 0, there holds for any ε > 0

(38)

N
∑

i=1

(wx,i)
2h =: ‖w‖21,ωh

≤ ε‖w‖22,ωh
+

1

4ε
‖w‖2ωh

.

Moreover, well known is the discrete embedding (see, e.g., [13], Lemma 11.5.)

‖w‖2ωh
≤ 1

6
‖w‖21,ωh

,

which, however, by using discrete Fourier expansion, can be improved to

‖w‖2ωh
≤ 1

8
‖w‖21,ωh

,

and here the 8 cannot be enlarged further. This means, together with (38),
that

‖w‖2ωh
≤ ε

8
‖w‖22,ωh

+
1

32ε
‖w‖2ωh

,
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or, for 32ε > 1,

‖w‖2ωh
≤ ε

8(1− 1
32ε )

‖w‖22,ωh
=

1

64
‖w‖22,ωh

when ε = 1
16 . From here (taking w = y, h = hf and (37)) then follows, finally,

‖y‖2◦
ω

f

h

≤ ‖y‖2
ωf

h

≤ 1

64
‖y‖2

2,ωf

h

≤ 1

64
(yxxxx, y) ◦

ω
f

h

=
1

64
(Ahf

y, y) ◦

ω
f

h

.

This shows the positive definiteness of Ahf
for vectors y ∈ R

Nf−3 and also the
estimate of its first eigenvalue

(39) λh
1 (Ahf

) ≥ 64. �

Remarks. 1. The relations (29) in the presence of (28) can be rewritten
as

(40)
u1 = hfux,1 =

h2
f

2
(2uxx,1 − uxx,2) ,

uNf−1 = −hfux,Nf−1 =
h2
f

2
(2uxx,Nf−1 − uxx,Nf−2) .

2. A third-order approximation to u′(0) = 0 is ux,1−hf

2 uxx,1+
h2

f

3 uxxx,1 = 0,
but, together with the corresponding approximation at x = 1, would not lead
to a symmetrix matrix, according to the proof of Theorem 1.

3. For a numerical investigation of the eigenvalues of Ahf
, see Section 6.

5. The discrete junction point conditions

Whereas for the continuous case, after multiplication of the equations by ∂tu
and ∂tv, respectively, the frame-string system’s energy and loss term is defined
uniquely (see Section 3), in the discrete case already the selection of one of the
three discrete time derivatives (18) is not clear, and so, for the choice of the
discrete energy there are several possibilities which then define the loss terms.
Which form of discrete equations can be recommended should be decided by
the stability of the resulting approach, its behaviour (physical interpretability,
and accuracy) in several test cases and its ease of programming.

A first option is to replace (4) by a convenient discrete equation. A second
one consists in deriving the condition of discrete energy conservation which we
follow now.
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For this aim we cite the following general three-level difference scheme (re-
member (18)-(19))

(41) By ◦

t
+Rytt +Ay = ϕ, k ≥ 1, adott y0, y0t ∈ H,

where we assume that B,R,A are operators acting in a Hilbert H space en-
dowed with a scalarproduct (·, ·) (e.g. matrices in some RN×N with a weighted
Euclidean scalarproduct for vectors from R

N , like (14)-(15)), satisfying

(42) A = AT > 0, R = RT > 0, B ≥ 0.

We shall be interested especially in the case

(43) R = I + στ2A, B = 0, ϕ ≡ 0,

compare with (20). Here and in (42), 0, I are the zero and the identity operator,
respectively. B may depend on t but A and R not. Observe that the operator
acting on the new value yk+1 is 1

2τB + 1
τ2R, and, due to (42), invertible.

For (41) holds the following classical result [10], see also [14], Section 18.4.5
(Sect. 18.5 in the first edition) in which there appears the norm

‖y‖A = (Ay, y)1/2(=: ‖y‖(1,h)).

