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Abstract. In this paper we introduce a new example of sampling set for
the Bergman space which can be connected to the Blaschke group oper-
ation. Using this set we will generate a multiresolution analysis in the
Bergman space and we present properties of the projection operator on
the resolution levels. The construction is an analogy with the multireso-
lution generated by the discrete affine wavelets in the space of the square
integrable functions on the real line, and in fact is the discretization of the
continuous voice transform generated by a representation of the Blaschke
group over the Bergman space.

1. Introduction

The plan of this paper is as follows. First we present some basic results
connected to the Bergman space, we give the definition of the voice transform
generated by a representation of the Blaschke group on A2. In the second
section we introduce a discrete subset of the Blaschke group and we give a
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Representation Theorem there is a unique element in A2(D), denoted byK(., z),
such that

f(z) = f,K(., z), (f ∈ A2(D), z ∈ D).

The function
K : D× D → C with K(., z) ∈ A2(D)

is called the Bergman kernel for D and it is given by

(1.3). K(ξ, z) =
1

(1− zξ)2
.

The explicit formula for the kernel function shows that we have the following
reproducing formula:

(1.4) f(z) =
1

π



D

f(ξ)
1

(1− ξz)2
dξ1dξ2 (f ∈ A2(D), z, ξ ∈ D, ξ = ξ1 + iξ2).

Applying this formula in particular for f(z) = (1− ξz)−2 for fixed z in the disc
we obtain that

K(y, .)22 =
1

π



D

1

|1− ξz|4dξ1dξ2
=

1

(1− |z|2)2
= K(z, z).

A sequence Γ = {zk : k ∈ N} of points in the unit disc is sampling sequence
for Ap, where 0 < p < ∞, if there exist positive constants A and B such that

(1.5) A||f ||p ≤
∞
k=1

|f(zk)|p(1− |zk|2)2 ≤ B||f ||p, f ∈ Ap.

For p = 2 this is equivalent to the following inequalities:

(1.6) A||f ||2 ≤
∞
k=1

|f, ϕk|2 ≤ B||f ||2, f ∈ A2,

where ϕk(z) = K(z, zk)/K(z, zk) are the normalized Bergman kernel and
localized in zk in (1.3). These kernel functions are not mutually orthogonal, so
far no sequence of distinct points zk ∈ D do the normalized kernel functions
form an orthonormal basis. However, this last inequality shows that these
functions will constitute a frame for A2 if and only if Γ = {zk : k ∈ N} is
a sampling set for A2. A main difference between the Hardy space and the
Bergman space is that there is no counterpart of sampling sequences in Hardy
spaces. The Bergman spaces Ap do have sampling sequences, but examples
are not so easy to construct. Some explicit examples are due to Seip, Duren,
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sufficient condition from which it follows that this set is a sampling set for the
Bergman space. Using this discrete subset of the Blaschke group we construct
a multiresolution decomposition in A2. First the different resolution spaces will
be defined using a nonorthogonal basis which shows the analogy between the
discrete hyperbolic wavelets in A2 and the discrete affine wavelets in L2(R).
Applying the Gram–Schmidt orthogonalization we consider the rational orthog-
onal basis on the n-th multiresolution level Vn. This system is the analogue of
the Mamquist-Takenaka system in the Hardy spaces, possesses similar proper-
ties and is connected to the contractive zero divisors of a finite set in Bergman
space. We prove that the projection operator Pnf(z) on the resolution level
Vn is interpolation operator on the set the

n
k=0 Ak, where Ak is defined by

(2.7), and Pnf(z) → f(z) in norm and uniformly on every compact subset of
the unit disc.

1.1. The Bergman space

We will need the following basic results connected to the Bergman spaces.
For more detailed exposition see for example in [6]. Let denote by D =
= {z ∈ C : |z| < 1 } the unit disc and by T = {z ∈ C : |z| = 1 } the
unit circle.

Recall that if z = x + iy ∈ D then the normalized area measure is
dA(z) = 1

πdxdy. For 0 < p < ∞, an analytic function f : D → C belongs
to the Ap if

(1.1)



D

|f(z)|p dA(z) < ∞.

For p = 2 the set A2 is a reproducing kernel Hilbert space, which is called
the Bergman space. The scalar product in A2 = A2(D) is given by

(1.2) f, g :=


D

f(z)g(z) dA(z).

The Bergman space A2(D) is a closed subspace of L2(D). For each z ∈ D the
point-evaluation map is a bounded linear functional on A2(D). Each function
f ∈ A2(D) has the property

|f(z)|  π−1/2δ(z)−1fA2(D) (z ∈ D),

where δ(z) = dist(z,T). From this it follows that the norm convergence in
A2(D) implies the locally uniform convergence on D. Therefore, by the Riesz
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Gábor and wavelet transforms into a single theory. The common generaliza-
tion of these transforms is the so-called voice transform (see [8]). The voice
transform on Bergman space is induced by a unitary representation of the
Blaschke group on the Bergman space. Results connected the voice transform
on Bergman space were published in [16].

Let us denote by

(1.8) Ba(z) := 
z − b

1− b̄z
(z ∈ C, a = (b, ) ∈ B := D× T, bz = 1)

the so called Blaschke functions. If a ∈ B, then Ba is an 1-1 map on T and D
respectively. The restrictions of the Blaschke functions on the set D or on T
with the operation (Ba1 ◦ Ba2)(z) := Ba1(Ba2(z)) form a group. In the set of
the parameters B := D×T let us define the operation induced by the function
composition in the following way: Ba1

◦Ba2
= Ba1◦a2

. The group (B, ◦) is the
Blaschke group. From the definition it follows that this group is isomorphic with
the group ({Ba,a ∈ B}, ◦). If we use the notations aj := (bj , j), j ∈ {1, 2}
and a := (b, ) =: a1 ◦ a2, then

(1.9) b =
b12 + b2

1 + b1b22
= B(−b2,1)(b12),  = 1

2 + b1b2

1 + 2b1b2
= B(−b1b2,1)

(2).

The neutral element of the group (B, ◦) is e := (0, 1) ∈ B and the inverse
element of a = (b, ) ∈ B is a−1 = (−b, ).

The integral of the function f : B → C, with respect to the left invariant
Haar measure m of the group (B, ◦) can be expressed as

(1.10)



B

f(a) dm(a) =
1

2π



I



D

f(b, eit)

(1− |b|2)2
db1db2dt,

where a = (b, eit) = (b1 + ib2, e
it) ∈ D× T.

It can be shown that this integral is invariant with respect to the left trans-
lation a → a0 ◦ a and under the inverse transformation a → a−1, so Blaschke
group is unimodular.

Let consider the following set of functions

(1.11) Fa(z) :=


(1− |b|2)
1− b̄z

(a = (b, ) ∈ D, z ∈ B).

