JOINT UNIVERSALITY OF DIRICHLET L-FUNCTIONS AND HURWITZ ZETA-FUNCTIONS

Kęstutis Janulis and Antanas Laurinčikas

(Vilnius, Lithuania)

In honour of Professor Karl-Heinz Indlekofer on the occasion of his 70th birthday

Communicated by Imre Kátai

(Received October 29, 2012; accepted December 14, 2012)

Abstract. In the paper, we prove a joint universality theorem of Voronin type for collections of Dirichlet *L*-functions and Hurwitz zeta-functions. From this theorem, we derive the universality for some class of functions from the above collections. For example, this shows that a product of Dirichlet *L*-functions and Hurwitz zeta-functions is universal.

1. Introduction

In 1975, S.M. Voronin discovered [29] a remarkable approximation property of the Riemann zeta-function $\zeta(s), s = \sigma + it$, which now is called universality. He proved that the shifts $\zeta(s+i\tau), \tau \in \mathbb{R}$, approximate with a given accuracy any analytic function uniformly on closed discs lying in the right-hand side of the critical strip. Denote by \mathcal{K} the set of compact subsets of the strip

 $Key\ words\ and\ phrases:$ Dirichlet L-function, Hurwitz zeta-function, joint universality, universality.

 $D = \{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1\}$ with connected complements, and by $H_0(K), K \in \mathcal{K}$, the set of non-vanishing continuous functions on K which are analytic in the interior of K. Moreover, let $meas\{A\}$ stand for the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Then a modern version of the Voronin theorem is of the form, see, for example, [7].

Theorem 1.1. Suppose that $K \in \mathcal{K}$ and $f \in H_0(K)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} meas\{\tau \in [0;T] : \sup_{s \in K} |\zeta(s+i\tau) - f(s)| < \varepsilon\} > 0.$$

An analogical universality property is also due to the Hurwitz zeta-function $\zeta(s,\alpha), 0 < \alpha \le 1$, which is given, for $\sigma > 1$, by the series

$$\zeta(s,\alpha) = \sum_{m=0}^{\infty} \frac{1}{(m+\alpha)^s},$$

and by analytic continuation elsewhere, except for a simple pole at s=1 with residue 1. Properties of $\zeta(s,\alpha)$ also depend on arithmetics of the parameter α . For the function $\zeta(s,\alpha)$, the following analogue of Theorem 1.1 is known. Denote by $H(K), K \in \mathcal{K}$, the class of continuous functions on K which are analytic in the interior of K.

Theorem 1.2. Suppose that α is transcendental or rational $\neq 1, \frac{1}{2}$. Let $K \in \mathcal{K}$ and $f \in H(K)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} meas\{\tau \in [0;T] : \sup_{s \in K} |\zeta(s+i\tau,\alpha) - f(s)| < \varepsilon\} > 0.$$

Since $H_0(K) \subset H(K)$, $K \in \mathcal{K}$, we have that the shifts of $\zeta(s, \alpha)$ with transcendental or rational $\neq 1$, $\frac{1}{2}$ approximate a wider class of analytic functions than the shifts $\zeta(s+i\tau)$. Clearly, $\zeta(s,1)=\zeta(s)$,

$$\zeta\left(s, \frac{1}{2}\right) = (2^s - 1)\zeta(s),$$

and thus, the functions $\zeta(s,1)$ and $\zeta(s,\frac{1}{2})$ are also universal with approximation property with respect to the set $H_0(K)$.

The universality of $\zeta(s, \alpha)$ with algebraic irrational α remains an open problem.

Theorem 1.2 by different methods was obtained in [3], [1] and [27].

Universality of zeta-functions has an important generalization, the so called joint universality, when a collection of analytic functions is simultaneously approximated by shifts of zeta-functions. The first result in the field also belongs to Voronin who proved [28] the joint universality for Dirichlet *L*-functions. We also state a modern version of the joint Voronin theorem.

