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Abstract. The so-called θ-summation is well-known in the theory of ap-
proximation. A remarkable result gives a necessary and sufficient condition
for uniformly or L1-norm convergence of θ-means if θ has compact support.
This condition is nothing else but the integrability of the (trigonometric)
Fourier transform of θ. Later this theorem was improved by Feichtinger
and Weisz showing the same result for θ’s belonging to a suitable Wiener
algebra W (C, `1). If θ is compactly supported then θ ∈W (C, `1) holds ev-
idently but there are functions θ ∈ W (C, `1) with unbounded support. In
this work we extend the statement of Feichtinger and Weisz. To this end
a new space S(C, `1) of functions will be constructed for which we prove
the validity of the integrability condition. A simple consideration leads to
the proper inclusion W (C, `1) ⊂ S(C, `1).

1. Introduction

The so-called θ-summation, as a general method of summation generated
by a single function θ is an intensively investigated area of approximation.
(For this see e.g. [1], [5], [8] and references in [2], [6], [7] as illustration.) In
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this paper we consider θ-means of trigonometric Fourier series and investigate
the question: for what functions θ do we have convergence result. To this end
we summarize briefly the most important concepts, definitions and well-known
facts about θ-summation (for historical background see also the references).

Next we denote by L1 the set of the functions f : R→ R integrable in the
sense of Lebesgue. Furthermore, let ‖f‖1 :=

∫
|f(x)| dx :=

∫ +∞
−∞ |f(x)| dx. If

g ∈ L1 then

Pg(t) :=

+∞∑
k=−∞

g(t+ 2kπ) t ∈ ([−π, π])

is the so-called periodization of g. Since

π∫
−π

+∞∑
k=−∞

|g(t+ 2kπ)|dt =

∫
|g(t)|dt < +∞,

the series
∑+∞
k=−∞ g(t+2kπ) is absolutely convergent a.e. t ∈ R. It is clear that∫ π

−π |Pg(t)|dt ≤ ‖g‖1 and
∫ π
−π Pg(t)dt =

∫
g(t)dt. Moreover, Pg is periodic by

2π.

Now let f ∈ L1[−π, π]. We take it as f : R → R periodic by 2π and for
g ∈ L1 define f ? g as the usual convolution of f and Pg :

f ? g(x) := f ∗ Pg =

π∫
−π

+∞∑
k=−∞

f(x− t)g(t+ 2kπ)dt (x ∈ R).

Then f ?g ∈ L1[−π, π] and
∫ π
−π |f ?g(x)|dx ≤

∫ π
−π |f(x)|dx· ‖g‖1 =: ‖f‖1· ‖g‖1.

For example if f(t) := ej(t) := eıjt (j ∈ Z, t ∈ [−π, π]) then

ej ? g(x) = eıjx
π∫
−π

+∞∑
k=−∞

e−ıjtg(t+ 2kπ)dt =

= eıjx
π∫
−π

+∞∑
k=−∞

e−ıj(t+2kπ)g(t+ 2kπ)dt = eıjx
∫
g(t)e−ıjtdt (x ∈ R),

i.e. ej ? g(x) = eıjxĝ(−j) (x ∈ R). Here ĝ stands for the (trigonometric)
Fourier transform:

ĝ(x) :=

∫
g(t)eıtxdt (x ∈ R).

We remember to the so-called inversion formula: if g, ĝ ∈ L1 then

g(x) =
1

2π
ˆ̂g(−x) =

1

2π

∫
ĝ(t)e−ıtxdt (a.e. x ∈ R).
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(It is well-known that ĝ is continuous, so in this case it can be assumed that g
is also continuous. Hence the above equality holds for all x ∈ R).) Let θ ∈ L1

be given such that θ̂ ∈ L1 and with a natural number m = 1, 2, ... we take

θm(t) :=
m

2π
· θ̂(mt) (t ∈ R).

By means of θm let us considered the operators

T θmf := f ? θm (f ∈ L1[−π, π]).

Then for all f ∈ L1[−π, π] we have

‖T θmf‖1 = ‖f ? θm‖1 ≤ ‖f‖1· ‖θm‖1 =
m‖f‖1

2π

∫
|θ̂(mt)|dt =

=
‖f‖1
2π

∫
|θ̂(t)|dt =

‖θ̂‖1
2π
‖f‖1.

