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Abstract. The main aim of this paper is to investigate properties of
statistically convergent sequences. Also, the definition of statistical mono-
tonicity and upper (or lower) peak points of real valued sequences will be
introduced. The interplay between the statistical convergence and these
concepts are also studied. Finally, the statistically monotonicity is gener-
alized by using a matrix transformation.

1. Introduction

The concept of statistical convergence for real or complex valued sequence
was introduced in the journal ”Colloq. Math.”by H. Fast in [5] and H. Steinhaus
in [17] independently in the same year 1951. The idea of this concept is based
on the notation of asymptotic density of a set K ⊂ N (see for example [11], [12]).
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Statistical convergence has many applications in different fields of mathematics
such as: approximation theory [9], measure theory [15], probability theory [8],
trigonometric series [18], number theory [4], etc.

Let K be a subset of N and

K(n) := {k : k ≤ n, k ∈ K} .

Then, the asymptotic density of K, denoted by δ(K), is defined by

(1.1) δ(K) := lim
n→∞

1

n
|K(n)| ,

if the limit exists. In (1.1), the vertical bars indicate the cardinality of the
enclosed set.

A real or complex valued sequence x = (xn) is said to be statistically con-
vergent to the number L, if for every ε > 0, the set

K(n, ε) := {k : k ≤ n, |xk − L| ≥ ε} ,

has asymptotic density zero, i.e.

lim
n→∞

|K(n, ε)|
n

= 0,

and it is denoted by xn → L(S).

Deeply connected with this definition is the concept of strongly Cesàro
summability and uniform summability (see Indlekofer [13]).

A sequence x = (xn) is called strongly-[C,1,α] summable (α > 0) to the
mean L in case

(1.2) lim
n→∞

1

n

∑
k≤n

|xk − L|α = 0

and is written

xn → L[C, 1, α].

By wα we denote the space of strongly Cesàro summable sequences.

A sequence x = (xn) is called uniformly summable in case

(1.3) lim
K→∞

lim sup
n→∞

1

n

∑
k≤n
|xk|≥K

|xk| = 0.

The space of uniformly summable sequences is denoted by L∗.
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Remark 1.1. The space of all complex valued sequences x = (xn) will
be denoted by CN. In many circumstances we refer to CN as the space of
arithmetical functions f : N→ C, especially, when f reflects the multiplicative
structure of N. This is the case for additive and multiplicative functions.

We recall the definition. An arithmetical function f is called additive or
multiplicative, if for every pair m,n of positive coprime integers the relation
f(mn) = f(m) + f(n) or f(mn) = f(m)f(n), respectively, is satisfied.

2. Some results about statistical convergence

Define the function d : CN × CN → [0,∞) for all x, y ∈ CN as follows,

d(x, y) := lim sup
n→∞

1

n

∑
k≤n

ϕ(|xk − yk|)

where ϕ : [0,∞]→ [0,∞)

ϕ(t) =

{
t, if t ≤ 1;
1, otherwise.

It is clear that d is a semi-metric on CN. With these notations we have

Theorem 2.1. The sequence x = (xn) is statistically convergent to L if
and only if d(x, y) = 0 where y = (yn) and yn = L for all n ∈ N.

Proof. Let us assume d(x, y) = 0 where yn = L for all n ∈ N. Then, if
ε > 0,

lim sup
n→∞

1

n

∑
k≤n

|xk−L|≥ε

1 ≤ max

{
1,

1

ε

}
lim sup
n→∞

1

n

∑
k≤n

ϕ(|xk − L|) =

= max

{
1,

1

ε

}
d(x, y) = 0

and xn → L(S).

Now, assume that x is statistically convergent to L. Then, for any ε > 0,

1

n

∑
k≤n

ϕ(|xk − L|) =
1

n

∑
k≤n

|xk−L|<ε

ϕ(|xk − L|) +
1

n

∑
k≤n

|xk−L|≥ε

ϕ(|xk − L|) ≤

≤ ε+
1

n

∑
k≤n

|xk−L|≥ε

1
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which implies immediately

d(x, y) ≤ ε for any ε > 0

where y = (yn) and yn = L (n ∈ N). This ends the proof of Theorem 2.1. �

By the first part of this proof we conclude

Corollary 2.1. If x is strongly Cesàro summable to L then x is statistically
convergent to L.

Remark 2.1. The inverse of Corollary 2.1 is not true in general. To see
this, it is enough to consider the sequence x : N→ C as

xn :=

{ √
n, n = m2, m = 1, 2, . . .;

0, otherwise.

On the other hand the following holds.

Corollary 2.2. If x = (xn) is a bounded sequence and statistically conver-
gent to L, then x is strongly Cesàro summable to L.