Theorem 1.3. Suppose that χ_1, \ldots, χ_r are pairwise non-equivalent Dirichlet characters, and $L(s,\chi_1), \ldots, L(s,\chi_r)$ are the corresponding Dirichlet L-functions. For $j=1,\ldots,r$, let $K_j\in\mathcal{K}$ and $f_j\in H_0(K_j)$. Then, for every $\varepsilon>0$.

$$\liminf_{T\to\infty}\frac{1}{T}meas\{\tau\in[0;T]:\sup_{1\leq j\leq r}\sup_{s\in K_j}|L(s+i\tau,\chi_j)-f_j(s)|<\varepsilon\}>0.$$

Proof of Theorem 1.3 is given in [16].

Some other zeta and L-functions are also jointly universal in the above sense. Among them are Hurwitz [10], [26], Lerch zeta-functions [14], [17], [19], [22], [26], zeta-functions of certain cusp forms [20] and their twists [21], periodic [18] and periodic Hurwirz zeta-functions [4], [8], [9], [11], [12], [15], [23], [24]. It is clear that, in the case of the joint universality, the involved zeta-functions must be independent in a certain sense. For Dirichlet L-functions, this independence is implied by the non-equivalence of Dirichlet characters. In the case of Hurwitz zeta-functions, the linear independence over the field of rational numbers $\mathbb Q$ of some set is required. For $j=1,\ldots,r,$ let $0<\alpha_j\le 1$, and

$$L(\alpha_1, \dots, \alpha_r) = \{ \log (m + \alpha_j) : m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, j = 1, \dots, r \}.$$

Theorem 1.4. [10] Suppose that the set $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over \mathbb{Q} . For $j = 1, \ldots, r$, let $K_j \in \mathcal{K}$ and $f_j \in H(K_j)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} meas \{ \tau \in [0;T] : \sup_{1 \le j \le r} \sup_{s \in K_j} |\zeta(s+i\tau,\alpha_j) - f_j(s)| < \varepsilon \} > 0.$$

Theorem 1.4 with a stronger hypothesis that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} has been proved in [26]. An analogical result is also true for periodic Hurwitz zeta-functions [24].

H. Mishou in [25] obtained an interesting theorem on the joint universality of $\zeta(s)$ and $\zeta(s,\alpha)$.

Theorem 1.5. [25] Suppose that α is a transcendental number, $K_1, K_2 \in \mathcal{K}$ and $f_1 \in H_0(K_1), f_2 \in H(K_2)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T\to\infty} \frac{1}{T} meas\{\tau\in[0;T]: \sup_{s\in K_1} |\zeta(s+i\tau)-f_1(s)| < \varepsilon,$$

$$\sup_{s \in K_2} |\zeta(s + i\tau, \alpha) - f_2(s)| < \varepsilon\} > 0.$$

Theorem 1.5 is the first example of so called mixed joint universality when the functions from the sets $H_0(K)$ and H(K) are approximated by shifts $\zeta(s+i\tau)$ and $\zeta(s+i\tau,\alpha)$ of zeta-functions having and having no the Euler product over primes, respectively.

A generalization of Theorem 1.5 for a periodic zeta-function with multiplicative coefficients and periodic Hurwitz zeta-function is given in [5]. A mixed joint universality theorem for collections of periodic zeta-functions with multiplicative coefficients and of periodic Hurwitz zeta-functions has been obtained in [13]. In the latter theorem, a rank hypothesis on coefficients of periodic zeta-functions is used. The aim of this note is to obtain a mixed universality theorem for collections of Dirichlet *L*-functions and Hurwitz zeta-functions. In this case, any rank hypothesis is not needed.

Theorem 1.6. Suppose that $\chi_1, \ldots, \chi_{r_1}$ are pairwise non-equivalent Dirichlet characters, and that the numbers $\alpha_1, \ldots, \alpha_{r_2}$ are algebraically independent over \mathbb{Q} . For $j = 1, \ldots, r_1$, let $K_j \in \mathcal{K}$ and $f_j \in H_0(K_j)$, while, for $j = 1, \ldots, r_2$, let $\widehat{K}_j \in \mathcal{K}$ and $\widehat{f}_j \in H(\widehat{K})$. Then, for every $\varepsilon > 0$,

$$\liminf_{T\to\infty}\frac{1}{T}meas\{\tau\in[0;T]: \sup_{j\leq j\leq r_1}\sup_{s\in K_j}|L(s+i\tau,\chi_j)-f_j(s)|<\varepsilon,$$

$$\sup_{j \le j \le r_2} \sup_{s \in \widehat{K}_j} |\zeta(s + i\tau, \alpha_j) - \widehat{f}_j(s)| < \varepsilon\} > 0.$$