These functions induce a unitary representation on the space A2. Namely let
define

Uaf := [Fa−1 ]2f ◦B−1
a (a ∈ B, f ∈ A2),

then this is a representation of Blaschke group on the A2, i.e.:
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Schuster, Horowitz, Luecking (see for ex in [19, 6]). An Ap sampling sequence
is never an Ap zero-set. A total characterization of sampling sequences is due
to Kristian Seip and can be given with the uniformly discrete property and
lower density of the set (see [20, 6]). But the computation of the lower density
of a set in general is a difficult task. Duren, Schuster and Vukotic in [7] gave
for sampling sufficient conditions based on the pseudohyperbolic metric, that
are relatively easy to verify.

The pseudohyperbolic metric is defined by

ρ(z, y) =


y − z

1− yz

 (y, z ∈ D).

A sequence Γ = {zk} of points in the unit disc is uniformly discrete if

δ(Γ) = inf
j =k

ρ(zj , zk) = δ > 0.

For 0 <  < 1, a sequence Γ = {zk : k ∈ N} of points in the unit disc is said
to be -net if each point z ∈ D has the property ρ(z, zk) <  for some zk in Γ.
An equivalent statement is that

D =
∞
k=1

∆(zk, ),

where ∆(zk, ) denotes a pseudohyperbolic disc.

In [7] it is shown that for 0 < p < ∞, if Γ is a uniformly discrete -net with

 <
1

1 +


2
p

,

then is a sampling set for Ap.

Schuster and Varolin [22] improved these sufficient condition. They showed
that every uniformly discrete -net sequence with

(1.7)  <


p

p+ 2

is sampling set for Ap. This last sufficient condition will be used in our proof.

1.2. The continuous voice transform on Bergman space

In signal processing and image reconstruction the wavelet and Gábor trans-
forms play an important role. H. Feichtinger and K. Gröchening unified the



337

Multiresolution in the Bergman space 337
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The discretization of the voice transform in general can be achieved using
the unified approach of the atomic decomposition elaborated by Feichtinger and
Gröchenig [8]. This general description can be applied when the integrability
condition of the voice transform is satisfied. In a recent paper [17] it is shown
that, the integrability condition in the Bergman space it is not satisfied. This
motivates to answer the following question.

Question: Find a discrete subset {ak ∈ B} of the Blascke group and a
function g ∈ A2 and generate a multiresolutin in the Bergman space using the
functions Uak

g ?

2. New results

2.1. Special discrete subsets in B and their sampling property

Our goal is to construct a sampling set which is a discrete subset of the
Blaschke group and to generate a multiresolution analysis based on this set in
the Bergman space A2(D).

The one parameter subgroups

(2.1) B1 := {(r, 1) : r ∈ (−1, 1)}, B2 := {(0, ) :  ∈ T}

generate B, i. e.

(2.2) a = (0, 2) ◦ (0, 1) ◦ (r, 1) ◦ (0, 1) (a = (r1, 2), r ∈ [0, 1), 1, 2 ∈ T).

B1 is the analogue of the group of dilation, B2 is the analogue of the group of
translation (see [21]).

The group operation (r, 1) = (r1, 1) ◦ (r2, 1) in B1 can be expressed using
the tangent hyperbolic and its inverse (ath) in the following way

(2.3) r =
r1 + r2
1 + r1r2

= th(ath r1 + ath r2) (r1, r2 ∈ (−1, 1)).

Let denote r = thα, ri = thαi, i = 1, 2. Then by

(r1, 1) ◦ (r2, 1) = (thα1, 1) ◦ (thα2, 1) = (th (α1 + α2), 1),

it follows that (B1, ◦) is isomorphic to (R,+). It is known that (Z,+) is a
subgroup of (R,+), then B1 = {(th k, 1), k ∈ Z} is an one parameter subgroup
of (B1, ◦) (see [23]).
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• Ux◦y = Ux ◦ Uy (x, y ∈ B),

• B  x → Uxf ∈ A2 is continuous for all f ∈ A2.

In [16] it was proved that Ua(a ∈ B) is an unitary, irreducible square inte-
grable representation of the group B on the Hilbert space A2.

The voice transform of f ∈ A2 generated by the representation Ua and by
the parameter g ∈ A2 is the (complex-valued) function on B defined by

(1.12) (Vgf)(a) := f, Uag (a ∈ B, f, g ∈ A2).

This transform is in same relation with the Blaschke group and the Bergman
space as the affine wavelet transform with the affine group and the L2(R) (see
[8], [13], [21]). Indeed let consider the affine group (G, ◦), where

G = {(a,b) : (a, b) ∈ R∗ × R},

(a,b)(x) = ax+ b, R∗ := R \ {0}, 1 ◦ 2(x) = 1(2(x)) = a1a2x+ a1b2 + b1.

The representation of the affine group G on L2(R) is given by

U(a,b)f(x) = |a|−1/2f(a−1x− b) = |a|−1/2f(−1
(a,b)(x)),

where a is the dilatation parameter, and b the translation parameter.

The continuous affine wavelet transform is a voice transform generated by
this representation of the affine group:

Wψf(a, b) = |a|−1/2



R

f(t)ψ(a−1t− b)dt = f, U(a,b)ψ, f, ψ ∈ L2(R).

There is a rich bibliography of the affine wavelet theory (see for example [1, 3,
4, 13, 14]). One important question is the construction of the discrete version,
i.e., to find ψ so that the discrete translates and dilates

ψn,k = 2
−n/2ψ(2−nx− k)

form a (orthonormal) basis in L2(R) and generate a multiresolution (see [3,
4, 14]). Roughly speaking the coefficients of a square integrable function with
respect to ψn,k, which are the values of the affine wavelet transform on a special
discrete lattice:

f, ψn,k =Wψ(2
−n, k).

The discrete lattice in the affine case is determined by the following discrete
subset of the affine group:

Gn,k = {(2−n,−k) : n ∈ Z, k ∈ Z}.
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3. If N(a, k)a−2k = α, is a constant for k ≥ 1, 0 < α < ∞ and

(a− a−1)2 + π2 a
2

α2
< 2p,

then A is a sampling set for Ap.

Proof. 1. For simplicity denote by N = N(a, k). We need to consider two
types of situations. The pair of points lie on different circles, or they may lie on
the same circler of radius rk. Suppose first that the points zk, zmn lie on two
different circles of radius rk and rm. Then the generalized triangle inequality
for the pseudohyperbolic metric (see [6] pp. 38) implies that

ρ(zk, zmn) ≥

rk − rm
1− rkrm

 ≥ |rm−n| ≥ r1 > 0.