Proposition. The solution y of (41) under the conditions (42) has the
properties below:

a) scalarly multiplying (41) by 2τy ◦

t
, there follows the identity

2τ(By ◦

t
, y ◦

t
) + E(ŷ, y)− E(y, y̌) = 2τ(ϕ, y ◦

t
),(44)

where E(ŷ, y) := (Ryt, yt) +
1

2
[(Aŷ, y) + (Ay, ŷ)] .(45)

b) If

(46) C := R− τ2

4
A > 0,

then E can be interpreted as an energy since then

(47) E(ŷ, y) = (Cyt, yt) +
1

4
‖ŷ + y‖2A ≥ 0

and is zero only for y = ŷ = 0. If, however C ≥ 0, then E(ŷ, y)1/2 is, in general,
only a seminorm.

c) In the case (43), (44) expresses the conservation of energy and the sta-
bility of (41):

E(ŷ, y) = E(yk+1, yk) = E(yk, yk−1) = . . . = E(y1, y0).
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d) In general, the solution of the scheme (41) satisfies

(48) (E(yk+1, yk))1/2 ≤ (E(y1, y0))1/2 +

(

1

2ε

k
∑

m=1

τ‖ϕm‖2
)1/2

if there holds, along with (42), (46), also B ≥ εI > 0.

e) If, instead of (46), there holds

(49) R− 1 + ε

4
τ2A ≥ 0 (ε = const > 0),

then

(50) E(ŷ, y) ≥ ε

1 + ε
‖ŷ‖2A .

f) For B = 0, the solution of (41) satisfies

(51) (E(yk+1, yk))1/2 ≤ (E(y1, y0))1/2 +

(

k
∑

m=1

τ2‖ϕm‖2R−1

)1/2

and for y0 = y1 = 0, from (49)-(50),

(52) ‖yk+1‖A ≤
√

1 + ε

ε

k
∑

m=1

τ‖ϕm‖R−1 ,

where ε is the number of (49).

g) Independently of B = 0 and (49), we have the upper estimate

(53) E(ŷ, y) ≤ (‖y‖A + ‖y‖R)2 .

5.1. The string part of the discrete energy

Now we turn to the string. For its discrete equations (23) in case uk
j = 0

for all k we refer to the above proposition and get

condition for stability with respect to initial values :

σ = 0 :
bτ2

h2
s

=: γ2
s ≤ 1, σ >

1

4
: no condition,(54)

condition for stability with respect to right-hand sides :

σ ≥ 1 + ε

4
, ε > 0.(55)
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In more detail:

In our case B = 0, R = Rhs
= Ihs

+ στ2Ahs
, (Ahs

v)i = −bvyy,i , 1 ≤ i ≤
≤ Ns − 1, v0 = vNs

= 0, (41) is equation (23), and because of A = Ahs
=

= AT
hs

> 0 there also holds R = RT ≥ Ihs
> 0 if σ ≥ 0. Then conditions (46)

and (49) read

Ihs
+

(

σ − 1

4

)

τ2Ahs
≥ 0, and Ihs

+

(

σ − 1 + ε

4

)

τ2Ahs
≥ 0.

But, because of the well-known estimate Ihs
>

h2

s

4bAhs
we have

Ihs
+

(

σ − 1 + ε

4

)

τ2Ahs
>

(

h2
s

4τ2b
+ σ − 1 + ε

4

)

τ2Ahs
≥ 0

if σ ≥ 1

4
(1 + ε− 1

γ2
s

) ≥ 0.

Here |γs| :=
√
bτ

hs
is the Courant number. According to this the explicit scheme

is conditionally stable (with respect to initial values and the right-hand side)
in case

|γs| ≤
1√
1 + ε

.

Unconditional stability follows for

σ ≥ 1 + ε

4

from (49), and ‖ϕm‖R−1 in (51) and (52) can be replaced by ‖ϕm‖ ◦

ω
s

h

because

of R−1
hs

≤ Ihs
, resulting by (52) and (53) into

(56) ‖yk+1‖A ≤ (‖y0‖A + ‖y0t ‖R) +
√

1 + ε

ε

k
∑

m=1

τ‖ϕm‖ ◦

ω
s

h

,

whereas stability with respect to the initial values only we obtain from (46), that
is when |γs| ≤ 1. This is the well-known Courant–Friedrichs–Lewy condition.
Namely, in this case (46) takes the form

C = Chs
= Ihs

− τ2

4
Ahs

>

(

h2
s

4b
− τ2

4

)

Ahs
≥ 0.