We see that Theorem 1.6 is a connection of Theorems 1.3 and 1.4. Unfortunately, the linear independence over \mathbb{Q} of the set $L(\alpha_1, \ldots, \alpha_{r_2})$ is not sufficient for the proof of Theorem 1.6 because we need the linear independence over \mathbb{Q} of the set $\{\{\log p : p \text{ is prime}\}, L(\alpha_1, \ldots, \alpha_{r_2})\}$, and therefore, we require the algebraic independence over \mathbb{Q} for the numbers $\alpha_1, \ldots, \alpha_{r_2}$.

Theorem 1.6 implies a more complicated statement for universality of Dirichlet L-functions and Hurwitz zeta-functions. Denote by H(D) the space of analytic functions on D equipped with the topology of uniform convergence on compacta. Let $S = \{g \in H(D) : g(s) \neq 0 \text{ or } g(s) \equiv 0\}$.

Theorem 1.7. Suppose that $\chi_1, \ldots, \chi_{r_1}$ are pairwise non-equivalent Dirichlet characters, the numbers $\alpha_1, \ldots, \alpha_{r_2}$ are algebraically independent over \mathbb{Q} , and $F: H^{r_1+r_2}(D) \to H(D)$ is a continuous function such that, for every polynomial p = p(s), the set $(F^{-1}\{p\}) \cap (S^{r_1} \times H^{r_2}(D))$ is non-empty. Let $K \in \mathcal{K}$ and $f \in H(K)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} meas\{\tau \in [0;T] : \sup_{s \in K} |F(L(s+i\tau,\chi_1),\dots,L(s+i\tau,\chi_{r_1}),$$

$$\zeta(s+i\tau,\alpha_1),\ldots,\zeta(s+i\tau,\alpha_{r_2}))-f(s)|<\varepsilon\}>0.$$

Theorem 1.7 implies the universality for a product of Dirichlet L-functions and Hurwitz zeta-functions.

Corollary 1.1. Suppose that $\chi_1, \ldots, \chi_{r_1}$ and $\alpha_1, \ldots, \alpha_{r_2}$ satisfy the hypothesis of Theorem 1.7. Let $\{j_1, \ldots, j_r\} \neq \emptyset$ be arbitrary subset of $\{1, \ldots, r_1\}$, and $\{l_1, \ldots, l_k\} \neq \emptyset$ be arbitrary subset of $\{1, \ldots, r_2\}$. Let $K \in \mathcal{K}$ and $f \in H(K)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} meas\{\tau \in [0; T] : \sup_{s \in K} |L(s + i\tau, \chi_{j_1}) \dots L(s + i\tau, \chi_{j_r}) \times$$

$$\times \zeta(s+i\tau,\alpha_{l_1})\ldots \zeta(s+i\tau,\alpha_{l_k})-f(s)|<\varepsilon\}>0.$$

In our opinion, the most convenient method for proving universality theorems for zeta-functions is that based on probabilistic limit theorems in the space of analytic functions. Thus, we start with limit theorems.

2. Limit theorems

Denote by γ the unit circle on the complex plane, and define two tori

$$\widehat{\Omega} = \prod_{p} \gamma_{p}$$

and

$$\Omega = \prod_{m=0}^{\infty} \gamma_m,$$

where $\gamma_p = \gamma$ for all primes p, and $\gamma_m = \gamma$ for all $m \in \mathbb{N}_0$. The tori $\widehat{\Omega}$ and Ω with the product topology and pointwise multiplication are compact topological