Next suppose that the pair of points lie on the same circler of radius rk, and
 = n, then the least pseudohyperbolic distant is attained when  = n+1, then

ρ(zk, zkn) ≥ rk

1− e
2πi
N


1− r2ke

2πi
N


−1

= 2rk sin
π

N


(1− r2k)

2 + 4r2k sin
2 π

N

−1/2

=

=

1 + [(1− r2k)/(2rk sin(π/N))]

2
−1/2

.

But sin(π/N) ≥ (2/π)(π/N) = 2/N , so we deduce that

ρ(zk, zkn) ≥

1 + [(1− r2k)N/(4rk)]

2
−1/2

.

We observe that

(1− r2k)N/(4rk) =
N

(a2k − a−2k)
= Na−2k[1/(1− a−4k)],

and ρ(zk, zkn) has a positive lower bound if α = limk→∞N(a, k)a−2k < ∞ and
ρ(zk, zkn) ≥ 1√

1+α2
. Combining the two lower bounds we obtain the stated

result for the separation constant.

2. For given z = reiθ ∈ D take k and j ∈ {0, 1, · · ·N(a, k) − 1} such that
rk < r ≤ rk+1, θ ∈ [ 2πjN , 2π(j+1)

N ), θkj =
2πj
N , then

1

1− ρ2(z, zkj)
=
(1− rrk)

2 + 4rrk sin
2 θ−θkj

2

(1− r2)(1− r2k)
=

= 1 +
(r − rk)

2 + 4rrk sin
2 θ−θkj

2

(1− r2)(1− r2k)
≤ 1 +

(r − rk)
2 + 4rrk

π2

N2

(1− r2)(1− r2k)
=

= 1 +
(a− a−1)2

4
+
(a2k+2 − a−2k−2)(a2k − a−2k)

4

π2

N2
.
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Let a > 1, denote by

(2.4) B3 =


(rk, 1) : rk =

ak − a−k

ak + a−k
, k ∈ Z


.

It can be proved that (B3, ◦) is another subgroup of (B, ◦), and we have the
following composition rule: (rk, 1)◦(rn, 1) = (rk+n, 1). The hyperbolic distance
of the points rk, rn has the following property:

(2.5) ρ(rk, rn) :=
|rk − rn|
|1− rkrn|

=


ak−a−k

ak+a−k − an−a−n

an+a−n

1− ak−a−k

ak+a−k
an−a−n

an+a−n

 = |rk−n|.

Let N = N(a, k), k ≥ 1 an increasing sequence of natural numbers,
N(a, 0) := 1, and consider the following set of points z00 := 0,

(2.6) A = {zk = rke
i 2π

N ,  = 0, 1, . . . , N(a, k)− 1, k = 0, 1, 2, . . .}

and for a fixed k ∈ N let the level k be

(2.7) Ak = {zk = rke
i 2π

N ,  ∈ {0, 1, . . . , N(a, k)− 1} }.

The radius of the concentric circles are connected to the Blaschke group
operation (rk, 1) ◦ (rn, 1) = (rk+n, 1), this is the analogue property of the di-
latation in the affine wavelet case.

We can choose a and N = N(a, k) such that A will be a set of sampling in
the Bergman space.

First we will study the following questions: for which choice of a and N(a, k)

1. will be A uniformly discrete,

2. will be A an -net set for some 0 <  < 1,

3. will be A sampling sequence for Bergman spaces Ap?

Theorem 2.1. Let a > 1, and (N(a, k), k ≥ 1) a sequence of increasing
natural numbers and consider the set of points A defined by (2.6). Suppose that
there exists α = limk→∞N(a, k)a−2k.

1. If (N(a, k)a−2k, k ≥ 1) is increasing sequence and α is finite, then A is
uniformly discrete and the separation constant satisfies

δ ≥ min


r1,

1√
1 + α2


.

2. If (N(a, k)a−2k, k ≥ 1) is decreasing and 0 < α < ∞, then there exists
0 ∈ (0, 1) for which the set A is 0-net .
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3. If N(a, k)a−2k = α, is a constant for k ≥ 1, 0 < α < ∞ and

(a− a−1)2 + π2 a
2

α2
< 2p,

then A is a sampling set for Ap.

Proof. 1. For simplicity denote by N = N(a, k). We need to consider two
types of situations. The pair of points lie on different circles, or they may lie on
the same circler of radius rk. Suppose first that the points zk, zmn lie on two
different circles of radius rk and rm. Then the generalized triangle inequality
for the pseudohyperbolic metric (see [6] pp. 38) implies that

ρ(zk, zmn) ≥

rk − rm
1− rkrm

 ≥ |rm−n| ≥ r1 > 0.

Next suppose that the pair of points lie on the same circler of radius rk, and
 = n, then the least pseudohyperbolic distant is attained when  = n+1, then

ρ(zk, zkn) ≥ rk

1− e
2πi
N


1− r2ke

2πi
N


−1

= 2rk sin
π

N


(1− r2k)

2 + 4r2k sin
2 π

N

−1/2

=

=

1 + [(1− r2k)/(2rk sin(π/N))]

2
−1/2

.

But sin(π/N) ≥ (2/π)(π/N) = 2/N , so we deduce that

ρ(zk, zkn) ≥

1 + [(1− r2k)N/(4rk)]

2
−1/2

.

We observe that

(1− r2k)N/(4rk) =
N

(a2k − a−2k)
= Na−2k[1/(1− a−4k)],

and ρ(zk, zkn) has a positive lower bound if α = limk→∞N(a, k)a−2k < ∞ and
ρ(zk, zkn) ≥ 1√

1+α2
. Combining the two lower bounds we obtain the stated

result for the separation constant.

2. For given z = reiθ ∈ D take k and j ∈ {0, 1, · · ·N(a, k) − 1} such that
rk < r ≤ rk+1, θ ∈ [ 2πjN , 2π(j+1)

N ), θkj =
2πj
N , then

1

1− ρ2(z, zkj)
=
(1− rrk)

2 + 4rrk sin
2 θ−θkj

2

(1− r2)(1− r2k)
=

= 1 +
(r − rk)

2 + 4rrk sin
2 θ−θkj

2

(1− r2)(1− r2k)
≤ 1 +

(r − rk)
2 + 4rrk

π2

N2

(1− r2)(1− r2k)
=

= 1 +
(a− a−1)2

4
+
(a2k+2 − a−2k−2)(a2k − a−2k)

4

π2

N2
.
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function space by a low resolution approximation and adding to it the successive
details that lift it to resolution levels of increasing detail.

Wavelet analysis couples the multiresolution idea with a special choice of
bases for the different resolution spaces and for the wavelet spaces that repre-
sent the difference between successive resolution spaces. If Vn are the resolution
spaces V0 ⊂ V1 ⊂ . . . ⊂ Vn . . ., then the wavelet spaces Wn are defined by the
equality Wn


Vn = Vn+1.