In other words the sequence of (obviously linear) operators

T θm : L1[−π, π]→ L1[−π, π] (0 < m ∈ N)

are uniformly bounded with respect to the norm ‖ · ‖1 of the Banach space

L1[−π, π]. Special (see above) T θmej = ej θ̂m(−j) (j ∈ Z), where by the inver-
sion formula

θ̂m(−j) =
m

2π

∫
θ̂(mt)e−ıjtdt =

1

2π

∫
θ̂(t)e−ıjt/mdt = θ(j/m) (x ∈ R).

Therefore T θmej = θ(j/m)ej (j ∈ Z).

Further we assume that the function θ is also continuous and satisfies the
condition

Cm :=

+∞∑
k=−∞

|θ(k/m)| < +∞ (0 < m ∈ N).

Under these assumptions we consider the mappings σθm (0 < m ∈ N) as follows:

σθmf :=

+∞∑
k=−∞

θ(k/m)ck(f)ek (f ∈ L1[−π, π]),

where ck(f) := (2π)−1
∫ π
−π f(t)e−ıktdt is the usual k-th Fourier coefficient

of f. Since |ck(f)| ≤ ‖f‖1/(2π) (k ∈ Z), i.e.
∑+∞
k=−∞ |θ(k/m)ck(f)ek| ≤
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≤ Cm‖f‖1/(2π), thus the series in question converges uniformly and for ev-
ery f ∈ L1[−π, π] we get

‖σθmf‖1 ≤
+∞∑

k=−∞

|θ(k/m)|· |ck(f)|· ‖ek‖1 ≤ Cm‖f‖1.

This means that for all m = 1, 2, ... the (linear) operator σθm : L1[−π, π] →
→ L1[−π, π] is also bounded. Furthermore,

ck(ej) = δkj =

{
1 (k = j)

0 (k 6= j)
(k, j ∈ Z),

which involves (see above) σθmej = θ(j/m)ej = T θmej (j ∈ Z, 0 < m ∈ N).
From this it follows immediately the analogous equality for all trigonometric
polynomials. They form a dense set in L1[−π, π] with respect to ‖·‖1, therefore

σθmf = T θmf (f ∈ L1[−π, π], 0 < m ∈ N).

A simple calculation shows that

σθmf(x) =

π∫
−π

f(t)Kθ
m(x− t) dt (x ∈ [−π, π]),

where the (2π periodic) kernel Kθ
m is defined as follows:

Kθ
m :=

1

2π

∞∑
k=−∞

θ(k/m)ek (0 < m ∈ N).

The assumption Cm < +∞ guaranties that Kθ
m is continuous. On the other

hand
‖σθmf‖∞ := max

x∈[−π,π]
|σθmf(x)| = ‖T θmf‖∞ ≤

≤ ‖f‖∞· ‖θm‖1 =
1

2π
‖θ̂‖1‖f‖∞ (f ∈ C[−π, π]).

This leads by standard argument to the inequality ‖Kθ
m‖1 ≤ ‖θ̂‖1/(2π) (m =

= 1, 2, . . .), i.e.

sup
0<m∈N

‖Kθ
m‖1 ≤

1

2π
‖θ̂‖1.

A remarkable result in the theory of approximation (see e.g. [8]) says that
in the above estimation we can write equality:

sup
0<m∈N

‖Kθ
m‖1 =

1

2π
‖θ̂‖1.
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Moreover, the ”reverse” implication was also investigated. Namely (see e.g.
[3], [4], [8]), if a continuous and integrable function θ : R → R has compact
support, then the next implication is true:

(∗) sup
0<m∈N

‖Kθ
m‖1 < +∞ =⇒ θ̂ ∈ L1.

Here the assumption on the compactness of the support of θ can be weakened.
To this end let for a function f : R→ R

‖f‖W :=

∞∑
k=−∞

sup
x∈[0,1)

|f(k + x)|

and denote W (C, `1) the Wiener algebra of all continuous functions f : R→ R
for which ‖f‖W < +∞. Then the following statement holds (Feichtinger and
Weisz [2]): the assumption θ ∈W (C, `1) is enough to the implication (∗). It is
clear that every continuous function f : R→ R with compact support belongs
to W (C, `1). Furthermore, a simple example can be constructed to show that
there are functions in W (C, `1) with unbounded supports.