Abelian groups. Let

$$\Omega^{\kappa} = \widehat{\Omega} \times \Omega_1 \times \ldots \times \Omega_{r_2},$$

where $\Omega_j = \Omega$ for $j = 1, \ldots, r_2$, and $\kappa = 1 + r_2$. Then again Ω^{κ} is a compact topological Abelian group. Therefore, denoting by $\mathcal{B}(S)$ the σ - field of Borel sets of the space S, we have that, on $(\Omega^{\kappa}, \mathcal{B}(\Omega^{\kappa}))$, the probability Haar measure m_H^{κ} can be defined. This gives the probability space $(\Omega^{\kappa}, \mathcal{B}(\Omega^{\kappa}), m_H^{\kappa})$. We note that the measure m_H^{κ} is the product of the Haar measures \widehat{m}_H and m_{1H}, \ldots, m_{r_2H} on $(\widehat{\Omega}, \mathcal{B}(\widehat{\Omega}))$ and $(\Omega_1, \mathcal{B}(\Omega_1)), \ldots, (\Omega_{r_2}, \mathcal{B}(\Omega_{r_2}))$, respectively. For elements of Ω^{κ} , we use the notation $\underline{\omega} = (\widehat{\omega}, \omega_1, \ldots, \omega_{r_2})$, where $\widehat{\omega} \in \widehat{\Omega}$ and $\omega_j \in \Omega_j$, $j = 1, \ldots, r_2$. Moreover, let $\widehat{\omega}(p)$ be the projection of $\widehat{\omega} \in \widehat{\Omega}$ to γ_p , and let $\omega_j(m)$ denote the projection of $\omega_j \in \Omega_j$ to γ_m . For brevity, we put $r = r_1 + r_2$. Now, on the probability space $(\Omega^{\kappa}, \mathcal{B}(\Omega^{\kappa}), m_H^{\kappa})$, define the $H^r(D)$ - valued random element $\Xi(s, \omega)$ by the formula

$$\Xi(s,\omega) = (L(s,\widehat{\omega},\chi_1),\dots,L(s,\widehat{\omega},\chi_{r_1}),\zeta(s,\alpha_1,\omega_1),\dots,\zeta(s,\alpha_{r_2},\omega_{r_2})),$$

where

$$L(s,\widehat{\omega},\chi_j) = \prod_{p} (1 - \frac{\chi_j(p)\widehat{\omega}(p)}{p^s})^{-1}, \quad j = 1,\dots, r_1,$$

and

$$\zeta(s, \alpha_j, \omega_j) = \sum_{m=0}^{\infty} \frac{\omega_j(m)}{(m + \alpha_j)^s}, \quad j = 1, \dots, r_2.$$

Let P_{Ξ} be the distribution of the random element $\Xi(s,\underline{\omega})$, i.e.,

$$P_{\Xi}(A) = m_H^{\kappa}(\underline{\omega} \in \Omega^{\kappa} : \Xi(s,\underline{\omega}) \in A), A \in \mathcal{B}(H^r(D)).$$

Moreover, we will use the notation

$$\Xi(s) = (L(s, \chi_1), \dots, L(s, \chi_{r_1}), \zeta(s, \alpha_1), \dots, \zeta(s, \alpha_{r_2})).$$

Let, for $A \in \mathcal{B}(H^r(D))$

$$P_T(A) \stackrel{\text{def}}{=} \frac{1}{T} meas\{\tau \in [0;T] : \Xi(s+i\tau) \in A\}.$$

Then we have the following limit theorem.

Theorem 2.1. Suppose that the numbers $\alpha_1, \ldots, \alpha_{r_2}$ are algebraically independent over \mathbb{Q} . Then P_T converges weakly to P_Ξ as $T \to \infty$.

The theorem is contained in Theorem 2 of [13].

Theorem 2.2. Suppose that the numbers $\alpha_1, \ldots, \alpha_{r_2}$ are algebraically independent over \mathbb{Q} , and that $F: H^{\kappa}(D) \to H(D)$ is a continuous function. Then

$$P_{T,F}(A) \stackrel{\text{def}}{=} \frac{1}{T} meas\{\tau \in [0;T] : F(\Xi(s+i\tau)) \in A\}, \quad A \in \mathcal{B}(H(D)),$$

converges weakly to $P_{\Xi}F^{-1}$ as $T \to \infty$.

Proof. We have that $P_{T,F} = P_T F^{-1}$, where $P_T F^{-1}(A) = P_T(F^{-1}A)$, $A \in \mathcal{B}(H(D))$. Therefore, the theorem is a consequence of Theorem 2.1, Theorem 5.1 of [2], and of continuity of the function F.