In the construction of affine wavelet multiresolutions the dilatation is used
to obtain a higher level resolution (f(x) ∈ Vn ⇔ f(2x) ∈ Vn+1) and applying
the translation we remain on the same level of resolution. This field has also a
rich bibliography (see for example [3, 4, 1, 13, 14]).

Using the subgroup B3 of the Blaschke group, a discrete subgroup of B2

and the representation Ua we give a similar construction of the affine wavelet
multiresolution in the Bergman space. To show the analogy with the affine
wavelet multiresolution we first represent the levels Vn by nonorthogonal bases
and then we construct an orthonormal bases in Vn and we give also an orthogo-
nal basis inWn which is orthogonal to Vn. We will show that in the case of this
discretization the analogue of the Malmquist–Takenaka systems for Bergman
space, will span the resolution spaces and the density property will be fulfilled,
i.e.,

∞
k=1 Vk = A2 in norm. Similar multiresolutin results, based on another

discrete subset of the Blaschke group, were obtained by the author in [15] for
the Hardy space H2(T) .

Let formulate the analogue of the multiresolution for the Bergman spaces:

Definition 2.2. Let Vj , j ∈ N be a sequence of subspaces of A2. The
collections of spaces {Vj , j ∈ N} is called a multiresolution if the following
conditions hold:

1. (nested) Vj ⊂ Vj+1,

2. (density) ∪Vj = A2

3. (analogue of dilatation) U(r1,1)−1(Vj) ⊂ Vj+1

4. (basis) There exist ψj (orthonormal) bases in Vj .

Let consider a > 1, denote by rk =
ak−a−k

ak+a−k , k ∈ N, N = Nk = N(a, k) a

sequence of natural numbers such that α = N(a, k)a−2k satisfies

0 < α < ∞, (a− a−1)2 + π2 a
2

α2
< 4,

and let consider zk = rke
i 2π

N ,  = 0, 1, . . . , N(a, k)− 1. If these conditions are
satisfied then, due to Theorem 2.1, A given by (2.6) is a sampling set for A2.
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If (N(a, k)a−2k, k ≥ 1) is decreasing and α = limk→∞N(a, k)a−2k ∈ (0,∞),
then the last term in the previous inequality is upper bounded by

K := 1 +
(a− a−1)2

4
+

a2

4α2
π2.

Then for 0 =

1− 1/K, we have ρ(z, zkj) < 0.

3. Using (1.7) we have that, if (a − a−1)2 + π2a2/α2 < 2p, then 0 <
<


p/(p+ 2), consequently A is sampling sequence for Ap. 

Remark 2.1. From this theorem we obtain that if A is a sampling set for
Ap, then

(a− a−1)2 < 2p,

therefore a must be in the interval (1,
√
2p+

√
2p+4

2 ). Then we can always choose
N = N(a, k) big enough, such that the the sampling condition will be satisfied.
From the point of view of computations and to have on every circle the less
possible numbers, for p = 2 a convenient choice is a = 2, and N(2, k) = 22k+β

for k ≥ 1 with β a fixed integer. Then α = 2β , and the smallest value for β
for which the sampling condition is satisfied is β = 3, then on the k-th circle
we will have N1(2, k) = 2

2k+3 equidistant points corresponding to the roots of
order 22k+3 of the unity. For a =

√
2 for sampling we need N1(

√
2, k) = 2k+2

points.

2.2. Multiresolution analysis in the Bergman space

We start with the general definition of the affine wavelet multiresolution
analysis in L2(R).

Definition 2.1. Let Vj , j ∈ Z be a sequence of subspaces of L2(R). The
collections of spaces {Vj , j ∈ Z} is called a multiresolution analysis with scaling
function φ if the following conditions hold:

1. (nested) Vj ⊂ Vj+1

2. (density) ∪Vj = L2(R)

3. (separation) ∩Vj = {0}
4. (basis) The function φ belongs to V0 and the set {2n/2φ(2nx−k), k ∈ Z}

is a (orthonormal) bases in Vn.

We want to construct an analogue multiresolution decomposition in the
Bergman space. In multiresolution analysis, one decomposes a function space
in several resolution levels and the idea is to represent the functions from the
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function space by a low resolution approximation and adding to it the successive
details that lift it to resolution levels of increasing detail.

Wavelet analysis couples the multiresolution idea with a special choice of
bases for the different resolution spaces and for the wavelet spaces that repre-
sent the difference between successive resolution spaces. If Vn are the resolution
spaces V0 ⊂ V1 ⊂ . . . ⊂ Vn . . ., then the wavelet spaces Wn are defined by the
equality Wn


Vn = Vn+1.

In the construction of affine wavelet multiresolutions the dilatation is used
to obtain a higher level resolution (f(x) ∈ Vn ⇔ f(2x) ∈ Vn+1) and applying
the translation we remain on the same level of resolution. This field has also a
rich bibliography (see for example [3, 4, 1, 13, 14]).

Using the subgroup B3 of the Blaschke group, a discrete subgroup of B2

and the representation Ua we give a similar construction of the affine wavelet
multiresolution in the Bergman space. To show the analogy with the affine
wavelet multiresolution we first represent the levels Vn by nonorthogonal bases
and then we construct an orthonormal bases in Vn and we give also an orthogo-
nal basis inWn which is orthogonal to Vn. We will show that in the case of this
discretization the analogue of the Malmquist–Takenaka systems for Bergman
space, will span the resolution spaces and the density property will be fulfilled,
i.e.,

∞
k=1 Vk = A2 in norm. Similar multiresolutin results, based on another

discrete subset of the Blaschke group, were obtained by the author in [15] for
the Hardy space H2(T) .

Let formulate the analogue of the multiresolution for the Bergman spaces:

Definition 2.2. Let Vj , j ∈ N be a sequence of subspaces of A2. The
collections of spaces {Vj , j ∈ N} is called a multiresolution if the following
conditions hold:

1. (nested) Vj ⊂ Vj+1,

2. (density) ∪Vj = A2

3. (analogue of dilatation) U(r1,1)−1(Vj) ⊂ Vj+1

4. (basis) There exist ψj (orthonormal) bases in Vj .

Let consider a > 1, denote by rk =
ak−a−k

ak+a−k , k ∈ N, N = Nk = N(a, k) a

sequence of natural numbers such that α = N(a, k)a−2k satisfies

0 < α < ∞, (a− a−1)2 + π2 a
2

α2
< 4,

and let consider zk = rke
i 2π

N ,  = 0, 1, . . . , N(a, k)− 1. If these conditions are
satisfied then, due to Theorem 2.1, A given by (2.6) is a sampling set for A2.
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Let us define the n-th resolution level by

(2.13) Vn =


f : D → C, f(z) =

n
k=0

N(a,k)−1
=0

ck,ϕk,, ck, ∈ C


 .

