
279

Annales Univ. Sci. Budapest., Sect. Comp. 39 (2013) 279–290

ALGORITHMIC CONSTRUCTION OF

SIMULTANEOUS NUMBER SYSTEMS IN THE

LATTICE OF GAUSSIAN INTEGERS
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Abstract. In [1] number system constructions were analysed using general
block diagonal bases. As a special case simultaneous systems were consid-
ered in the lattice of Gaussian integers. Extending the result of G. Nagy
[2] it was proved that except 43 cases, the Gaussian integers can always
serve as basic blocks for simultaneous number systems using dense digit
sets. In this paper we analyze the remaining cases and we give a complete
solution for the problem.

1. Introduction

Let Λ be a lattice in Rn, M : Λ → Λ be a linear operator such that
det(M) = 0, and let D be a finite subset of Λ containing 0.

Definition 1.1. The triple (Λ,M,D) is called a generalized number system
(GNS) if every element x of Λ has a unique, finite representation of the form

x =

l
i=0

M idi

where di ∈ D and l ∈ N, dl = 0.
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dense digit set (a dense digit set consists of elements with the smallest norm
from each congruent class, see [5]) except 43 cases. The present paper deals
with the remaining cases by constructing appropriate digit sets algorithmically
or proving the non-existence of such digit sets.

2. The algorithm

In order to be able to examine simultaneous Gaussian systems for the re-
maning 43 cases we developed a construction algorithm.

The simultaneous Gaussian GNS construction algorithm clearly terminates
either with an output that the construction is not possible, or with an appro-
priate digit set, or with a remark of an unsuccessfully construction attempt.

The FindPeriods(M,D) function in lines 4 and 23 can either be the α-type
(covering-type, box-type) or the β-type (Brunotte-type) method [6, 7].

The proper work of lines 5–17 is based on the following

Lemma 2.1. Let Cγ be the coset of the factor group Z4/MZ4 represented
by γ ∈ D where M is either an A-type or a B-type base and let D ⊂ W =
= {(x, y, x, y)T : x, y ∈ Z} be a digit set. If each element c ∈ Cγ ∩W satisfies

(I −M)−1c = πc ∈ Z4

then (Z4,M,D) can not be a number system for any digit set D ⊂ W .

Proof. Let M∗ · (x, y, x, y)T = (α1(x, y), α2(x, y), α3(x, y), α4(x, y))
T and

letM∗γ = (β1, β2, β3, β4)
T . HereM∗ means the adjoint ofM (i.e. the elements

are the appropriate sub-determinants). Then the elements of Cγ ∩W can be
expressed parametrically as common solution of the system of equations

(2.1) {αi(x, y) ≡ βi (mod det(M)), (1 ≤ i ≤ 4)}.

If each element c ∈ Cγ ∩W satisfy (I −M)−1c = πc ∈ Z4 then πc = c+Mπc,
therefore there is always a loop {πc → πc} in the system. In other words in
these cases every element c ∈ Cγ ∩W result in a loop, hence it can not be a
number system. 

The algorithm also outputs the representants (γ ∈ W ) of such congruent
classes. Observe that the solution of (2.1) is independent of the choice of γ, i.e.
if γ ≡ γ1 (mod det(M)) then the solutions are the same.

The while cycle in lines 18–25 finds the elements with the maximal norm
from each non-trivial cycle Ci and replaces the congruent digits with digits
from the same coset that have bigger norms in a minimal measure.
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We may assume thatM is integral acting on Λ = Zn. Clearly, Λ is a finitely
generated free abelian group with addition. If two elements of Λ are in the same
coset of the factor group Λ/MΛ then they are said to be congruent modulo M .

Theorem 1.1 ([3]). If (Λ,M,D) is a number system then

(1) D must be a complete residue system modulo M ,

(2) M must be expansive and

(3) det(I −M) = ±1.

If a system fulfills these conditions then it is a radix system and the operator
M is called a radix base.

Let φ : Λ → Λ, x
φ→ M−1(x − d) for the unique d ∈ D satisfying x ≡ d

(mod M). Since M−1 is contractive and D is finite, there exists a norm .
on Rn and a constant C ∈ R such that the orbit of every x ∈ Λ eventually
enters the finite set {x ∈ Λ : x < C} for the repeated application of φ.
This means that the sequence (path) x, φ(x), φ2(x), . . . is eventually periodic
for all x ∈ Λ. If a points p ∈ Λ is periodic then p ≤ L = Kr/(1− r), where
r = M−1 = supx≤1 M−1x < 1 and K = maxd∈D d (see [6]). Let us
denote the set of periodic elements by P. The paths of all periodic elements
constitute a finite number of disjoint cycles Ci. Then, the number system
property is equivalent to P = {0}, or with the situation that the system has
only one cycle C1 = {0→ 0}.

