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Abstract. With the decreasing feature size of today’s nanoelectronic cir-
cuits, the susceptibility to transient failures increases. New robust and
self-adaptive designs are developed, which can handle transient error to
some extent, but at the same time make testing for permanent faults more
difficult. This paper reviews the “signature rollback“ scheme as a strategy
to minimize both test time and yield loss. The main idea is to parti-
tion the test into shorter sessions and immediately repeat sessions with a
faulty result to distinguish between permanent defects and transient fail-
ures. While a high number of test sessions leads to a high test quality,
the hardware overhead also increases. For this, an extreme compaction
method is added which reduces the amount of data to be stored on chip
without any degradation of the product quality

1. Introduction

The number of transistors per chip has grown exponentially in the last
decades and has brought tremendous progress in the performance and function-
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parameters of the test. The extreme compaction scheme will be introduced in
Section 5, and its effect on yield improvement will be validated both analytically
and by simulation experiments in section 6.

2. Background

This work focuses on digital circuits, which can be divided into two groups:
combinational and sequential circuits. A combinational circuit implements the
function

fc : I → O,

whereby I = {0, 1}n is the set of inputs, and O = {0, 1}m denotes the set of
outputs. The behavior of a sequential circuit also depends on its internal state.
It can be represented by a function

fs : I × F → F  ×O,

whereby F, F  = {0, 1}s describe the present and the next states of the circuits.
The state of a circuit is stored in registers composed of flip-flops. Because the
flip-flops are not directly accessible, the state of a sequential circuit can nether
be directly controlled nor observed, which makes testing very difficult. To
improve the testability of a sequential circuit, the design is converted into a
so-called scan-design. Some extra logic is added, such that during test, the flip-
flops can be configured into one or several scan-chains. Through extra scan-in
and scan-out pins, test patterns can be shifted into the scan-chains, and the
test responses can be shifted out. This way, the test of a sequential circuit is
reduced to the test of a combinational circuit. Scan design is widely used in
industry to simplify the test.

The goal of a manufacturing test of VLSI circuits is the detection of defects.
The chip is tested with a set of test patterns P ⊂ {0, 1}n, applied to the n inputs
of the circuit-under-test (CUT). The respective responses R ⊂ {0, 1}m are
observed at the CUT’s outputs and compared to the predetermined responses
G ⊂ {0, 1}m. The test patterns are generated randomly or by software tools,
the expected responses are obtained by simulation.

If for at least one pattern P ∈ P a mismatch R = G occurs for the respective
response, the chip is rejected because the CUT does not work as specified and
failed the test. If for all patterns P ∈ P a match R = G is observed, the CUT
passes the test and can be further processed. With the growing complexity and
heterogeneity of chips, test has become extremely challenging. Built-in self-test
addresses these problems incorporating the test equipment into the chip itself
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ality of today’s semiconductor devices and microprocessors, like Gordon Moore
postulated in 1965. While the first Intel microprocessor was developed 1971
with about 2200 transistors, in 2006 Intel announced its first billion-transistor
Itanium microprocessor with about 1.72 billion transistors [21]. This is a direct
result of the steadily decreasing feature sizes of transistors and interconnecting
wires. As the physical implementation of Very Large Scale Integration (VLSI)-
circuits is very complicated and passes through multiple production processes,
the susceptibility to defects increases: already a small variation of geometrical
shape can result in a permanent defect. In addition to that, chips are also
affected by aging effects, external noise (soft errors) and parameter variations,
which mostly result in transient faults and increase reliability problems [3], [5],
[22]. To screen out chips with permanent defects, a manufacturing test is nec-
essary which works as follows: every single chip is tested with an Automatic
Test Equipment (ATE), which applies test patterns at the circuits’ inputs. The
test responses are compared to the reference responses. If the responses match
the expected ones, the chip is assumed to be fault free. Otherwise, the chip will
be rejected. The percentage of working chips is defined as yield and is a key
indicator for semiconductor manufacturers. To maximize the product quality
and to minimize yield loss by falsely rejected chips, test must be as accurate
as possible.