Since our problem is one-dimensional, moreover the y-interval [0, L], from (52)
we get an estimate in the maximum norm ‖ ·‖C(ωhs)

, too, applying the discrete
embedding theorem, see [11], p. 289:

‖v‖2C(ωhs)
≤ L

4b
‖v‖2Ahs

.
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Until now, we have considered the case uk
j = 0, k ≥ 0. To have a clear

account of the role of the unknown values uk
j for k > 0 (remember u0

j = 0)
on the string, in our equations (23)-(24), (26)-(27), it seems straightforward to
put, for any fixed time index k ≥ 0,

(57) v = v + ujℓ(y), ℓ(y) := 1− y/L, y ∈ ωs
h ,

resulting in equations with homogeneous boundary values:

vtt = bv
(σ)
yy − (uj)ttℓ , (y, t) ∈ ωs

h × ωτ ,(58)

v0 = v0(y), v1 = v1(y)− u1
jℓ(y), y ∈ ωs

h ,(59)

v0 = vNs
= 0, t ∈ ωτ .(60)

In the scalar product (14) on ◦

ω
s
h and the norm belonging to it we then would

have, for any k ≥ 1 and from (44),

(61) E(v̂, v)− E(v, v̌) = −2τ(uj)tt(ℓ, v ◦

t
).

From here and above, various estimates could be obtained for the string energy.
However, our aim is to get an expression for the joint energy of the frame-string
system and there to let disappear the expressions connected to uj by finding
an additional equation corresponding to the junction point (and referring to
u and v). Then, the quadratic expressions of E and the term (ℓ, v ◦

t
) in (61)

would be difficult to handle.

Therefore, we do the following: We introduce vi := vi, xi ∈ ωs
h, v0 = 0, so

that v and v differ only in one point (where v0 = uj), and in (23) we take uj

out of bv
(σ)
yy considering it a known right-hand side:

vtt = vtt,i = bv
(σ)
yy,i + δ1i

b

h2
s

u
(σ)
j = bv

(σ)
yy + ϕs, (ϕs)i := δ1i

b

h2
s

u
(σ)
j .

This means that on v there acts the matrix Ahs
and we can apply the above

results based on Theorem 1. Then (44) gives:

Es(v̂, v) = Es(v, v̌) + 2τ(ϕs, v ◦

t
) ◦

ω
s

h

.
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5.2. The beam part of the discrete energy

For the discrete beam equations (21), after eliminating the boundary con-
ditions (28)-(29), we can refer to the above proposition and get

condition for stability with respect to initial values :

σ = 0 :
aτ2

h4
f

=: γ2
f ≤ 1, σ >

1

4
: no condition,(62)

condition for stability with respect to right-hand sides :

σ ≥ 1 + ε

4
, ε > 0.(63)

We emphasize that the first condition (62), for the explicit scheme, is very
restrictive.

In more detail:

Here B = 0, R = Rhf
= Ihf

+ στ2Ahf
, (Ahf

u)i = auxxxx,i , 2 ≤ i ≤
≤ Nf − 2 (after taking into account (28)-(29)), (41) is (21)-(22), and because
of A = Ahf

= AT
hf

> 0 there also holds R = RT ≥ Ihf
> 0 if σ ≥ 0. Then

conditions (46) and (49) read

Ihf
+

(

σ − 1

4

)

τ2Ahf
≥ 0, and Ihf

+

(

σ − 1 + ε

4

)

τ2Ahf
≥ 0.

But, because of Ihf
>

h4

f

16aAhf
(see Section 6) we have

Ihf
+

(

σ − 1 + ε

4

)

τ2Ahf
>

(

h4
f

16τ2a
+ σ − 1 + ε

4

)

τ2Ahf
≥ 0

if σ ≥ 1

4
(1 + ε− 1

γ2
s

) ≥ 0.

Here |γf | :=
√
aτ
h2

f

is the Courant number. According to this the explicit scheme

is conditionally stable (with respect to initial values and the right-hand side)
in case

|γf | ≤
1√
1 + ε

.