The next result is well-known (see J.A. Fridy [7]). But for the sake of
completeness we give a proof of which is different from that of [7].

Theorem 2.2. A sequence x is statistically convergent to L if and only if
there exists H ⊂ N with δ(H) = 1 such that x is convergent to L in H,i.e.

lim
n→∞
n∈H

xn = L.

Proof. Assume that x is statistically convergent to L. There is mj ∈ N
such that

1

n

∑
k≤n

1

2j
<|xk−L|< 1

2j−1

1 ≤ 1

2j

is satisfied for all n ≥ mj . Denote the set

Hj :=
{
k ∈ N :

1

2j
≤ |xk − L| <

1

2j
and k < mj

}
.

Then
1

n

∑
k≤n

1

2j
<|xk−L|< 1

2j−1

and k∈N\Hj

1 <
1

2j
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holds for all n ∈ N. If we consider the set H :=
∞⋃
j=1

Hj ∪ {k : xk = L} then

|xn−L| ≥ ε holds only to finitely many n ∈ H. This means that x is convergent
to L in the usual case. Now, let us show that δ(N \H) = 0. Let ε > 0 be given
and choose an arbitrary r ∈ N such that

∞∑
j=r+1

1

2j
<
ε

2

holds. For this r, there exists a lr ∈ N such that

1

n

∑
k≤n

1

2j
<|xk−L|< 1

2j−1

and k∈N\H

1 <
1

r + 1
.
ε

7
and

1

n

∑
k≤n

|xk−L|≥1
and k∈N\H

1 <
1

r + 1
.
ε

4

for all n > lr and j ∈ {1, 2, . . . , r}. Therefore,

1

n

∑
k≤n
k∈N\H

1 <
ε

2
+
ε

2

holds for all n ≥ lr.
The inverse of theorem is obviously obtained. �

3. Some results for multiplicative and additive functions

In this section, we will give some results for multiplicative and additive
functions. With M(f) we denote the mean-value of the arithmetical function
f , if the limit

M(f) := lim
n→∞

1

n

∑
k≤n

f(k)

exists.

Theorem 3.1. Assume that f : N→ C is bounded and statistically conver-
gent to L and H ⊂ N is an arbitrary set which possesses an asymptotic density
δ(H). Then, M(1H · f) exists and equals L · δ(H).
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Proof. The proof is obtained obviously by the following inequality∣∣∣∣∣ 1n ∑
k≤n
k∈H

f(k)− 1

n

∑
k≤n
k∈H

L

∣∣∣∣∣ ≤
≤ 1

n

∑
k≤n

k∈H, |f(k)−L|<ε

|f(k)− L|+ 1

n

∑
k≤n

k∈H, |f(k)−L|≥ε

|f(k)− L|. �

Theorem 3.2. If a multiplicative function f is bounded and statistically
convergent to L 6= 0, then f ≡ 1.

Proof. Let p0 ∈ P , P is the set of primes, k0 ∈ N and let

H := {n ∈ N : pk00 ||n},

be the set of all elements of N divisible exactly by pk00 , i.e. n can be written in
the form n = pk00 m where p0 - m. It is clear from Theorem 3.1 that

M(1H · f) = Lδ(H) = L
1

pk00
(1− 1

p0
)

holds. Since f is multiplicative, we have

f(k) = f(pk00 ) · f

(
k

pk00

)
for k ∈ H.

Therefore,

M(1H · f) = lim
n→∞

1

n

∑
k≤n
k∈H

f(k) = lim
n→∞

1

n
f(pk00 )

∑
m≤ n

p
k0
0

p0 6=m

f(m) =

= lim
n→∞

f(pk00 )
1

pk00
· 1

n

p
k0
0

·
∑

m≤ n

p
k0
0

p0-m

f(m) =

= f(pk00 )
1

pk00
· L ·

(
1− 1

p0

)
.

This implies f(pk00 ) = 1. Since p0 is a prime, k0 ∈ N have been chosen arbi-
trarily it follows f = 1 (and L = 1). �
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Remark 3.1. If f is bounded and statistically convergent to L, then f is
Cesáro summable, i.e. (1.2) holds (for every α > 0). Then Indlekofer proved
in [13] (Theorem 2′).

Proposition 3.3. Let f be multiplicative and α > 0. Then the following
assertions are valid:

(i) If (1.2) holds for L 6= 0, then L = 1 and f(n) = 1 for all n ∈ N.

(ii) (1.2) holds for L = 0 if and only if |f |α ∈ L∗ and one of the series

∑
p

| |f(p)|−1|≤ 1
2

(|f(p)| − 1)2

p
,

∑
p

| |f(p)|−1|> 1
2

| |f(p)| − 1|α

p

diverges or ∑
p≤x

|f(p)| − 1

p
→ −∞ as x→∞.