The closed subset Vn is spanned by

(2.14) {ϕk,,  = 0, 1, . . . , N(a, k)− 1, k = 0, . . . , n}.

Continuing this procedure we obtain a sequence of closed, nested subspaces of
A2 for z ∈ D

(2.15) V0 ⊂ V1 ⊂ V2 ⊂ . . . ..Vn ⊂ . . . . A2.

Due to Theorem 2.1 the normalized kernels

{ϕkl(z) =
(1− r2k)

(1− zkz)2
, k = 0, 1, · · · ,  = 0, 1, · · ·N(a, k)− 1}

form a frame system for A2 which implies that this is a complete and a closed
set in norm, i.e.,

(2.16)

n∈N

Vn = A2,

consequently the density property it is satisfied.

For a = 2 andN(2, n) = 22n+3, if a function f ∈ Vn, then U(r1,1)−1f ∈ Vn+1.
This is the analogue of the dilation. For this it is sufficient to show that

(2.17) U(r1,1)−1(ϕk,)(z) = U(r1,1)−1 [(U(rk,1)−1p0)](ze
−i 2π

22k+3 )) =

= [(U(rk+1,1)−1p0)](ze
−i 2π4

22(k+1)+3 ) ∈ Vn+1, k = 1, .., n,  = 1, . . . 22k+3 − 1.

From now on for simplicity we will deal with this case.

Since the set A is a sampling set it follows that is a set of uniqueness for
A2, which means that every function f ∈ A2 is uniquely determined by the
values {f(zk)}. In the paper of Kehe Zhu [27] described in general how can be
recaptured a function from a Hilbert space when the values of the function on a
set of uniqueness are known and developed in details this process in the Hardy
space. At the beginning we will follow the steps of the recapturation process
but we will combine this with the multiresolutin analysis. The elements of the
set

(2.18)


1

(1− zkz)2
,  = 0, 1, . . . , 22k+3 − 1, k = 0, 1, . . . , n.


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This implies that the set of normalized kernels

ϕkl(z) =

(1− r2k)

(1− zkz)2
, k = 0, 1, · · · ,  = 0, 1, · · ·Nk − 1



will constitute a frame system for A2. From the frame theory (see for example
in [10]), or from the atomic decomposition results (see Theorem 3 of [26]),
follows that every function f from A2 can be represented

f(z) =

(k,)

ckϕkl(z)

for some {ck} ∈ 2, with the series converging in A2 norm. The determination
of the coefficients it is related to the construction of the inverse frame operator
(see [10]), which is not an easy task in general. This is the reason why we try to
construct other approximation process for f ∈ A2 such that the determination
of the coefficients follow an exactly defined algorithmic scheme. We note that
Feichtinger and Onchis in the case of the spline-type spaces developed a new
numerical approach for the computation of the dual systems and the coefficients
(see [9]).

Let us consider the function ϕ00 = 1 and let V0 = {c, c ∈ C}. Let us
consider the nonorthogonal hyperbolic wavelets at the first level

(2.8) ϕ1,(z) = (U(z1,1)−1p0)(z) =
(1− r21)

(1− z1z)2
,  = 0, 1, · · · , N(a, 1)− 1.

They can be obtained from ϕ1,0 using the analogue of translation operator
which in the unit disc is a multiplication by a unimodular complex number,
and from ϕ0,0 using first the representation operator U(r1,1)−1 followed by the
translation operator:

(2.9) ϕ1,(z) = ϕ1,0(ze
− 2πi

N(a,1)
)) = (U(r1,1)−1ϕ0,0)(ze

− 2πi
N(a,1)

)).

Let us define the first resolution level as follows

(2.10) V1 =



f : D → C, f(z) =

1
k=0

N(a,k)−1
=0

ck,ϕk,, ck, ∈ C


 .

Let us consider the nonorthogonal wavelets on the n-th level

(2.11) ϕn,(z) = (U(zn,1)−1p0)(z) =
(1− r2n)

(1− znz)2
,  = 0, 1, . . . , N(a, n)− 1,

which can be obtained from ϕn,0 using the translation operator, and from ϕ0,0

using the representation U((rn−1,1)◦(r1,1))−1 , and the translations

(2.12) ϕn,(z) = (U((rn−1,1)◦(r1,1))−1p0)(ze
−i 2π

N(a,n)
)).
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Let us define the n-th resolution level by

(2.13) Vn =


f : D → C, f(z) =

n
k=0

N(a,k)−1
=0

ck,ϕk,, ck, ∈ C


 .

The closed subset Vn is spanned by

(2.14) {ϕk,,  = 0, 1, . . . , N(a, k)− 1, k = 0, . . . , n}.

Continuing this procedure we obtain a sequence of closed, nested subspaces of
A2 for z ∈ D

(2.15) V0 ⊂ V1 ⊂ V2 ⊂ . . . ..Vn ⊂ . . . . A2.

Due to Theorem 2.1 the normalized kernels

{ϕkl(z) =
(1− r2k)

(1− zkz)2
, k = 0, 1, · · · ,  = 0, 1, · · ·N(a, k)− 1}

form a frame system for A2 which implies that this is a complete and a closed
set in norm, i.e.,

(2.16)

n∈N

Vn = A2,

consequently the density property it is satisfied.

For a = 2 andN(2, n) = 22n+3, if a function f ∈ Vn, then U(r1,1)−1f ∈ Vn+1.
This is the analogue of the dilation. For this it is sufficient to show that

(2.17) U(r1,1)−1(ϕk,)(z) = U(r1,1)−1 [(U(rk,1)−1p0)](ze
−i 2π

22k+3 )) =

= [(U(rk+1,1)−1p0)](ze
−i 2π4

22(k+1)+3 ) ∈ Vn+1, k = 1, .., n,  = 1, . . . 22k+3 − 1.

From now on for simplicity we will deal with this case.

Since the set A is a sampling set it follows that is a set of uniqueness for
A2, which means that every function f ∈ A2 is uniquely determined by the
values {f(zk)}. In the paper of Kehe Zhu [27] described in general how can be
recaptured a function from a Hilbert space when the values of the function on a
set of uniqueness are known and developed in details this process in the Hardy
space. At the beginning we will follow the steps of the recapturation process
but we will combine this with the multiresolutin analysis. The elements of the
set

(2.18)


1

(1− zkz)2
,  = 0, 1, . . . , 22k+3 − 1, k = 0, 1, . . . , n.


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Then

(2.20) ψk(z) =
KAm−1

(z, am)
KAm−1(am, am)

and is the solution of the following problem

sup{Ref(am) : f ∈ HAm−1
, f ≤ 1}.