2. The space (S(C, `1), ‖ · ‖S)

Next we prove that the just mentioned result of Feichtinger and Weisz can
be improved. In other words the space W (C, `1) can be so enlarged that the
implication (∗) remains true. For this purpose we introduce for a continuous
function f : R→ R a new norm ‖f‖S as follows:

‖f‖S :=

+∞∑
j=−∞

sup
0<m∈N

1

m

m−1∑
l=0

|f(j + l/m)|

and the space

S(C, `1) := {f ∈ C : ‖f‖S < +∞}.

Since m−1
∑m−1
l=0 |f(j + l/m)| (f ∈ S(C, `1), 0 < m ∈ N, j ∈ Z) is a Riemann

sum of the integral
∫ j+1

j
|f(t)| dt thus

lim
m→∞

1

m

m−1∑
l=0

|f(j + l/m)| =
j+1∫
j

|f(t)| dt.
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Therefore

sup
0<m∈N

1

m

m−1∑
l=0

|f(j + l/m)| ≥
j+1∫
j

|f(t)| dt

and we get ∫
|f(t)| dt =

+∞∑
j=−∞

j+1∫
j

|f(t)| dt ≤

≤
+∞∑
j=−∞

sup
0<m∈N

1

m

m−1∑
l=0

|f(j + l/m)| = ‖f‖S < +∞.

Hence S(C, `1) ⊂ L1. Furthermore, if f ∈ S(C, `1) and m = 1, 2, . . . then

+∞∑
k=−∞

|f(k/m)| ≤ m·
+∞∑
j=−∞

1

m

m−1∑
l=0

|f(j + l/m)| ≤ m· ‖f‖S < +∞.

Next we list some basic properties of (S(C, `1), ‖ · ‖S).

1o First of all, a simple consideration shows that (S(C, `1), ‖·‖S) is a normed
space. Indeed, ‖0‖S = 0 is trivial. If f ∈ S(C, `1) and ‖f‖S = 0 then for every
j ∈ Z, 0 < m ∈ N we have f(j + l/m) = 0 (l = 0, ...,m − 1). Let x ∈ R,
ε > 0. By the continuity of f there are j ∈ Z, 0 < m ∈ N, l = 0, . . . ,m − 1
such that with y := j + l/m the inequality |f(x) − f(y)| = |f(x)| < ε holds.
Hence f(x) = 0, i.e. f ≡ 0. Furthermore, the equality ‖λf‖S = |λ|· ‖f‖S
(f ∈ S(C, `1), λ ∈ R) and the inequality ‖f + g‖S ≤ ‖f‖S + ‖g‖S (f, g ∈
∈ S(C, `1)) are obvious.

2o Now, we take a sequence fn ∈ S(C, `1) (n ∈ N) of functions which is
convergent in S(C, `1). In other words there exists f ∈ S(C, `1) such that

‖fn − f‖S → 0 (n→∞).

This means that

+∞∑
j=−∞

sup
0<m∈N

1

m

m−1∑
l=0

|fn(j + l/m)− f(j + l/m)| → 0 (n→∞).

If 0 6= r ∈ R is a rational number then with suitable j0 ∈ Z, 0 < m0 ∈ N,
l0 = 0, . . . ,m0 − 1 the equality r = j0 + l0/m0 holds. It is clear that

|fn(r)−f(r)| ≤
m0−1∑
l=0

|fn(j0+l/m0)−f(j0+l/m0)| ≤ m0‖fn−f‖S (n ∈ N),

i.e. f(r) = limn→∞ fn(r).
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3o The space (S(C, `1), ‖ · ‖S) does not form a Banach space. Indeed, if
n = 1, 2, . . . and

fn(x) :=

sin(π/x) (1/n ≤ x ≤ 1)

0 (x ∈ R \ (1/n, 1)),

then fn ∈ C and

‖fn‖S = sup
0<m∈N

1

m

m−1∑
l=0

|fn(l/m)| ≤ 1

implies fn ∈ S(C, `1). Furthermore, if n, k,m = 1, 2, ... and k > n, then

m−1∑
l=0

|fn(l/m)− fk(l/m)| =
m−1∑

l=0,1/k<l/m<1/n

|fn(l/m)− fk(l/m)| =

=

m−1∑
l=0,m/k<l<m/n

|fk(l/m)| ≤ m

n
− m

k
.

From this it follows that

‖fn − fk‖S = sup
0<m∈N

1

m

m−1∑
l=0

|fn(l/m)− fk(l/m)| ≤

≤ 1

n
− 1

k
→ 0 (n, k →∞).