In this paper we consider special block diagonal systems (Λ1 ⊗ Λ1,M1 ⊕
⊕M2, D), where Λ1 = Z2 is the lattice of the the Gaussian integers, M1 and
M2 are operators of the form

�
a −b
b a


(a, b ∈ Z), dj = (vT ||vT )T ∈ D (v ∈ Λ1),

⊗,⊕ and || denote the direct product, the direct sum, and the concatenation,
respectively, furthermore vT (transpose of v) denotes a row vector. These 4-
dimensional systems can be considered as simultaneous systems of the Gaussian
integers. Simultaneous systems with one dimensional blocks were introduced
and investigated by Indlekofer et al. [4]. In our case the digits are in the
subspace

W = {(x, y, x, y)T : x, y ∈ Z} ≤ Z4 .

It was proved in [1, 2] that the only operators which may serve as bases of
simultaneous Gaussian number systems must have the form

MA(a, b) =



a −b 0 0
b a 0 0
0 0 a+ 1 −b
0 0 b a+ 1


 ,MB(a, b) =



a −b 0 0
b a 0 0
0 0 a −b− 1
0 0 b+ 1 a


 .

The first one is called an A-type and the second one is called a B-type base.
Moreover, every radix base having one of these forms is a valid base using the
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dense digit set (a dense digit set consists of elements with the smallest norm
from each congruent class, see [5]) except 43 cases. The present paper deals
with the remaining cases by constructing appropriate digit sets algorithmically
or proving the non-existence of such digit sets.

2. The algorithm

In order to be able to examine simultaneous Gaussian systems for the re-
maning 43 cases we developed a construction algorithm.

The simultaneous Gaussian GNS construction algorithm clearly terminates
either with an output that the construction is not possible, or with an appro-
priate digit set, or with a remark of an unsuccessfully construction attempt.

The FindPeriods(M,D) function in lines 4 and 23 can either be the α-type
(covering-type, box-type) or the β-type (Brunotte-type) method [6, 7].

The proper work of lines 5–17 is based on the following

Lemma 2.1. Let Cγ be the coset of the factor group Z4/MZ4 represented
by γ ∈ D where M is either an A-type or a B-type base and let D ⊂ W =
= {(x, y, x, y)T : x, y ∈ Z} be a digit set. If each element c ∈ Cγ ∩W satisfies

(I −M)−1c = πc ∈ Z4

then (Z4,M,D) can not be a number system for any digit set D ⊂ W .

Proof. Let M∗ · (x, y, x, y)T = (α1(x, y), α2(x, y), α3(x, y), α4(x, y))
T and

letM∗γ = (β1, β2, β3, β4)
T . HereM∗ means the adjoint ofM (i.e. the elements

are the appropriate sub-determinants). Then the elements of Cγ ∩W can be
expressed parametrically as common solution of the system of equations

(2.1) {αi(x, y) ≡ βi (mod det(M)), (1 ≤ i ≤ 4)}.

If each element c ∈ Cγ ∩W satisfy (I −M)−1c = πc ∈ Z4 then πc = c+Mπc,
therefore there is always a loop {πc → πc} in the system. In other words in
these cases every element c ∈ Cγ ∩W result in a loop, hence it can not be a
number system. 

The algorithm also outputs the representants (γ ∈ W ) of such congruent
classes. Observe that the solution of (2.1) is independent of the choice of γ, i.e.
if γ ≡ γ1 (mod det(M)) then the solutions are the same.

The while cycle in lines 18–25 finds the elements with the maximal norm
from each non-trivial cycle Ci and replaces the congruent digits with digits
from the same coset that have bigger norms in a minimal measure.
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randomized digit searching algorithm, where the elements of the full residue
system were chosen randomly from the set {(x, y, x, y)T ,−3 ≤ x, y ≤ 3}.

Figures 1–3 show the GNS results, i.e., when the digit sets with the ap-
propriate operators form simultaneous Gaussian number systems. The marked
points (x, y) ∈ S in the pictures denote that the vecor (x, y, x, y)T belongs to
the appropriate digit set. Tables 1–2 show the systems which can not be si-
multaneous Gaussian number systems for any digit set D. The tables contain
the γ residue class representants as well.