Unconditional stability follows for

σ ≥ 1 + ε

4
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from (49), and ‖ϕm‖R−1 in (51) and (52) can be replaced by ‖ϕm‖ ◦

ω
f

h

because

of R−1
hf

≤ Ihf
, resulting from (52) and (53) into

(64) ‖yk+1‖A ≤ (‖y0‖A + ‖y0t ‖R) +
√

1 + ε

ε

k
∑

m=1

τ‖ϕm‖ ◦

ω
f

h

,

whereas stability with respect to the initial values only we obtain from (46),
that is when |γf | ≤ 1. In this case (46) takes the form

C = Chf
= Ihf

− τ2

4
Ahf

>

(

h4
f

16a
− τ2

4

)

Ahf
≥ 0.

Since our problem is one-dimensional, moreover the x-interval [0, 1], from (52)
we get an estimate in the maximum norm ‖ · ‖C(ωhf

), too, applying a discrete

embedding theorem, see in this case the estimations in the proof of Theorem 1
after (38), leading for ε = 1

16 also to

‖w‖2
1,ωf

h

≤ 1

8
‖w‖2

2,ωf

h

=
1

8a
‖v‖2Ahf

,

(we remark that in the cited theorem Ahf
was defined on the basis of uxxxx

and not on auxxxx like here) and use then, e.g., [13], Section 11.4.6., Lemma
11.5., to obtain

‖v‖C(ωhf
) ≤

1

4
√
2a

‖v‖Ahf
.

In the beam case, we have therefore from (44) and (21)-(22)

Eb(û, u) = Eb(u, ǔ) + 2τ(ϕf , u ◦

t
) ◦

ω
f

h

,

where

ϕf = −aVfs, x ∈ {xj − hf , xj , xj + hf} , and ϕf = 0 else.

5.3. The frame-string system’s discrete energy

Summarizing the results of Sections 5.2 and 5.1 and indicating also the
dependence of the right-hand sides on the solution u, we find

Eb(û, u) + Es(v̂, v) = Eb(u, ǔ) + Es(v, v̌) + 2τ
(

(ϕf (u), u ◦

t
) ◦

ω
f

h

+(ϕs(uj), v ◦

t
) ◦

ω
s

h

)

and shall require
(ϕf (u), u ◦

t
) ◦

ω
f

h

+ (ϕs(uj), v ◦

t
) ◦

ω
s

h

= 0
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since the frame-string system should be lossless. Observe that the right-hand
sides ϕf , ϕs are defined only locally. Especially, if Vfs 6= 0 for x = xj only
then the last equation reduces to

−aVfsu ◦

t ,j
hf +

b

hs
u
(σ)
j v ◦

t ,1
= 0

where we know that v ◦

t ,1
= v ◦

t ,1
. Setting here

Vfs := −1, if v ◦

t ,1
≥ 0, Vfs := 1, if v ◦

t ,1
< 0,

we would obtain the following equation for ûj:

ûj = ǔj −
2bτ

ahshf
|v ◦

t ,1
|

1 + 2σbτ
ahshf

|v ◦

t ,1
|
((1− 2σ)uj + 2σǔj) .

This equation would change ûj in dependence on uj, ǔj and v ◦

t ,1
but would

have the drawback to give ûj = 0 if uj = ǔj = 0.

Instead we take (looking also at the physical dimension of Vfs in (22))

Vfs =
u
(σ)
j

h4
f

, x = xj , Vfs = 0 else,(65)

resulting into
a

h3
f

u ◦

t ,j
=

b

hs
v ◦

t ,1
, i.e. γ2

fhfu ◦

t ,j
= γ2

shsv ◦

t ,1
.(66)

Definition (65) will be used in (22), whereas (66) together with (24), for t ∈ ωτ .

Observe that (65) will neither disturb the symmetry of the matrix corre-
sponding to the right-hand side in (22) nor does is endanger the stability of the
scheme, but (66) constitutes, in fact, a third-kind boundary condition of the
form −bvx,1 + (c− d)v0 = e to (23) and ensures stability in case

d =
b

hs
≤ a

h3
f

= c, i.e. h3
f ≤ a

b
hs .

6. The eigenproblem

To analyse the matrix (35)-(33) arising from the difference approximation of
the stationary beam without a junction point, we consider also the fourth-order
boundary value eigenproblem

(67) u(4) = λu, 0 < x < 1, u(0) = u(1) = 0, u′(0) = u′(1) = 0.
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Its difference approximation on the equidistant grid ωh := {xi = ih, 0 ≤ i ≤
≤ N = 1/h} and

◦

ωh := {xi, 2 ≤ i ≤ N − 2} is (remember the definition (17))

(68) yxxxx = λhy, x ∈ ◦

ωh,

(69) y0 = yN = 0, y1 = (4y0+4y2−y3)/7, yN−1 = (4yN+4yN−2−yN−3)/7.