3. Supports

Let S be a separable metric space, and P be a probability measure on $(S, \mathcal{B}(S))$. We remind that a minimal closed set $S_P \in \mathcal{B}(S)$ is called the support of the measure P if $P(S_P) = 1$. The set S_P consists of all elements x such that, for every open neighbourhood G of x, the inequality P(G) > 0 is satisfied.

Theorem 3.1. Suppose that $\chi_1, \ldots, \chi_{r_1}$ are pairwise non-equivalent Dirichlet characters, and the numbers $\alpha_1, \ldots, \alpha_{r_2}$ are algebraically independent over \mathbb{Q} . Then the support of the measure P_{Ξ} is the set $S^{r_1} \times H^{r_2}(D)$.

The theorem is deduced from two following lemmas. Let $\underline{\chi} = (\chi_1, \dots, \chi_{r_1})$, $\underline{\alpha} = (\alpha_1, \dots, \alpha_{r_2})$, $\underline{\omega} = (\omega_1, \dots, \omega_{r_2})$,

$$\underline{L}(s,\widehat{\omega},\chi) = (L(s,\widehat{\omega},\chi_1),\dots,L(s,\widehat{\omega},\chi_{r_1}))$$

and

$$\zeta(s,\underline{\alpha},\underline{\omega}) = (\zeta(s,\alpha_1,\omega_1),\ldots,\zeta(s,\alpha_{r_2},\omega_{r_2})).$$

Moreover, let $P_{\underline{L}}$ and $P_{\underline{\zeta}}$ denote the distributions of the random elements $\underline{L}(s, \widehat{\omega}, \underline{\chi})$ and $\underline{\zeta}(s, \underline{\alpha}, \underline{\underline{\omega}})$, respectively.

Lemma 3.1. Suppose that $\chi_1, \ldots, \chi_{r_1}$ are pairwise non-equivalent Dirichlet characters. Then the support of the measure $P_{\underline{L}}$ is the set S^{r_1} .

Proof of the lemma is given in [13].

Lemma 3.2. Suppose that the numbers $\alpha_1, \ldots, \alpha_{r_2}$ are algebraically independent over \mathbb{Q} . Then the support of the measure P_{ζ} is the set $H^{r_2}(D)$.

The proof of the lemma can be found in [10].

Proof of Theorem 3.1. Let $A_1 \in \mathcal{B}(H^{r_1}(D))$ and $A_2 \in \mathcal{B}(H^{r_2}(D))$, and $A = A_1 \times A_2$. Since the spaces $H^{r_1}(D)$ and $H^{r_2}(D)$ are separable, we have [2] that

$$\mathcal{B}(H^{r_1+r_2}(D)) = \mathcal{B}(H^{r_1}(D)) \times \mathcal{B}(H^{r_2}(D)).$$

Let m_H be the Haar measure on $(\Omega_1 \times \ldots \times \Omega_{r_2}, \mathcal{B}(\Omega_1 \times \ldots \times \Omega_{r_2}))$. Then m_H^{κ} is the product of the measures \widehat{m}_H and m_H . Therefore, by the above remark,

$$P_{\Xi}(A) = m_H^{\kappa}(\underline{\omega} \in \Omega^{\kappa} : \Xi(s,\underline{\omega}) \in A) =$$

$$=\widehat{m}_H(\widehat{\omega}\in\widehat{\Omega}:\underline{L}(s,\widehat{\omega},\chi)\in A_1)m_H(\underline{\omega}\in\Omega^{r_2}:\underline{\zeta}(s,\underline{\alpha},\underline{\omega}\in A_2).$$

From this, and Lemmas 3.1 and 3.2 the theorem follows.

Theorem 3.2. Suppose that $F: H^{r_1+r_2}(D) \to H(D)$ is a continuous function such that, for every polynomial p = p(s), the set $(F^{-1}\{p\}) \cap (S^{r_1} \times H^{r_2}(D))$ is non-empty. Then the support of the measure $P_{\Xi}F^{-1}$ is the whole of H(D).