The complete computation time on a single laptop was approximately 5
minutes.

Example 2.1. Consider the base M = MA(1, 1). Then the elements of a
dense digit set are

D =

(0, 0, 0, 0)T , (1, 0, 1, 0)T , (0, 1, 0, 1)T , (1, 1, 1, 1)T , (−1, 0,−1, 0)T ,
(0,−1, 0,−1)T , (−1,−1,−1,−1)T ,
(−1, 1,−1, 1)T , (1,−1, 1,−1)T , (−1, 2,−1, 2)T


.

In line 4 FindPeriods(M,D) gives the following non-trivial loops (we used
the α-type method):

• (−1,−1, 0, 1)T → (−1,−1, 0, 1)T

• (−1, 1,−1, 0)T → (−1, 1,−1, 0)T

• (1, 1, 0, 1)T → (1, 1, 0, 1)T

• (1,−1, 1, 0)T → (1,−1, 1, 0)T

The first loop element congruent with the digit (−1, 1,−1, 1)T . The set of
equations (2.1) is

{−5x+ 5 y = 10,−2x+ 4 y = 6, 4x+ 2 y = −2, 5x+ 5 y = 0} .

The common solution is x = 4k1+ k2+3, y = 3k2+2k1+3 (k1, k2 ∈ Z). Then

(I−M)−1(x, y, x, y)T = (−3k2−2k1−3, 4k1+k2+3,−3k1−2k2−3, k1−k2)
T ∈ Z4.

The computations are similar for the other three loops. Hence, the system
(Z4,M,D) can not be a simultaneous Gaussian number system for any digit
set D ⊂ W .
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Simultaneous Gaussian GNS Construction Algorithm

Precondition: Given radix base M and dense digit set D

1: Limit ← 15  This limit bounds the search space
2: LimitCounter ← 1
3: LoopCounter ← 0

4: Cycles ← FindPeriods(M,D)
5: if there are non-trivial loops in Cycles then
6: for all non-trivial loop {ρ → ρ} do
7: Cγ ← elements of the factor group Z4/MZ4 represented by γ
8: where ρ ≡ γ (mod det(M)), γ ∈ D
9: if all elements c of Cγ ∩W satisfy (I −M)−1c ∈ Z4 then

10: Print(”Cγ produces loops ”, γ)
11: LoopCounter ← LoopCounter + 1
12: end if
13: end for
14: if LoopCounter > 0 then
15: Return(”GNS construction is not possible”)
16: end if
17: end if

18: while LimitCounter ≤ Limit and Cycles =

{0→ 0}


do

19: for all periodic cycle Cyc ∈ Cycles except {0→ 0} do
20: Find the element p ∈ Cyc with maximal norm
21: Replace d ∈ D with d∗ ∈ S in D for which d ≡ d∗ ≡ p (mod M),

d ≤ d∗ and d∗ is the smallest possible
22: end for
23: Cycles ← FindPeriods(M,D)
24: LimitCounter ← LimitCounter + 1
25: end while

26: if LimitCounter ≤ Limit then
27: Print(”GNS has been found, the new digit set is: ”)
28: Draw(D)
29: else
30: Print(”Unable to construct GNS with the given limit of attempts.”)
31: end if

We implemented the algorithm in Maple language. The simultaneous Gaus-
sian GNS construction algorithm terminates successfully in all but one cases.
For this MA(−2, 1) case instead of raising the Limit parameter we applied a
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randomized digit searching algorithm, where the elements of the full residue
system were chosen randomly from the set {(x, y, x, y)T ,−3 ≤ x, y ≤ 3}.

Figures 1–3 show the GNS results, i.e., when the digit sets with the ap-
propriate operators form simultaneous Gaussian number systems. The marked
points (x, y) ∈ S in the pictures denote that the vecor (x, y, x, y)T belongs to
the appropriate digit set. Tables 1–2 show the systems which can not be si-
multaneous Gaussian number systems for any digit set D. The tables contain
the γ residue class representants as well.

The complete computation time on a single laptop was approximately 5
minutes.