This extremal functions in the context of the Bergman spaces have been studied
extensively in recent years by Hedenmalm [11]. The main result in [11] is that
the function

KAm−1
(z, am)

KAm−1
(am, am)

is a contractive divisor on the Bergman space, vanishes on Am−1, and if A is
not a zero set for A2, as is in our case, the functions converge to 0 as m → ∞.
In Hardy space the partial products of a Blaschke product corresponding to a
nonzero set own all these nice properties.

From the Gram–Schmidt orthogonalization process it follows that

(2.21) Vn = span{ψk,,  = 0, 1, . . . , 2
2k+3 − 1, k = 0, n}.

The wavelet spaceWn is the orthogonal complement of Vn in Vn+1. We will
prove that

(2.22) Wn = span{ψn+1,,  = 0, 1, . . . , 22n+5 − 1}.

If f ∈ Vn, one has f(z) =
n

k=0

22k+3−1
=0 ck,ϕk, ⊂ A2, then using (1.4)

we obtain that

ψn+1j , f =
n

k=0

22k+3−1
=0

ck,ψn+1,j , ϕk, =

n
k=0

22k+3−1
=0

ck,(1− r2k)ψn+1,(zk) = 0, j = 0, 1, . . . 2
2n+5 − 1.

We have proved that for f ∈ Vn

(2.23) f, ψn+1,j = 0,

which is equivalent with

(2.24) ψn+1,j ⊥ Vn, (j = 0, 1, . . . , 22n+5 − 1).
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are linearly independent and constitute a nonorthogonal basis in Vn.

Using Gram–Schmidt orthogonalization process they can be orthogonal-
ized. Denote by ψk, the resulting functions. They can be seen as the ana-
logue of the Malmquist–Takenaka system in the Hardy space. This functions
can be obtained using the following two methods. The first arises from the
orthogonalization procedure. To describe this let reindex the points of the
set A as follows a1 = z00, a2 = z10, a3 = z11, a4 = z12, . . ., a33 = z1,31,
a34 = z2,0, . . ., am = zk . . . , k = 0, 1, . . . .,  = 0, 1, . . . , 22k+3 − 1, and denote
by K(z, zk) =

1
(1−zkz)2

:= K(z, am), then the resulted orthonormal system is

φ00(z) = φ(a1, z) =
K(z, a1)

K(., a1)
, φk(z) = φ(a1, a2, . . . , am, z) =

= K(z, am)−
m−1
i=1

φ(a1, a2, . . . , ai, z)
K(., am), φ(a1, a2, . . . , ai, .)

φ(a1, a2, . . . , ai, .)2
.

Thus the normalized functions

ψk(z) =

φk(z)

φk
, k = 1, 2, . . . ,  = 0, 1, . . . 22k+3



became an orthonormal system. Applying similar construction in Hardy space
we get in this way the Malmquist–Takenaka system. They can be written in a
nice closed form using the Blaschke products. Unfortunately in our situation
this is not the case and the properties of the system can be not seen from the
previous construction.

Another approach is given by Zhu in [27]. He proved that the result of
the Gram–Schmidt process are connected to some reproducing kernels and the
contractive divisors on Bergman spaces. Let denote Am = {a1, a2, . . . am} a
set of distinct points in the unit disc. Let HAm

the subspace of A2 consisting
of all functions in A2 which vanish on Am. HAm

is a closed subspace of A2

and denote by KAm the reproducing kernel of HAm . These reproducing kernels
satisfies the following recursion formula

(2.19) KAm+1
(z, w) = KAm

(z, w)− KAm(z, am+1)KAm(am+1, w)

KAm
(am+1, am+1)

,m ≥ 0,

KA0 := K(z, w) =
1

(1− wz)2
.

The result of the Gram–Schmidt process can be expressed as

K(z, a1)
K(a1, a1)

,
KA1(z, a2)
KA1(a2, a2)

, . . . ,
KAm−1

(z, am)
KAm−1

(am, am)
, . . . .
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Then

(2.20) ψk(z) =
KAm−1

(z, am)
KAm−1(am, am)

and is the solution of the following problem

sup{Ref(am) : f ∈ HAm−1
, f ≤ 1}.

This extremal functions in the context of the Bergman spaces have been studied
extensively in recent years by Hedenmalm [11]. The main result in [11] is that
the function

KAm−1
(z, am)

KAm−1
(am, am)

is a contractive divisor on the Bergman space, vanishes on Am−1, and if A is
not a zero set for A2, as is in our case, the functions converge to 0 as m → ∞.
In Hardy space the partial products of a Blaschke product corresponding to a
nonzero set own all these nice properties.

From the Gram–Schmidt orthogonalization process it follows that

(2.21) Vn = span{ψk,,  = 0, 1, . . . , 2
2k+3 − 1, k = 0, n}.

The wavelet spaceWn is the orthogonal complement of Vn in Vn+1. We will
prove that

(2.22) Wn = span{ψn+1,,  = 0, 1, . . . , 22n+5 − 1}.

If f ∈ Vn, one has f(z) =
n

k=0

22k+3−1
=0 ck,ϕk, ⊂ A2, then using (1.4)

we obtain that

ψn+1j , f =
n

k=0

22k+3−1
=0

ck,ψn+1,j , ϕk, =

n
k=0

22k+3−1
=0

ck,(1− r2k)ψn+1,(zk) = 0, j = 0, 1, . . . 2
2n+5 − 1.

We have proved that for f ∈ Vn

(2.23) f, ψn+1,j = 0,

which is equivalent with

(2.24) ψn+1,j ⊥ Vn, (j = 0, 1, . . . , 22n+5 − 1).
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From the recursion relation (2.19) it follows that

(2.29) KN (z, ξ) =

N
m=1

(KAm−1
(z, ξ)−KAm

(z, ξ)) = K(z, ξ)−KAN
(z, ξ)

From this relation it follows that the values of the kernel-function in the
points zk, ( = 0, . . . ., 2

2k+3 − 1, k = 0, . . . , n) are equal to

(2.30) K(zkl, ξ) =
1

(1− zkξ)2
.

Using again formula (1.4) we have

(2.31) Pnf(zk) =



D

f(w)

(1− wzmj)2
dA(w) = f(zmj)

for (j = 0, . . . ., 22m+3−1, m = 0, . . . , n). We obtain that Pnf is interpolation
operator for every f ∈ A2 on the set ∪n

m=0Am.

Because of 2.16 and 2.21 {ψk,, k = 0, · · · ,∞,  = 0, 1, . . . , 22k+3 − 1} is
a closed set in the Hilbert space A2, we have that that f − Pnf → 0 as
n → ∞. Since convergence in A2 norm implies uniform convergence on every
compact subset inside the unit disc, we conclude that Pnf(z)→ f(z) uniformly
on every compact subset of the unit disc. From Theorem 5.3.1 of [18] there

exists a unique f̂n ∈ Vn with minimal norm such that

(2.32) f̂n(zmj) = f(zmj), (j = 0, . . . ., 22m+3 − 1, m = 0, . . . , n),

f̂n is uniquely determined by the interpolation conditions and is equal to the
orthogonal projection of f on Vn, thus f̂n(z) = Pnf(z). 