Proof. Let g be an arbitrary element of H(D), and G be any open neighbourhood of g. It was noted in [6] that the approximation on H(D) reduces to that on compact subsets $K \subset D$ with connected complements. Moreover, by the Mergelyan theorem on the approximation of analytic functions by polynomials, for every $\varepsilon > 0$, there exists a polynomial p = p(s) such that

$$\sup_{s \in K} |g(s) - p(s)| < \varepsilon.$$

If ε is small enough, we have that the polynomial p(s) belongs to G. Thus, by a hypothesis of the theorem, the set $F^{-1}G$ is open, and, in view of Theorem 3.1, is a neighbourhood of an element of the support of the measure P_{Ξ} . Therefore,

$$P_{\Xi}(F^{-1}G) > 0.$$

Hence,

$$P_{\Xi}F^{-1}(G) = P_{\Xi}(F^{-1}G) > 0.$$

Since g and G are arbitrary, this proves the theorem.

4. Proof of Theorems 1.6 and 1.7

Proof of Theorem 1.6. By the Mergelyan theorem, there exist polynomials $p_1(s), \ldots, p_{r_1}(s)$ and $\widehat{p}_1(s), \ldots, \widehat{p}_{r_2}(s)$ such that

$$\sup_{1 \le j \le r_1} \sup_{s \in K_j} |f_j(s) - e^{p_j(s)}| < \frac{\varepsilon}{2}$$

and

(4.2)
$$\sup_{1 \le j \le r_2} \sup_{s \in \widehat{K}_j} |\widehat{f}_j(s) - \widehat{p}_j(s)| < \frac{\varepsilon}{2}.$$

Define

$$G = \{g_1, \dots, g_{r_1}, \widehat{g}_1, \dots, \widehat{g}_{r_2}\} \in H^{r_1 + r_2}(D) : \sup_{1 \le j \le r_1} \sup_{s \in K_j} |g_j(s) - e^{p_j(s)}| < \frac{\varepsilon}{2},$$

$$\sup_{1 \le j \le r_2} \sup_{s \in \widehat{K}_j} |\widehat{g}_j(s) - \widehat{p}_j(s)| < \frac{\varepsilon}{2} \}.$$

Then G is an open set in $H^{r_1+r_2}(D)$. Moreover, by Theorem 3.1, the collection

$$(e^{p_1(s)}, \dots, e^{p_{r_1}(s)}, \widehat{p}_1(s), \dots, \widehat{p}_{r_2}(s)) \in H^{r_1+r_2}(D)$$

is an element of the support of the measure P_{Ξ} . Therefore, $P_{\Xi}(G) > 0$. From this and Theorem 8, using the equivalent of weak convergence of probability measures in terms of open sets (Theorem 2.1 of [2]), we find that

$$\liminf_{T \to \infty} \frac{1}{T} meas\{\tau \in [0;T] : \Xi(s+i\tau) \in G\} \ge P_{\Xi}(G) > 0,$$

or, by the definition of the set G,

$$\liminf_{T \to \infty} \frac{1}{T} meas\{\tau \in [0;T] : \sup_{1 \le j \le r_1} \sup_{s \in K_j} |L(s+i\tau,\chi_j) - e^{p_j(s)}| < \frac{\varepsilon}{2},$$

$$\sup_{1 \le j \le r_2} \sup_{s \in \widehat{K}_j} |\zeta(s+i\tau,\alpha_j) - \widehat{p}_j(s)| < \frac{\varepsilon}{2}\} > 0.$$

However, in virtue of (4.1) and (4.2),

$$\{\tau \in [0;T] : \sup_{1 \le j \le r_1} \sup_{s \in K_j} |L(s+i\tau,\chi_j) - e^{p_j(s)}| < \frac{\varepsilon}{2}.$$

$$\sup_{1 \leq j \leq r_2} \sup_{s \in \widehat{K}_j} |\zeta(s+i\tau,\alpha_j) - \widehat{p}_j(s)| < \tfrac{\varepsilon}{2} \} \subset$$

$$\subset \{\tau \in [0;T] : \sup_{1 \le j \le r_1} \sup_{s \in K_j} |L(s+i\tau,\chi_j) - f_j(s)| < \varepsilon,$$

$$\sup_{1 \le j \le r_2} \sup_{s \in \widehat{K}_j} |\zeta(s + i\tau, \alpha_j) - f_j(s)| < \varepsilon \}$$