The symmetric and positive definite matrix representing this discrete eigen-
value problem and its boundary conditions appeared already in Section 5.2
containing the parameters α, β, γ, δ. We insert the specific values of these pa-
rameters and write now Ah instead of Ahf

:
(70)

Ah =
1

h4





























26
7 − 24

7 1 0 . . . . . . . . . 0
− 24

7
41
7 −4 1 0 . . . . . . 0

1 −4 6 −4 1 0 . . . 0

0
. . .

. . .
. . .

. . .
. . . 0 0

0 0
. . .

. . .
. . .

. . .
. . . 0

0 . . . 0 1 −4 6 −4 1
0 . . . . . . 0 1 −4 41

7 − 24
7

0 . . . . . . . . . 0 1 − 24
7

26
7





























∈ R
(N−3)×(N−3).

From here, it is immediately clear that for the spectral radius of Ah there holds

ρ(Ah) ≤
16

h4
= ‖Ah‖∞.

When approximating the second order derivative using the classical three-
point difference quotient, the corresponding eigenvalues converge from below
to the exact ones for h → 0. Here, for the difference approximation of (67),
we experience the same behaviour. The next table shows this for the smallest
eigenvalue λh

1 (Ah) rounded to 4 digits after the decimal point:

h 1/20 1/40 1/80 1/160 1/320 1/640

λh
1 490.5717 498.0001 499.9198 500.4027 500.5236 500.5534

From here, we conclude also that the convergence of λh
1 → λ1 is of second

order.

When solving (67) analytically in the usual way, obtaining the solution by
a combination of four exponential functions, you get the eigenvalues as roots
of the equation 1 − cos(φ) cosh(φ) = 0 (and φ = 0 is not an eigenvalue since
the corresponding function satisfying (67) is identically zero).
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cos(φ) and 1−cos(φ)*cosh(φ)

φ

y

Figure 1. The zeros of 1 − cos(φ) cosh(φ). (Because the y-interval shown is
restricted to |y| ≤ 4, parts of this oscillating function are seen as nearly vertical
straight lines.)

The next table exhibits the first zeros of 1− cos(φ) cosh(φ), for comparison
2i+1
2 π (see also Fig. 1) and the corresponding eigenvalues of (67), along with

the first eigenvalues of Ah:

i φi
2i+1
2 π λi = φ4

i λi(Ah), h = 1/640
i = 1 4.7300407449 4.7123889804 500.5639 500.5534
i = 2 7.8532046241 7.8539816340 3803.5371 3803.3684
i = 3 10.9956078380 10.9955742876 14617.6301 14616.5186
i = 4 14.1371654913 14.1371669412 39943.7990 39939.1724

In Theorem 1 we have proved that Ah is positive definite, see (39):
(Ahy, y) ◦

ωh
≥ 64‖y‖2◦

ωh

> 0, 0 6= y ∈ R
N−3. Remark that (·, ·) ◦

ωh
is the

Euclidean scalar product on R
N−3 weighted by h, see (14). This estimate

conforms to the λh
1 -values shown in the above table, but from there and from

the additional result that λh
1 ≈ 460.04495 for h = 1/9, N = 9 (the smallest

number N admitting a full line – of yxxxx,i, not touched by the elimination
of the boundary values – when i = 4 in the original matrix), λh

1 ≥ 460 seems
possible.

7. Numerical experiments

In our numerical experiments, we shall consider not only the explicit schemes
(21)-(24), but besides σ = 0 also σ = 1/3. Remember that the latter value
guarantees unconditional stability (see Sections 5.1 and 5.2, assuming for the
beam equation that the spatial approximation is accomplished by our symmet-
ric matrix) for the approximation of the string and beam equations — without
a junction point. For the explicit scheme, however, the Courant numbers must
not exceed 1.