Hence the sequence (fn) is a Cauchy sequence with respect to ‖ · ‖S . Assume
the existence f ∈ S(C, `1) such that ‖fn − f‖S → 0 (n→∞). Then it would
be true by 2o for all rational r ∈ (0, 1) that

f(r) = lim
n→∞

fn(r) = sin(π/r).

However, such a continuous function f : R→ R does not exist.

4o Let f ∈ C[0, 1] and

sm(f) :=
1

m

m−1∑
l=0

|f(l/m)| (m = 1, 2, . . .).

If

fml := max{|f(t)| : l/m ≤ t ≤ (l + 1)/m} (l = 0, . . . ,m− 1)
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and

Sm(f) :=
1

m

m−1∑
l=0

fml (m = 1, 2, . . .),

then
s(f) := sup

m
sm(f) ≤ S(f) := sup

m
Sm(f).

Now let n = 1, 2, ... be given and let us consider the function fn ∈ C[0, 1] in
the following way: fn(0) := fn(t) := 0 (1/n ≤ t ≤ 1), fn(1/(2n)) := 1 and
the graph of fn over [0, 1/n] is a triangle. Then S1(fn) = 1 which implies
S(fn) ≥ 1. On the other hand for m = 1, ..., n it follows sm(fn) = 0 but

sm(fn) =
1

m

[m/n]∑
l=1

fn(l/m) ≤ 1

m

[m/n]∑
l=1

1 ≤ 1

n
(m = n+ 1, n+ 2, . . .).

Therefore s(fn) ≤ 1/n (0 < n ∈ N), i.e. it does not exist constant q ≥ 0 such
that S(f) ≤ q· s(f) (f ∈ C[0, 1]).

5o Define for f ∈ S(C, `1) the symbol ‖f‖SW as follows:

‖f‖SW :=

+∞∑
j=−∞

sup
0<m∈N

1

m

m−1∑
l=0

‖fχ[j+l/m,j+(l+1)/m]‖∞.

It is not hard to see that ‖ · ‖SW is norm and ‖ · ‖S ≤ ‖ · ‖SW . However, the
functions fn (n = 1, 2, ...) from 4o show that ‖ ·‖S , ‖ ·‖SW are not equivalent.

6o It is clear that for all continuous functions θ : R→ R

1

m

m−1∑
l=0

|θ(j + l/m)| ≤ sup
0≤x<1

|θ(j + x)| (j ∈ Z),

which means that W (C, `1) ⊂ S(C, `1). A simple example proves that this
inclusion is proper, i.e. W (C, `1) 6= S(C, `1). Indeed, let θ : R → R be a
continuous function such that ‖θχ(j,j+1/j)‖∞ = 1/j (j = 1, 2, ...) and θ(t) = 0
(t ∈ R \ A), where A :=

⋃∞
j=1(j, j + 1/j) (see also Feichtinger and Weisz [2]).

Then θ ∈ L1 and for all m = 1, 2, ... and j ∈ Z

1

m

m−1∑
l=0

|θ(j + l/m)| ≤


0 (j ≤ 0)

m−1
[m/j]∑
l=1

1/j ≤ j−2 (j > 0).

Hence θ ∈ S(C, `1). However,

+∞∑
j=−∞

sup
0≤x<1

|θ(j + x)| =
+∞∑
j=1

1

j
= +∞,

in other words θ /∈ (W, `1).
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3. Main result

Now, we prove the main result of this work.

Theorem 3.1. For all functions θ ∈ S(C, `1) the implication (∗) is true.

Proof. Let m,M,N be positive natural numbers and assume M ≤ mπ.
Then ‖Kθ

m‖1 can be considered as follows (the basic idea in the first steps is
due to [8]):

2π‖Kθ
m‖1 =

π∫
−π

∣∣∣∣∣
+∞∑

k=−∞

θ(k/m)eıkt

∣∣∣∣∣ dt =

mπ∫
−mπ

∣∣∣∣∣ 1

m

+∞∑
k=−∞

θ(k/m)eıkt/m

∣∣∣∣∣ dt ≥

≥
M∫
−M

∣∣∣∣∣ 1

m

+∞∑
k=−∞

θ(k/m)eıkt/m

∣∣∣∣∣ dt ≥
≥

M∫
−M

∣∣∣∣∣ 1

m

mN∑
k=−mN

θ(k/m)eıkt/m

∣∣∣∣∣ dt−
M∫
−M

∣∣∣∣∣∣ 1

m

∑
|k|>mN

θ(k/m)eıkt/m

∣∣∣∣∣∣ dt ≥
≥

M∫
−M

∣∣∣∣∣ 1

m

mN∑
k=−mN

θ(k/m)eıkt/m

∣∣∣∣∣ dt− 2M

m

∑
|k|>mN

|θ(k/m)|.