Therefore, taking into account (4.3), we obtain that

$$\begin{split} \liminf_{T \to \infty} \frac{1}{T} meas \{ \tau \in [0;T] : \sup_{1 \le j \le r_1} \sup_{s \in K_j} |L(s+i\tau,\chi_j) - f_j(s)| < \varepsilon, \\ \sup_{1 \le j \le r_2} \sup_{s \in \widehat{K}_j} |\zeta(s+i\tau,\alpha_j) - \widehat{f_j}(s)| < \varepsilon \} > 0. \end{split}$$

Proof of Theorem 1.7. We apply similar arguments as in the proof of Theorem 1.6. The Mergelyan theorem implies the existence of a polynomial p(s) such that

$$\sup_{s \in K} |f(s) - p(s)| < \frac{\varepsilon}{2}.$$

Define

$$G = \{g \in H(D) : \sup_{s \in K} |f(s) - p(s)| < \frac{\varepsilon}{2}\}.$$

Since the set G is open, and, by Theorem 3.2, the polynomial p(s) is an element of the support of the measure $P_{\Xi}F^{-1}$, we have that

$$P_{\Xi}F^{-1}(G) > 0.$$

This and Theorem 2.2 show that

$$\liminf_{T \to \infty} \frac{1}{T} meas\{\tau \in [0;T] : \sup_{s \in K} |F(\Xi(s+i\tau)) - p(s)| < \frac{\varepsilon}{2}\} > 0.$$

Combining this with (4.4) proves the theorem.

Proof of Corollary 1.1. We take a function $F: H^{r_1+r_2}(D) \to H(D)$ given by

$$F(g_1,\ldots,g_{r_1};\widehat{g}_1,\ldots,\widehat{g}_{r_2})=g_{j_1}\ldots g_{j_r}\widehat{g}_{l_1}\ldots\widehat{g}_{l_k}.$$

Then the function F is continuous. Moreover, for every polynomial p = p(s), we have that

$$F(1,\ldots,1;1,\ldots,1,\widehat{g}_{l_1},1,\ldots,1)=p$$

and

$$(1,\ldots,1;1,\ldots,1,\widehat{g}_{l_1},1,\ldots,1) \in S^{r_1} \times H^{r_2}(D)$$

with $\widehat{g}_{l_1} = p$. Thus, the hypotheses of Theorem 1.7 are satisfied, and we have the assertion of the corollary.

References

- [1] Bagchi, B., The Statistical Behaviour and Universality Properties of the Riemann Zeta-function and Other Allied Dirichlet Series, PhD thesis, Indian Statistical Institute, Calcutta, 1981.
- [2] Billingsley, P., Convergence of Probability Measures, New York, Wiley, 1968.
- [3] Gonek, S.M., Analytic Properties of Zeta and L-functions, PhD thesis, University of Michigan, 1979.
- [4] Javtokas, A. and A. Laurinčikas, A joint universality theorem for periodic Hurwitz zeta-functions, *Bulletin of the Australian Mathematical Society*, **78(1)** (2008), 13–33.
- [5] Kačinskaitė, R. and A. Laurinčikas, The joint distribution of periodic zeta-functions, *Studia Sci. Math. Hungar.*, **48(2)** (2011), 257–279.
- [6] Laurinčikas, A., Universality of composite functions, RIMS Kôkŷuroku Bessatsu, 34 (2012), 191–204.
- [7] Laurinčikas, A., Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, 1996.
- [8] Laurinčikas, A., The joint universality for periodic Hurwitz zeta-functions, *Analysis(Munich)*, **26(3)** (2006), 419–428.
- [9] Laurinčikas, A., Voronin-type theorem for periodic Hurwitz zetafunctions, *Mat. Sb.*, **198(2)** (2007), 91–102 (in Russian)=*Math. Sbornik*, **198(2)** (2007), 231–242.
- [10] Laurinčikas, A., The joint universality of Hurwitz zeta-functions, Šiauliai Mathematical Semin., 3(11) (2008), 169–187.
- [11] Laurinčikas, A., On joint universality for periodic Hurwitz zeta-functions, *Lith. Math. J*, **48(2)** (2008), 79–91.
- [12] Laurinčikas, A., Joint universality for periodic Hurwitz zeta-functions, *Izv. RAN. Ser. Mat*, **72(4)** (2008), 121–140 (in Russian)= *Izv. Math.*, **72(4)** (2008), 741–760.
- [13] Laurinčikas, A., Joint universality of zeta-functions with periodic coefficients, *Izv. RAN. Ser. Mat*, **74(3)** (2010), 79–102 (in Russian)= *Izv. Math.*, **74(3)** (2010), 515–539.
- [14] Laurinčikas, A., On the joint universality of Lerch zeta-functions, Mat. Zametki, 88(3) (2010), 428–437 (in Russian)= Mathematical Notes, 88(3) (2010), 386–394.
- [15] Laurinčikas, A., Some value-distribution theorems for periodic Hurwitz zeta-functions, Fundam. Prikl. Mat., 16(5) (2010), 79–92 (in Russian).
- [16] Laurinčikas, A., On joint universality of Dirichlet *L*-functions, *Chebysh.* sbornik, **12(1)** (2011), 124–139.