2.4. Reconstruction algorithm

In what follows we propose a computational scheme for the best approxi-
mant in the wavelet base {ψk,,  = 0, 1, . . . , 2

2k+3 − 1, k = 0, . . . , n}.
The projection of f ∈ A2 onto Vn+1 can be written in the following way:

(2.33) Pn+1f = Pnf +Qnf,

where

(2.34) Qnf(z) :=

22n+5−1
=0

f, ψn+1,ψn+1,(z).
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From

(2.25) Vn+1 = Vn


span{ϕn+1,j , j = 0, 1, . . . , 2

2n+5 − 1}

it follows that Wn is an 2
2n+5 dimensional space and

(2.26) Wn = span{ψn+1,,  = 0, 1, . . . , 22n+5 − 1}.

2.3. The projection operator corresponding to the n-th
resolution level

Let us consider the orthogonal projection operator of an arbitrary function
f ∈ A2 on the subspace Vn given by

(2.27) Pnf(z) =

n
k=0

22k+3−1
=0

f, ψk,ψk,(z).

This operator is called the projection of f at scale or resolution level n and
Pnf(z) is a rational function.

Theorem 2.2. For f ∈ A2 the projection operator Pnf is an interpolation

operator in the points zk = rke
i 2π

22k+3 , ( = 0, . . . ., 22k+3 − 1, k = 0, . . . , n),
is norm convergent in A2 to f , i.e.

f − Pnf → 0, n → ∞,

uniformly convergent inside the unit disc on every compact subset, and is the
solution of a minimal norm interpolation problem.

Proof. Let consider N = 1+25+ · · ·+22n+3 and the corresponding kernel
function of the projection operator

KN (z, ξ) =

n
k=0

22k+3−1
=0

ψk,(ξ)ψk,(z) =

(2.28) =

N
m=1

KAm−1(z, am)
KAm−1

(am, am)


KAm−1(ξ, am)
KAm−1

(am, am)


=

=

N
m=1

KAm−1
(z, am)KAm−1

(am, ξ)

KAm−1(am, am)
.
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From the recursion relation (2.19) it follows that

(2.29) KN (z, ξ) =

N
m=1

(KAm−1
(z, ξ)−KAm

(z, ξ)) = K(z, ξ)−KAN
(z, ξ)

From this relation it follows that the values of the kernel-function in the
points zk, ( = 0, . . . ., 2

2k+3 − 1, k = 0, . . . , n) are equal to

(2.30) K(zkl, ξ) =
1

(1− zkξ)2
.

Using again formula (1.4) we have

(2.31) Pnf(zk) =



D

f(w)

(1− wzmj)2
dA(w) = f(zmj)

for (j = 0, . . . ., 22m+3−1, m = 0, . . . , n). We obtain that Pnf is interpolation
operator for every f ∈ A2 on the set ∪n

m=0Am.

Because of 2.16 and 2.21 {ψk,, k = 0, · · · ,∞,  = 0, 1, . . . , 22k+3 − 1} is
a closed set in the Hilbert space A2, we have that that f − Pnf → 0 as
n → ∞. Since convergence in A2 norm implies uniform convergence on every
compact subset inside the unit disc, we conclude that Pnf(z)→ f(z) uniformly
on every compact subset of the unit disc. From Theorem 5.3.1 of [18] there

exists a unique f̂n ∈ Vn with minimal norm such that

(2.32) f̂n(zmj) = f(zmj), (j = 0, . . . ., 22m+3 − 1, m = 0, . . . , n),

f̂n is uniquely determined by the interpolation conditions and is equal to the
orthogonal projection of f on Vn, thus f̂n(z) = Pnf(z). 

2.4. Reconstruction algorithm

In what follows we propose a computational scheme for the best approxi-
mant in the wavelet base {ψk,,  = 0, 1, . . . , 2

2k+3 − 1, k = 0, . . . , n}.
The projection of f ∈ A2 onto Vn+1 can be written in the following way:

(2.33) Pn+1f = Pnf +Qnf,

where

(2.34) Qnf(z) :=

22n+5−1
=0

f, ψn+1,ψn+1,(z).



350

Multiresolution in the Bergman space 351

22(k−1)+3 − 2, . . . , 0, etc., this is equivalent to
(2.41)


1
0
0
.
.
.
0




=




ψk,(zk,) 0 0 . . . 0
ψk,−1(zk,) ψk,−1(zk,−1) 0 . . . 0
ψk,−2(zk,) ψk,−2(zk,−1 0 . . . 0

...
...

ψ00(zk,) ψ00(zk,−1) ψ00(zk,−2) . . . ψ00(z00)







ck,
ck,−1

ck,−2

...
c00




.

Because on the main diagonal the elements of the matrix are different from
zero this system has a unique solution (ck,, ck,−1, ck,−2, . . . , c00)

T . If we de-
termine this vector, then we can compute the exact value of f, ψk, knowing
the values of f on the set

n
k=0 Ak.

Indeed, using again the partial fraction decomposition of ψk, and the re-
construction formula formula we get that

(2.42)

f, ψk, =
k−1
k=0

22k

−1

=0

ck,


f(ξ),

1

(1− zkξ)2


+

+


j=0

ck,j


f(ξ),

1

(1− zkjξ)2


=

=
k−1
k=0

22k

−1

=0

ck,f(zk,) +


j=0

ck,jf(zk,j).

Conclusion We have introduced a new sampling set for Ap which is con-
nected to the Blaschke group operation. We have generated a multiresolution
in A2 and we have constructed a rational orthogonal wavelet system which
generates the levels of the multiresolution. Measuring the values of the func-
tion f in the points of the set A =

n
k=0 Ak ⊂ D we can write the operator

(Pnf, n ∈ N) which is convergent in A2 norm to f , is the minimal norm in-
terpolation operator on the set the

n
k=0 Ak and Pnf(z)→ f(z) uniformly on

every compact subset of the unit disc. We described a computational algorithm
for the determination of the wavelet coefficients.
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This operator has the following properties

(2.35) Qnf(zk) = 0, k = 1, . . . , n,  = 0, 1, . . . , 22n+3 − 1.

Consequently Pn contains information on low resolution, i.e., until the level
An, and Qn is the high resolution part. After n steps

(2.36) Pn+1f = P1f +

n
k=1

Qnf.

Thus

(2.37) Vn+1 = V0


W0


W1


. . .


Wn.