Example 2.1. Consider the base M = MA(1, 1). Then the elements of a
dense digit set are

D =

(0, 0, 0, 0)T , (1, 0, 1, 0)T , (0, 1, 0, 1)T , (1, 1, 1, 1)T , (−1, 0,−1, 0)T ,
(0,−1, 0,−1)T , (−1,−1,−1,−1)T ,
(−1, 1,−1, 1)T , (1,−1, 1,−1)T , (−1, 2,−1, 2)T


.

In line 4 FindPeriods(M,D) gives the following non-trivial loops (we used
the α-type method):

• (−1,−1, 0, 1)T → (−1,−1, 0, 1)T

• (−1, 1,−1, 0)T → (−1, 1,−1, 0)T

• (1, 1, 0, 1)T → (1, 1, 0, 1)T

• (1,−1, 1, 0)T → (1,−1, 1, 0)T

The first loop element congruent with the digit (−1, 1,−1, 1)T . The set of
equations (2.1) is

{−5x+ 5 y = 10,−2x+ 4 y = 6, 4x+ 2 y = −2, 5x+ 5 y = 0} .

The common solution is x = 4k1+ k2+3, y = 3k2+2k1+3 (k1, k2 ∈ Z). Then

(I−M)−1(x, y, x, y)T = (−3k2−2k1−3, 4k1+k2+3,−3k1−2k2−3, k1−k2)
T ∈ Z4.

The computations are similar for the other three loops. Hence, the system
(Z4,M,D) can not be a simultaneous Gaussian number system for any digit
set D ⊂ W .
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(a) MA(−2,−1) (b) MA(−3,−1) (c) MB(−3, 0)

(d) MB(−2, 0) (e) MB(−2, 1) (f) MB(3, 0)

(g) MB(−1, 1) (h) MB(1, 1) (i) MB(2, 1)

(j) MB(−1, 2) (k) MB(0, 2) (l) MB(1, 2)

Figure 2: Digit sets of simultaneous Gaussian number systems
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(a) MA(−3, 1) (b) MA(−2, 1) (c) MA(−2, 2)

(d) MA(−1, 2) (e) MA(−1, 3) (f) MA(0, 2)

(g) MA(0, 3) (h) MA(0,−3) (i) MA(0,−2)

(j) MA(−1,−2) (k) MA(−1,−3) (l) MA(−2,−2)

Figure 1: Digit sets of simultaneous Gaussian number systems
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(a) MA(−2,−1) (b) MA(−3,−1) (c) MB(−3, 0)

(d) MB(−2, 0) (e) MB(−2, 1) (f) MB(3, 0)

(g) MB(−1, 1) (h) MB(1, 1) (i) MB(2, 1)

(j) MB(−1, 2) (k) MB(0, 2) (l) MB(1, 2)

Figure 2: Digit sets of simultaneous Gaussian number systems
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Base γ Base γ
MA(1, 1) (−1, 1,−1, 1)T MA(2, 0) (2, 2, 2, 2)T

(1, 1, 1, 1)T (2, 0, 2, 0)T

(1,−1, 1,−1)T (2,−2, 2,−2)T
(−1,−1,−1,−1)T (0, 2, 0, 2)T

MA(1, 2) (−4, 2,−4, 2)T (0,−2, 0,−2)T
MA(2, 1) (1, 3, 1, 3)T (−2, 2,−2, 2)T

(3,−1, 3,−1)T (−2, 0,−2, 0)T
(−1,−3,−1,−3)T (−2,−2,−2,−2)T
(−3, 1,−3, 1)T MA(3, 0) (−6,−6,−6,−6)T

MA(1,−1) (1, 1, 1, 1)T (−6, 0,−6, 0)T
(−1,−1,−1,−1)T (0,−6, 0,−6)T
(1,−1, 1,−1)T MA(2,−1) (3, 1, 3, 1)T

(−1, 1,−1, 1)T (−1, 3,−1, 3)T
MA(1,−2) (2,−4, 2,−4)T (1,−3, 1,−3)T

(−3,−1,−3,−1)T

Table 1: The A-type bases for which there does not exist any digit set con-
stituting a Gaussian GNS. The γ values represents the cosets for which the
elements produce loops in the system

Base γ Base γ
MB(2, 0) (1, 1, 1, 1)T MB(2,−1) (2, 2, 2, 2)T

(1,−1, 1,−1)T (−2, 2,−2, 2)T
(2, 0, 2, 0)T (2,−2, 2,−2)T

(−1,−1,−1,−1)T (−2,−2,−2,−2)T
(0,−2, 0,−2)T (1, 3, 1, 3)T

(0, 2, 0, 2)T (3,−1, 3,−1)T
(−3, 1,−3, 1)T (−1,−3,−1,−3)T
(−2, 0,−2, 0)T (−1, 3,−1, 3)T
(−1, 1,−1, 1)T (−3, 1,−3, 1)T

Table 2: The B-type bases for which there do not exist any digit set constituting
a Gaussian GNS. The γ values represents the cosets for which the elements
produces loops in the system