Assertion (i) corresponds to Theorem 3.2.

Theorem 3.4. If an additive function f : N→ C is statistically convergent,
then f ≡ 0.

Proof. It is enough to prove Theorem 3.4 for real-valued additive functions.
Let us define the multiplicative function g : N→ C by

g(n) := eiαf(n)

where α ∈ R. Obviously, g is bounded and also statistically convergent to some
L,where L 6= 0. So, g ≡ 1. Therefore, αf(n) = 2πikn where kn ∈ Z. For an
arbitrary β ∈ R we have also

βf(n) = 2πik̃n

where k̃n ∈ Z. If we assume f(n) 6= 0, then β
α ∈ Q. This is a contradiction

because of β is an arbitrary real numbers. So, f ≡ 0. �

4. Statistical monotonicity and related results

In this section we consider only real-valued sequences and introduce the
concept of statistical monotonicity.
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Definition 4.1. (Statistical monotone increasing (or decreasing) sequence.)
A sequence x = (xn) is statistical monotone increasing (decreasing) if there
exists a subset H ⊂ N with δ(H) = 1 such that the sequence x = (xn) is
monotone increasing (or decreasing) on H.

A sequence x = (xn) is statistical monotone if it is statistical monotone
increasing or statistical monotone decreasing.

In the following we list some (obvious) properties of statistical monotone
sequences.

(i) If the sequence x = (xn) is bounded and statistical monotone then it is
statistically convergent.

(ii) If x = (xn) is statistical monotone increasing or statistical monotone
decreasing then

(4.1) lim
n→∞

1
n |{k : k ≤ n : xk+1 < xk}| = 0

or

(4.2) lim
n→∞

1
n |{k : k ≤ n : xk+1 > xk}| = 0

respectively. The inverse of these assertions is not correct because of the fol-
lowing example:

Define x = (xn) by

xn =

{
1, if 2k ≤ n < 2k+1 − 1 for even k,
0, otherwise.

Then the relations (4.1) and (4.2) hold but x = (xn) is not statistical monotone
(and not statistically convergent).

Definition 4.2. The real number sequence x = (xn) is said to be statistical
bounded if there is a number M > 0 such that

δ({n ∈ N : |xn| > M}) = 0.

Let {nk} be a strictly increasing sequence of positive natural numbers and
x = (xn), define x′ = (xnk

) and Kx′ := {nk : k ∈ N}. With this notation

Definition 4.3. (Dense Subsequence) The subsequence x′ = (xnk
) of x =

= (xn) is called a dense subsequence, if δ(Kx′) = 1.
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Two more simple properties are given by

(iii) Every dense subsequence of a statistical monotone sequence is statistical
monotone.

(iv) The statistical monotone sequence x = (xn) is statistically convergent if
and only if x = (xn) is statistical bounded.

Definition 4.4. The sequence x = (xn) and y = (yn) are called statistical
equivalent if there is a subset M of N with δ(M) = 1 such that xn = yn for
each n ∈M. It is denoted by x � y.

With this definition we formulate

(v) Let x = (xn) and y = (yn) be statistical equivalent. Then x = (xn)
statistical monotone if and only if y = (yn) is statistical monotone.

For additive functions we have

Theorem 4.1. If a real-valued additive function f is statistical monotone,
then there exists c ∈ R such that f(n) = c log n (n ∈ N).

I. Kátai [14] and B.J. Birch [2] showed independently, that it is enough to
assume in Theorem 4.1, that f is monotone on a set having upper density one.

An immediate consequence is given in

Corollary 4.1. Let f ≥ 1 be a (real-valued) multiplicative function, which
is statistical monotone. Then f(n) = nc (n ∈ N) with some c ≥ 0.

5. Peak points and related results

In this section, for real-valued sequences upper and lower peak points will be
defined and its relation with statistical convergence and statistical monotonicity
will be given.

Definition 5.1. (Upper (or Lower) Peak Point) The point xk is called
upper (or lower) peak point of the sequence x = (xn) if xk ≥ xl (or xl ≥ xk)
holds for all l ≥ k.

Theorem 5.1. If the index set of peak points of the sequence x = (xn) has
asymptotic density 1, then the sequence is statistical monotone.
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Proof. Let us denote the index set of upper peak points of the sequence
x = (xn) by

H := {kn : xkn upper peak point of (xn)} ⊂ N.

Since δ(H) = 1, and x = (xn) is monotone on H, the sequence x = (xn) is
statistical monotone. �

Remark 5.1. The inverse of Theorem 5.1 is not true.

Consider x = (xn) where

xn =

{
1

m
, n = m2, m ∈ N;

n, n 6= m2,

i.e. x = (xn) = (1, 2, 3, 12 , 5, 6, 7, 8,
1
3 , ...).