- [17] Laurinčikas, A. and R. Garunkštis, The Lerch Zeta-Function, Dordrecht, Kluwer, 2002.
- [18] Laurinčikas, A. and R. Macaitienė, On the joint universality of periodic zeta-functions, *Mat. Zametki*, **85(1)** (209), 54–64 (in Russian)= *Mathematical Notes*, **85(1-2)** (2009), 51–60.
- [19] Laurinčikas, A. and K. Matsumoto, The joint universality and the functional independence for Lerch zeta-functions, *Nagoya Math. J.*, **157** (2000), 211–227.
- [20] Laurinčikas, A. and K. Matsumoto, The joint universality of zeta-functions attached to certain cusp forms, *Proc. Sc. Sem. of Faculty of Physics and Mathematics*, Šiauliai Univiversity, **5** (2002), 58–75.
- [21] Laurinčikas, A. and K. Matsumoto, The joint universality of twisted automorphic *L*-functions, *J. Math. Soc. Jap.*, **56(3)** (2004), 235–251.
- [22] Laurinčikas, A. and K. Matsumoto, Joint value distribution theorems on Lerch zeta-functions. III, in: *Analytic and Probabilistic Methods in Number Theory*, A. Laurinčikas and E. Manstavičius (Eds.), TEV, Vilnius, 87–88, 2007.
- [23] Laurinčikas, A. and S. Skerstonaitė, Joint universality for periodic Hurwitz zeta-functions. II, in: New directions in value-distribution theory of zeta and L-functions, Shaker Verlag, Aachen, R. Steuding and J. Steuding (Eds.), 161–169, 2009.
- [24] Laurinčikas, A. and S. Skerstonaitė, A joint universality theorem for periodic Hurwitz zeta-functions, *Lith. Math. J.*, **49(3)** (2009), 278–296.
- [25] **Mishou**, **H.**, The joint value distribution of the Riemann zeta function and Hurwitz zeta functions, *Lith. Math. J.*, **47(1)** (2007), 32–47.
- [26] Nakamura, T., The existence and the non-existence of joint t-universality for Lerch zeta functions, J. Number Theory, 125(2) (2007), 424–441.
- [27] Sander, J. and J. Steuding, Joint universality for sums and products of Dirichlet L-functions, Analysis (Munich), 26(3) (2006), 295–312.
- [28] **Voronin, S.M.,** On the functional independence of Dirichlet *L*-functions, *Acta Arith.*, **27** (1975), 493–503 (in Russian).
- [29] Voronin, S.M., Theorem on the "universality" of the Riemann zeta function, *Izv. Akad. Nauk SSSR*, *Ser. Matem*, **39** (1975), 475–486 (in Russian)= *Math. USSR Izv.*, **9** (1975), 443–445.

K. Janulis and A. Laurinčkas

Faculty of Mathematics and Informatics, Naugarduko St. 24 LT-03225 Vilnius

Lithuania

kestutis.janulis@gmail.com antanas.laurincikas@mif.vu.lt