The set of coefficients of the best approximant Pnf

(2.38) {bk = f, ψk,,  = 0.1, . . . 22k+3 − 1 k = 0, 1, . . . , n}

is the (discrete) hyperbolic wavelet transform of the function f ∈ A2. Thus it is
important to have an efficient algorithm for the computation of the coefficients.

The coefficients of the projection operator Pnf can be computed if we know
the values of the functions on

n
k=0 Ak. For this reason we express first the

function ψk, using the bases {ϕk, 
 = 0, 1, . . . 22k

+3 − 1, k = 0, . . . , k}, i.e.
we write the partial fraction decomposition of ψk :

(2.39) ψk, =

k−1
k=0

22k
+3−1
=0

ck,
1

(1− zkξ)2
+


j=0

ck,j
1

(1− zkjξ)2
.

Using the orthogonality of the functions

{ψk, 
 = 0, 1, . . . 22k

+3 − 1, k = 0, . . . , k}

and the formula (1.4) we obtain that

(2.40)

δknδm = ψnm, ψk =

=
k−1
k=0

22k
+3−1
=0

ck,ψn,m(zk) +


j=0

ck,jψn,m(zkj),

(m = 0, 1, . . . 22n+3 − 1, n = 0, . . . , k).

If we order these equalities so that we write first the relations (2.40) for n = k
and m = , − 1, . . . , 0 respectively, then for n = k− 1 and m = 22(k−1)+3 − 1,
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22(k−1)+3 − 2, . . . , 0, etc., this is equivalent to
(2.41)


1
0
0
.
.
.
0




=




ψk,(zk,) 0 0 . . . 0
ψk,−1(zk,) ψk,−1(zk,−1) 0 . . . 0
ψk,−2(zk,) ψk,−2(zk,−1 0 . . . 0

...
...

ψ00(zk,) ψ00(zk,−1) ψ00(zk,−2) . . . ψ00(z00)







ck,
ck,−1

ck,−2

...
c00




.

Because on the main diagonal the elements of the matrix are different from
zero this system has a unique solution (ck,, ck,−1, ck,−2, . . . , c00)

T . If we de-
termine this vector, then we can compute the exact value of f, ψk, knowing
the values of f on the set

n
k=0 Ak.

Indeed, using again the partial fraction decomposition of ψk, and the re-
construction formula formula we get that

(2.42)

f, ψk, =
k−1
k=0

22k

−1

=0

ck,


f(ξ),

1

(1− zkξ)2


+

+


j=0

ck,j


f(ξ),

1

(1− zkjξ)2


=

=
k−1
k=0

22k

−1

=0

ck,f(zk,) +


j=0

ck,jf(zk,j).

Conclusion We have introduced a new sampling set for Ap which is con-
nected to the Blaschke group operation. We have generated a multiresolution
in A2 and we have constructed a rational orthogonal wavelet system which
generates the levels of the multiresolution. Measuring the values of the func-
tion f in the points of the set A =

n
k=0 Ak ⊂ D we can write the operator

(Pnf, n ∈ N) which is convergent in A2 norm to f , is the minimal norm in-
terpolation operator on the set the

n
k=0 Ak and Pnf(z)→ f(z) uniformly on

every compact subset of the unit disc. We described a computational algorithm
for the determination of the wavelet coefficients.
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[10] Gröchenig, K., Fondation of Time-Frequency Analysis, Birkhöser
Boston, 2001, ISBN 0-8176-4022-3.

[11] Hedenmalm, H., A factorization for square area-integrable analytic
functions, J. Reine Angew. Math., 422 (1991), 45–68.

[12] Hendenmalm, H., B. Korenblum and K. Zhu, Theory of Bergman
Spaces, Graduate Text in Mathematics 199, Springer-Verlag, New York,
(2000).

[13] Heil C.E. and D.F. Walnut, Continuous and discrete wavelet trans-
forms, SIAM Review, 31, No. 4, December (1989), 628–666.

[14] Mallat, S., Theory of multiresolution signal decomposition: The wavelet
representation, IEEE Trans. Pattern. Anal. Math. Intell., 11(7) (1989),
674–693.

[15] Pap, M., Hyperbolic wavelets and multiresolution in H2(T), J. Fourier
Anal. Appl., 17(5) (2011), 755–776, DOI: 10.1007/s00041-011-9169-2.



353

Multiresolution in the Bergman space 353

[16] Pap, M. and F. Schipp, The voice transform on the Blaschke group
III., Publ. Math., 75(1-2) (2009), 263–283.

[17] Pap, M., Properties of the voice transform of the Blaschke group and
connection with atomic decomposition results in the weighted Bergman
spaces, Journal of Mathematical Analysis and Applications, 389 (2012),
340–350, DOI 10.1016/j.jmaa.2011.11.060.

[18] Partington, J., Interpolation, Identification and Sampling, volume 17
of London Mathematical Society Monographs, Oxford University Press,
1997.

[19] Seip, K., Interpolattion and Identification in Spaces of Analytic Func-
tions, American Mathemathical Society, Univ. Lect. Series vol. 33, 2004,
ISBN: 0-8218-3554-8.

[20] Seip, K., Berling type density theorems in the unit disc, Invent. Math.,
113 (1994), 21–39.

[21] Schipp, F., Wavelets on the disc, in: Proc. Workshop on System and
Control Theory, Budapest, Univ. Technology and Economics, Comp. and
Automation Research Institute of HAS, 2009, 101-109.

[22] Schuster, A. and D. Varoline, Interpolation and sampling on
Riemann surfaces, Rev. Mat. Iberoamericana, 24(2) (2008), 499–530.
arXiv:math/0310174v2.

[23] Soumelidis, A., J. Bokor and F. Schipp, Signal and system repre-
sentations on hyperbolic groups: beyond rational Orthogonal Bases, ICC
2009 7th IEEE, International Conference on Computational Cybernetics
ICCC 2009. Palma de Mallorca, (Length: 14 page).

[24] Schipp, F. and W.R. Wade, Transforms on Normed Fields, Leaflets in
Mathematics, Janus Pannonius University Pécs, 1995.
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Abstract. Let G0 ⊆ G be Abelian groups. We prove that if Γ ∈ G,
f0, f1, f2, f3, f4, f5 are G-valued completely additive functions and

5
j=0

fj(n + j) + Γ ∈ G0 for all n ∈ Z,

then Γ ∈ G0 and fj(n) ∈ G0 for all n ∈ Z, j ∈ {0, 1, · · · , 5}.

1. Introduction

Let, as usual, P, N, Z, Q, R be the set of primes, positive integers,
integers, rational and real numbers, respectively. For each real number z we
define  z  as follows:

 z = min
k∈Z

| z − k | .

Key words and phrases: Additive function, Abelian group, G-valued completely additive
functions.
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