Since the set H =
{
m2 : m ∈ N

}
possesses an asymptotic density δ(H) = 0,

the sequence x = (xn) is statistical monotone increasing. But, it has not any
peak points.

Corollary 5.1. If x = (xn) is bounded and the index set of upper (or lower)
peak points

H = {kn : xkn upper(lower) peak point of (xn)}

possesses an asymptotic density 1, then x = (xn) is statistically convergent.

Remark 5.2. In Corollary 5.1, it can not be replaced usual convergence
by statistical convergence.

Let us consider the sequence x = (xn) where

xn :=

{
−1, n = m2,m ∈ N,
1
k , n 6= m2.

The index set of upper peak points of the sequence x = (xn) is H ={
k : k 6= m2,m ∈ N

}
. It is clear that δ(H) = 1 and x = (xn) is bounded.

So, the hypothesis of Corollary 5.1 is fulfilled. The subsequence

(xkn) =
(1

2
,

1

3
,

1

5
,

1

6
,

1

7
,

1

8
,

1

10
, . . .

)
is convergence to zero. Also, x = (xn) is statistical convergence to zero but it
is not convergence to zero.
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6. A-generalization of statistical monotonicity

Statistical monotonicity can be generalized by using A-density of a subset
K of N for a regular nonnegative summability matrix A = (ank).

Recall A-density of a subset K of N, if

δA(K) := lim
n→∞

∑
k∈K

ank = lim
n→∞

∞∑
k=1

ank1K(k) =

= lim
n→∞

(A · 1K)(n)

exists and is finite.

The sequence x = (xn) is A-statistically convergent to l, if for every ε > 0
the set Kε = {k ∈ N : |xk−l| ≥ ε} possesses A-density zero (see for details [3]).

Definition 6.1. A sequence x = (xn) is called A-statistical monotone, if
there exists a subset H of N with δA(H) = 1 such that the sequence x = (xn)
is monotone on H.

A = (ank) and B = (bnk) will denote nonnegative regular matrices.

Theorem 6.1. If the condition

(6.1) lim sup
n→∞

∞∑
k=1

|ank − bnk| = 0

holds. Then, x = (xn) is A-statistical monotone if and only if x = (xn) is
B-statistical monotone.

Proof. For an arbitrary H ⊂ N the inequality

0 ≤ |(A · 1H)(n)− (B · 1H)(n)| =
∣∣∣∑
k∈H

ank −
∑
k∈H

bnk

∣∣∣ ≤
≤
∑
k∈H

|ank − bnk| ≤

≤
∞∑
k=1

|ank − bnk|,

holds. Under the condition (6.1) δA(H) exists if and only if δB(H) exists, and
in this case δA(H) = δB(H). Therefore, A-statistical monotonicity of x = (xn)
implies B-statistical monotonicity vice versa. �

Let us consider strictly increasing and nonnegative sequence {λn}n∈N and
E = {λn}∞n=0. If A = (ank) is a summability matrix, then Aλ := (aλ(n),k)
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is the submatrix of A = (ank). Thus, the Aλ transformation of a sequence
x = (xn) as

(Aλx)n =

∞∑
k=0

aλ(n),k xk.

Since, Aλ is a row submatrix of A, it is regular whenever A is a regular
summability matrix (See [6],[10]). The Cesáro submethod’s has been defined
by D.H. Armitage and I.J. Maddox in [1], and later studied by J.A. Osikiewicz
in [16].

Theorem 6.2. Let A be a summability matrix and let E = {λn} and
F = {ρn} be an infinite subset of N. If F \ E is finite, then Aλ-statistical
monotonicity implies Aρ-statistical monotonicity.

Proof. Assume that F \E is finite, and x = (xn) is Aλ-statistical monotone
sequence. From the assumption there exists a n0 ∈ N such that

{ρ(n) : n ≥ n0} ⊆ E.

It means that there is a monotone increasing sequence j(n) such that ρ(n) :=
:= λj(n). So, the Aρ asymptotic density of the set K := {n ∈ N : ρ(n) = λj(n)}
is

lim
n→∞

∞∑
k=1

aρ(n),k1K(k) = lim
n→∞

∞∑
k=1

aλj(n),k1K(k) =

= 1.

This give us, x = (xn) is Aρ-statistical monotone sequence. �

By the Theorem 6.2 we have following corollaries:

Corollary 6.1. A-statistical monotone sequence is Aλ-statistical mono-
tone.

Corollary 6.2. Under the condition of Theorem 6.2, if E∆F is finite,
then the sequence x = (xn), Aλ- statistical monotone if and only if Aρ-statistical
monotone.
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