Example 2.2. Consider the base M =MB(−1, 1). The dense digit set for
this operator is

D =

(0, 0, 0, 0)T , (1, 0, 1, 0)T , (0, 1, 0, 1)T , (1, 1, 1, 1)T , (−1, 0,−1, 0)T ,
(0,−1, 0,−1)T , (−1,−1,−1,−1)T , (−1, 1,−1, 1)T ,
(1,−1, 1,−1)T , (−2,−1,−2, 1)T


.
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(a) MB(−3,−1) (b) MB(−2,−1) (c) MB(1,−3)

(d) MB(3,−1) (e) MB(−2,−2) (f) MB(−1,−2)

(g) MB(1,−2) (h) MB(2,−2) (i) MB(−1,−3)

Figure 3: Digit sets of simultaneous Gaussian number systems



287

Simultaneous Gaussian number system construction 287

Base γ Base γ
MA(1, 1) (−1, 1,−1, 1)T MA(2, 0) (2, 2, 2, 2)T

(1, 1, 1, 1)T (2, 0, 2, 0)T

(1,−1, 1,−1)T (2,−2, 2,−2)T
(−1,−1,−1,−1)T (0, 2, 0, 2)T

MA(1, 2) (−4, 2,−4, 2)T (0,−2, 0,−2)T
MA(2, 1) (1, 3, 1, 3)T (−2, 2,−2, 2)T

(3,−1, 3,−1)T (−2, 0,−2, 0)T
(−1,−3,−1,−3)T (−2,−2,−2,−2)T
(−3, 1,−3, 1)T MA(3, 0) (−6,−6,−6,−6)T

MA(1,−1) (1, 1, 1, 1)T (−6, 0,−6, 0)T
(−1,−1,−1,−1)T (0,−6, 0,−6)T
(1,−1, 1,−1)T MA(2,−1) (3, 1, 3, 1)T

(−1, 1,−1, 1)T (−1, 3,−1, 3)T
MA(1,−2) (2,−4, 2,−4)T (1,−3, 1,−3)T

(−3,−1,−3,−1)T

Table 1: The A-type bases for which there does not exist any digit set con-
stituting a Gaussian GNS. The γ values represents the cosets for which the
elements produce loops in the system

Base γ Base γ
MB(2, 0) (1, 1, 1, 1)T MB(2,−1) (2, 2, 2, 2)T

(1,−1, 1,−1)T (−2, 2,−2, 2)T
(2, 0, 2, 0)T (2,−2, 2,−2)T

(−1,−1,−1,−1)T (−2,−2,−2,−2)T
(0,−2, 0,−2)T (1, 3, 1, 3)T

(0, 2, 0, 2)T (3,−1, 3,−1)T
(−3, 1,−3, 1)T (−1,−3,−1,−3)T
(−2, 0,−2, 0)T (−1, 3,−1, 3)T
(−1, 1,−1, 1)T (−3, 1,−3, 1)T

Table 2: The B-type bases for which there do not exist any digit set constituting
a Gaussian GNS. The γ values represents the cosets for which the elements
produces loops in the system

Example 2.2. Consider the base M =MB(−1, 1). The dense digit set for
this operator is

D =

(0, 0, 0, 0)T , (1, 0, 1, 0)T , (0, 1, 0, 1)T , (1, 1, 1, 1)T , (−1, 0,−1, 0)T ,
(0,−1, 0,−1)T , (−1,−1,−1,−1)T , (−1, 1,−1, 1)T ,
(1,−1, 1,−1)T , (−2,−1,−2, 1)T


.
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• If G1 = −1 + i,−2 or −3 then (G1, G1 + i,D) is a simultaneous number
system for some digit set D.

• If G1 = 0,±1,±i, 2, 2− i or −1− i then (G1, G1+ g,D) (g = 1 or g = i)
can not be a simultaneous number system for any digit set D.

• If G1 = 1 ± i, 1 ± 2i, 2 + i, or 3 then (G1, G1 + 1, D) can not be a
simultaneous number system for any digit set D.