Here the sum m−1
∑mN
k=−mN θ(k/m)eıkt/m (−M ≤ t ≤M) is nothing else but

a Rieman sum of the continuous function [−N,N ] 3 x 7→ θ(x)eıtx. Therefore

lim
m→∞

1

m

mN∑
k=−mN

θ(k/m)eıkt/m =

N∫
−N

θ(x)eıtxdx (−M ≤ t ≤M).

However, if −M ≤ t ≤M then∣∣∣∣∣ 1

m

mN∑
k=−mN

θ(k/m)eıkt/m

∣∣∣∣∣ ≤ (2N + 1) max
|x|≤N

|θ(x)|,

i.e. by the Lebesgue’s dominated convergence theorem

lim
m→∞

M∫
−M

∣∣∣∣∣ 1

m

mN∑
k=−mN

θ(k/m)eıkt/m

∣∣∣∣∣ dt =

M∫
−M

∣∣∣∣∣∣
N∫
−N

θ(x)eıtxdx

∣∣∣∣∣∣ dt.
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Furthermore,

1

m

∑
|k|>mN

|θ(k/m)| ≤ 1

m

∑
|j|≥N

m−1∑
l=0

|θ(j + l/m)| ≤
∑
|j|≥N

γj ,

where

γj := sup
0<n∈N

1

n

n−1∑
l=0

|θ(j + l/n)|.

We remark that θ ∈ S(C, `1) implies
∑+∞
j=−∞ γj = ‖θ‖S < +∞, i.e.

∑
|j|≥N γj →

→ 0 (N →∞).

Summarizing the above facts we get

2π‖Kθ
m‖1 ≥

M∫
−M

∣∣∣∣∣ 1

m

mN∑
k=−mN

θ(k/m)eıkt/m

∣∣∣∣∣ dt− 2M
∑
|j|≥N

γj ,

from which it follows that

2π sup
0<m∈N

‖Kθ
m‖1 ≥ lim

m→∞

M∫
−M

∣∣∣∣∣ 1

m

mN∑
k=−mN

θ(k/m)eıkt/m

∣∣∣∣∣ dt− 2M
∑
|j|≥N

γj =

=

M∫
−M

∣∣∣∣∣∣
N∫
−N

θ(x)eıtxdx

∣∣∣∣∣∣ dt− 2M
∑
|j|≥N

γj .

Taking into account
∣∣∣∫ N−N θ(x)eıtxdx

∣∣∣ ≤ ‖θ‖1 (|t| ≤ M) the above mentioned

theorem of Lebesgue guaranties that

lim
N→∞

M∫
−M

∣∣∣∣∣∣
N∫
−N

θ(x)eıtxdx

∣∣∣∣∣∣ dt =

M∫
−M

∣∣∣∣∣∣ lim
N→∞

N∫
−N

θ(x)eıtxdx

∣∣∣∣∣∣ dt =

=

M∫
−M

∣∣∣∣∣∣
+∞∫
−∞

θ(x)eıtxdx

∣∣∣∣∣∣ dt =

M∫
−M

∣∣∣θ̂(t)∣∣∣ dt.
Thus

sup
0<m∈N

‖Kθ
m‖1 ≥ lim

N→∞

M∫
−M

∣∣∣∣∣∣
N∫
−N

θ(x)eıtxdx

∣∣∣∣∣∣ dt−2M lim
N→∞

∑
|j|≥N

γj =

M∫
−M

∣∣∣θ̂(t)∣∣∣ dt,
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from which

‖θ̂‖1 = lim
M→∞

M∫
−M

∣∣∣θ̂(t)∣∣∣ dt ≤ 2π sup
0<m∈N

‖Kθ
m‖1 < +∞,

i.e., θ̂ ∈ L1 follows.