434 G. Stoyan

First we check the accuracy on an analytical solution to our equations
(1)-(8) in the case of a frame with two strings, at xj,1 = 1

2 and xj,2 = 1
3 :

frame : a = 1,

u = cosαt cos 2πx, 0 ≤ x ≤ 1, 0 ≤ t ≤ T, α := 4π2,

string 1 : b1 =

(

24π

5

)2

,

v(1)(y, t) = 2 cosαt cos
4

3
π(1− 5

8
y), 0 ≤ y ≤ 1, 0 ≤ t ≤ T,

string 2 : b2 =

(

12π

5

)2

,

v(2)(z, t) = cosαt cos
2

3
π(1 +

5

2
z), 0 ≤ z ≤ 1

2
, 0 ≤ t ≤ T.

Let us emphasize that not only the compatibility conditions (8) are satisfied in
both junction points but also the second time derivatives are equal there, so
that (12) holds, too.

For the explicit scheme we are using, in the junction points, a discretized
version of (12) where ∂4

xu ≈ uxxxx, but for ∂
2
xv ≈ vxx (where v = v(1)(y, t) or

v = v(2)(z, t), and h = hy or h = hz, respectively), one-sided approximations
of accuracy O(hn) are employed:

n=1 :

(∂2
xv)(0, t) = vxx,1 +O(h) =

1

h2
(v0 − 2v1 + v2) +O(h),

n=2 :

(∂2
xv)(0, t) = 2vxx,1 − vxx,2 +O(h2)

=
1

h2
(2v0 − 5v1 + 4v2 − v3) +O(h2).

Remark that for both approximations of (12), the coefficient of the value
uk
j ≈ u(xj , tk) in the joint point is positive, namely (for h = hy or h = hz)

(71)

(

6a

h4
x

+
nb

h2

)

uk
j =

a

h4
x

[

−uk
j−2 + 4(uk

j−1 + uk
j+1)− uk

j+2

]

+
b

h2

[

(n2 + 1)vk1 − n2vk2 + (n− 1)vk3
]

.

As anticipated, the results for both versions n = 1, 2 differ in favour of n = 2,
but not significantly in the convergence order. Therefore, we show in the next
table the maximal errors (rounded to 6 digits) for n = 1. The spatial step sizes
for the frame (hx) and the strings (hy, hz) were equal and T = 0.2. The time
step τ was then automatically chosen to satisfy the first condition (62):
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hx 1/18 1/36 1/72 1/144 1/288
n = 1:
frame 0.036266 0.009255 0.002297 0.000569 0.000142
string 1 0.067073 0.017422 0.004238 0.001033 0.000255
string 2 0.036677 0.009639 0.002328 0.000569 0.000142
qf - 3.92 4.03 4.04 4.01
q1 - 3.84 4.11 4.10 4.05
q2 - 3.81 4.14 4.09 4.01
n = 2:
qf - 7.55 5.44 4.69 4.08
q1 - 6.95 5.94 5.44 4.90
q2 - 5.46 5.56 5.46 4.79

We add yet that the final maximal errors for n = 2, hx = 1/288 were by
one order of magnitude better than for n = 1:

n=1: frame: 1.4197-4, string 1: 2.5470-4, string 2: 1.4162-4,

n=2: frame: 1.7927-5, string 1: 3.2281-5, string 2: 2.0656-5.

In the table, the numbers q give the quotient of the present and the previ-
ous computation (qf for the frame, q1, q2 for the two strings), indicating the
convergence rate which in all cases seems to be of second order. The number
of subintervals of the frame was chosen so as to be divisible by 3 and 2. By
the way, the computing time for the last case hx = 1/288 was about 9 hours
(independently of n).