Theorem 3.1a (or Theorem 3.1) enumerates all simultaneous number sys-
tem bases in the lattice of the Gaussian integers by which the description is
complete.
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submitted to RIMS Kôkyûroku Bessatsu, (2012).

[2] Nagy, G., On the simultaneous number systems of Gaussian integers,
Annales Univ. Sci. Budapest., Sect. Comp., 35 (2011), 223–238.
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Now FindPeriods(M,D) in line 4 gives the following non-trivial periods:

• (0, 1, 0, 0, )T → (0,−2, 0, 1)T → (−2, 1,−1, 0)T → (1, 0, 0, 0)T →
(−1,−2, 0, 1)T → (0, 1, 0, 0)T

• (−1,−1, 0,−1)T → (−1, 1,−1, 0)T → (1, 1, 0, 1)T → (1,−1, 1, 0)T →
(−1,−1, 0,−1)T

In the iteration 18–25 the values are

p = (−2, 1,−1, 0)T , d = (−1, 0,−1, 0)T and d∗ = (2,−1, 2,−1)T

for the first cycle and

p = (−1,−1, 0,−1)T , d = (−1, 1,−1, 1)T and d∗ = (2, 0, 2, 0)T

for the second one. Then FindPeriods(M,D) provides the non-trivial cycle

• (0,−1, 0,−0)T → (−1,−1, 0,−0)T → (1, 2, 0, 1)T → (0,−1, 0, 0)T

Now we have p = (1, 2, 0, 1)T , d = (0, 1, 0, 1)T , and d∗ = (−1,−2,−1,−2)T .
The method FindPeriods(M,D) shows that the system is a simultaneous
Gaussian number system. The newly constructed digit set can be seen in
Figure 2 (g).

3. Summary

In this paper together with [1] and [2] we proved the following

Theorem 3.1. Every radix base MA(a, b) or MB(a, b) (a, b ∈ Z) may serve
as a base of a simultaneous Gaussian number system except the cases MA(1, 1),
MA(1, 2), MA(2, 1), MA(1,−1), MA(1,−2), MA(2, 0), MA(3, 0), MA(2,−1),
MB(2, 0), MB(2,−1).

Applying the result of [1] Theorem 3.1 can also be reformulated and refined:

Theorem 3.1a Let G1, G2 ∈ Z[i] such that G2 = G1 + gj (j = 1, 2) where
g1 = 1 or g2 = i. Then (G1, G2, D) is a simultaneous number system of the
Gaussian integers for some digit set D except the following cases:

• If G1 = −2i or −3i then (G1, G1+1, D) is a simultaneous number system
for some digit set D.
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• If G1 = −1 + i,−2 or −3 then (G1, G1 + i,D) is a simultaneous number
system for some digit set D.

• If G1 = 0,±1,±i, 2, 2− i or −1− i then (G1, G1+ g,D) (g = 1 or g = i)
can not be a simultaneous number system for any digit set D.

• If G1 = 1 ± i, 1 ± 2i, 2 + i, or 3 then (G1, G1 + 1, D) can not be a
simultaneous number system for any digit set D.

Theorem 3.1a (or Theorem 3.1) enumerates all simultaneous number sys-
tem bases in the lattice of the Gaussian integers by which the description is
complete.
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submitted to RIMS Kôkyûroku Bessatsu, (2012).

[2] Nagy, G., On the simultaneous number systems of Gaussian integers,
Annales Univ. Sci. Budapest., Sect. Comp., 35 (2011), 223–238.
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Abstract. We give the general solution of the functional equation

h1


x

λ1 (α+ y)


1

λ1 (α+ y)
fY (y) = h2


y

λ2 (β + x)


1

λ2 (β + x)
fX (x)

for all (x, y) ∈ R2
+ with nonnegative functions h1, h2, fX , fY : R+ → R,

such that there exist sets A1, A2, A3, A4 ⊂ R+ with positive Lebesgue
measure, on which these functions are positive

1. Introduction

In papers [8] and [9] we solved functional equation

(1.1) h1


x

λ1 (α+ y)


1

λ1 (α+ y)
fY (y) = h2


y

λ2 (β + x)


1

λ2 (β + x)
fX (x)

for almost all (x, y) ∈ R2
+ (R+ is the set of positive real numbers), by reducing it

to the same equation satisfied everywhere on R2
+. To do this we had to suppose

Key words and phrases: Functional equations, general solutions.
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