4. Remarks

1o It is clear that for compactly supported θ the proof can be simplified (see
e.g. [8]). Namely, in this case supp θ ⊂ [−N,N ] can be supposed in the above
proof. Then

∑
|k|>mN θ(k/m)eıkt/m = 0 (|t| ≤M) holds trivially, hence

2π‖Kθ
m‖1 ≥

M∫
−M

∣∣∣∣∣ 1

m

mN∑
k=−mN

θ(k/m)eıkt/m

∣∣∣∣∣ dt.
Therefore

2π sup
0<m∈N

‖Kθ
m‖1 ≥ lim

m→∞

M∫
−M

∣∣∣∣∣ 1

m

mN∑
k=−mN

θ(k/m)eıkt/m

∣∣∣∣∣ dt =

=

M∫
−M

∣∣∣∣∣∣
N∫
−N

θ(x)eıtxdx

∣∣∣∣∣∣ dt =

M∫
−M

∣∣∣θ̂(x)
∣∣∣ dt

and the proof can be finished as above.

2o If θ ∈ S(C, `1) then

sup
0<m∈N

1

m

+∞∑
k=−∞

|θ(k/m)| ≤
+∞∑
j=−∞

sup
0<m∈N

1

m

m−1∑
l=0

|θ(j + l/m)| = ‖θ‖S < +∞.

So the next estimation holds:

(∗∗) sup
0<m∈N

1

m

+∞∑
k=−∞

|θ(k/m)| < +∞.
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On the other hand a continuous function θ : R → R can be constructed such
that

m−1∑
l=0

|θ(j + l/m)| ∼ |j|−1−1/m (0 < m, |j| ∈ N).

For this θ it follows that
∑+∞
k=−∞ |θ(k/m)| ∼ m. This means that (∗∗) holds but

θ does not belong to S(C, `1)). Indeed, then γj ∼ 1/(|j| ln |j|) (1 < |j| ∈ N),
i.e. ‖θ‖S = +∞.

3o The following question remains open: is the assumption (∗∗) on a con-
tinuous and integrable function θ : R→ R enough to the implication (∗) ?

4o Let θ ∈ S(C, `1) and (X, ‖.‖∗) be defined as follows:

(X, ‖ · ‖∗) :=


(C[−π, π], ‖ · ‖∞)

or(
L1[−π, π], ‖ · ‖1

)
.

It is well-known that the norm of the operator σθm : X → X is nothing else but
‖Kθ

m‖1 (m = 1, 2, ...). Assume that the function θ satisfies also θ(0) = 1. Then
a simple calculation shows that ‖σθmej − ej‖∗ → 0 (m→∞), from which the
same convergence follows for all trigonometric polynomials. Since the set of the
trigonometric polynomials is dense in X, the theorem of Banach and Steinhaus
(taking into account also our theorem) implies the following corollary:

lim
m→∞

‖σθmf − f‖∗ = 0 (f ∈ X) ⇐⇒ θ̂ ∈ L1.

5o We remark that (see Feichtinger and Weisz [2]) if θ ∈W (C, `1), θ(0) = 1,
then

lim
m→∞

‖σθmf − f‖2 = 0 (f ∈ L2[−π, π]).

However, let θ : R → R be continuous such that ‖θχ(j,j+1/j2)‖∞ =
√
j (j =

= 1, 2, . . .) and θ(t) = 0 (t ∈ R \ B), where B :=
⋃∞
j=1(j, j + 1/j2) and

θ(j + 1/(2j2)) =
√
j (0 < j ∈ N). For this function the relation θ ∈ S(C, `1)

follows with j−3/2 instead of j−2 (0 < j ∈ N) analogously as above in
similar situation (see our example for the illustration of W (C, `1) 6= S(C, `1)).
Furthermore for m := 2j2, k := jm+ 1 (0 < j ∈ N) we get

k

m
= j +

1

2j2
,

hence |θ(k/m)| =
√
j. This implies

sup
0<m∈N

sup
k∈Z
|θ(k/m)| = +∞.
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The norm of the operator σθm : L2[−π, π]→ L2[−π, π] (0 < m ∈ N) is ‖σθm‖ =
= supk∈Z |θ(k/m)| (see [2]). Hence sup0<m∈N ‖σθm‖ = +∞ and the theorem of
Banach and Steinhaus gives f ∈ L2 such that the sequence (σθmf) diverges in
‖ ·‖2 norm. In other words the last mentioned Feichtinger and Weisz’s theorem
on L2-convergence cannot be extended to the space S(C, `1).
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