Next we show maximal errors and numerical convergence rates under similar
circumstances as before (hx = hy = hz, T = 0.2) but now for τ = T ·(2hz) and,
more importantly, the schemes were now implicit with σ = 1/3 and realized
by matrices corresponding to the implicit discrete systems for the frame and
the two strings, separately. After each time step, the values uk

j,1, u
k
j,2 at the

junction points on the frame were calculated by (71), n = 1, anew (based on
the new values of u, v(1), v(2) on the frame and the strings, respectively) and

used to overwrite also v
(1,k)
0 , v

(2,k)
0 :

hx 1/18 1/36 1/72 1/144 1/288 1/576 1/1152
frame 3.697-2 4-191-3 1.194-3 4.487-4 1.508-4 4.307-5 1.113-5
string 1 0.3590 8.320-2 1.724-2 4.402-3 1.088-3 2.700-4 6.778-5
string 2 0.1912 0.2498 0.1459 8.414-2 3.912-2 1.930-2 9.555-3
qf - 8.82 3.51 2.66 2.98 3.50 3.87
q1 - 4.31 4.83 3.92 4.04 4.03 3.98
q2 - 0.77 1.71 1.73 2.15 2.03 2.02

Here, the convergence rate q2 shows first order behaviour, but the computations
of the last case hx = 1/1152 took less than one minute using the implicit
schemes.



436 G. Stoyan

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 170
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 160

Figure 2. left: the compound matrix corresponding to (21)-(27), (71), right:
the compound matrix corresponding to (21)-(27), (65)-(66).

We now compare the possibility to connect the frame and the two strings by
either condition (71), n = 1, (a discretized version of (12)) or (65)-(66), using
the implicit scheme, again for σ = 1/3. In both cases we get one compound
matrix, and, for the frame, apply the boundary conditions of Theorem 1. First
we show, see Fig. 2, the two matrices (one for connection (71) and one for
(65)-(66)), multiplying the new, searched values of the solutions u, v(1), v(2)

(including also the boundary values). There is an essential difference between
the two parts of the figure: in the right, the rows and columns corresponding

to v
(ℓ)
0 (= uj) of the strings, ℓ = 1, 2, have been deleted, in other words: the

discrete string equations start from v1, of course taking into account (66), and
only when drawing the whole string, the corresponding v0-value is added.

The values of a and b(1), b(2) are those of the above exact solutions, and
hx = hy = hz = 1/18, τ = 0.2 · (2hz).

When using the considered two compound matrices for larger discretization
numbers, decisive becomes an appropriate scaling to reach smaller (estimates of
the) condition numbers. In the table below we report the estimated condition
numbers. Here, the following scaling has been found appropriate for the rows
containing the boundary conditions or the connections (71) or (65)-(66), by
looking at the matrices and the results of a series of experiments:

rows corresponding to first kind boundary conditions are multiplied by√
aτ/h2

x (the factor for (28)-(29)), and by b(ℓ)τ2/h2
ℓ , where ℓ = 1, 2, h1 = hy,

h2 = hz, respectively,

the rows corresponding to (71) are multiplied by στ2,

the rows corresponding to (66) are multiplied by 2στ3/hℓ, ℓ = 1, 2,

rows corresponding to uj,ℓ = v
(ℓ)
0 , ℓ = 1, 2, are multiplied by b(ℓ)σ/h2

ℓ .

In the table below, cond1 shows the estimates of the condition numbers
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corresponding to the left matrix in Fig. 2 (but for different hx = hy = hz,
τ = 0.2 · (2hz)), and cond2 denotes the estimates corresponding to the right
matrix there. Further, cond3 gives the estimates for the frame matrix alone.
Finally, cond4 denotes the condition number estimate for the case (rejected in
Section 2) that there is no special condition for the junction points at all, only
the corresponding frame values are taken over as boundary value for the strings
(but otherwise applying the above scaling).

hx 1/18 1/36 1/72 1/144 1/288 1/576 1/1152
cond1
(71) 7.32+2 2.17+3 7.54+3 2.80+4 1.06+5 4.09+5 1.60+6
cond2
(65)-(66) 2.57+2 1.23+3 5.55+3 2.48+4 1.00+5 4.01+5 1.45+6
cond3
frame only 3.00+2 1.23+3 5.01+3 2.00+4 7.96+4 3.23+5 1.29+6
cond4, no
condition 1.66+3 1.60+4 1.60+5 1.76+6 1.96+7 2.20+8 2.48+9

This table may convince the Reader that it is worth, also numerically, to
think on special junction point conditions.

8. Conclusion

Though our paper does not give a final solution of the problem to model
mathematically and numerically the junction point between frame and string,
it shows several possibilities which are to be investigated further. As a by-
product, a theorem is proved on difference boundary conditions for the discrete
frame equation which make the whole matrix symmetric and positive definite.
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