To deal with transient faults, new robust and self-adaptive architectures
have been developed which can compensate errors during system operation
[11], [27]. One prominent example is the Razor register, which uses dynamic
detection and correction of circuit timing errors to tune processor supply volt-
age and eliminate the need for voltage margins [9], [11]. The problem in testing
robust designs is two-fold. On the one hand, observing only the input/ out-
put behavior may provide a too optimistic quality assessment, because critical
defects can be masked by the built-in redundancy. On the other hand, state
of the art test procedures exploiting structural information cannot deal with
the special characteristics of a robust design. Chips may be rejected during
manufacturing test, even if the test reveals only non-critical failures that could
be compensated during system operation. This problem of overtesting has al-
ready been addressed in the context of delay testing [6], [16], [24], [25], [26],
[30]. In contrast to that, the BIST scheme presented in [2] addresses robust
designs based on time redundancy. It works with standard test sets and distin-
guishes whether a failure indication is due to a critical permanent fault or to a
non-critical temporary problem. To reduce the necessary hardware overhead,
a new extreme compaction scheme for response data has been introduced in
[15]. This paper describes the resulting test scheme as an integral approach.

In the following Sections 2 and 3 the basic concepts of VLSI test, built-in
self-test (BIST) and signature rollback will be summarized. Section 4 presents
an analytical model for test time and quality, which can help to tune the
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parameters of the test. The extreme compaction scheme will be introduced in
Section 5, and its effect on yield improvement will be validated both analytically
and by simulation experiments in section 6.

2. Background

This work focuses on digital circuits, which can be divided into two groups:
combinational and sequential circuits. A combinational circuit implements the
function

fc : I → O,

whereby I = {0, 1}n is the set of inputs, and O = {0, 1}m denotes the set of
outputs. The behavior of a sequential circuit also depends on its internal state.
It can be represented by a function

fs : I × F → F  ×O,

whereby F, F  = {0, 1}s describe the present and the next states of the circuits.
The state of a circuit is stored in registers composed of flip-flops. Because the
flip-flops are not directly accessible, the state of a sequential circuit can nether
be directly controlled nor observed, which makes testing very difficult. To
improve the testability of a sequential circuit, the design is converted into a
so-called scan-design. Some extra logic is added, such that during test, the flip-
flops can be configured into one or several scan-chains. Through extra scan-in
and scan-out pins, test patterns can be shifted into the scan-chains, and the
test responses can be shifted out. This way, the test of a sequential circuit is
reduced to the test of a combinational circuit. Scan design is widely used in
industry to simplify the test.

The goal of a manufacturing test of VLSI circuits is the detection of defects.
The chip is tested with a set of test patterns P ⊂ {0, 1}n, applied to the n inputs
of the circuit-under-test (CUT). The respective responses R ⊂ {0, 1}m are
observed at the CUT’s outputs and compared to the predetermined responses
G ⊂ {0, 1}m. The test patterns are generated randomly or by software tools,
the expected responses are obtained by simulation.

If for at least one pattern P ∈ P a mismatch R = G occurs for the respective
response, the chip is rejected because the CUT does not work as specified and
failed the test. If for all patterns P ∈ P a match R = G is observed, the CUT
passes the test and can be further processed. With the growing complexity and
heterogeneity of chips, test has become extremely challenging. Built-in self-test
addresses these problems incorporating the test equipment into the chip itself
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The period of the sequence depends on the characteristic polynomial h(X) and
can reach 2k − 1 (all possible states without the all zero state). In this case,
the polynomial has to be primitive [18].

Example. For k = 4, the polynomial X4+X +1 is primitive. If an initial
state x = 0 is selected, the state transition sequence has period 24 − 1 = 15. If
x = 0 is selected, all the following states will also be zero.

2.2. Test Response Evaluation

Storing the expected responses G on chip would require an enormous amount
of extra memory. Therefore the responses must be compacted, such that only
a few bits characterize R. Signature analysis is the most popular response
compaction technique used today [29]. It compacts the output responses into
a signature and compares it with a golden signature for the fault-free case
embedded on-chip. This time-compaction technique is based on polynomial
division and implemented with an extended LFSR. For the sake of simplicity,
the basic principle is explained here only for a circuit with one output producing
a response sequence R = (Rl, ..., R0). The response sequence is combined with
an LFSR with feedback polynomial h(X) ∈ GF (2)[X]. Interpreting R as a
polynomial

R(X) = RlX
l + · · ·+R1X +R0 ∈ GF (2)[X],

the LFSR operation performs a polynomial division R(X)/h(X). When R(X)
is shifted in completely, the state register contains the coefficients of the re-
mainder polynomial r(X) = rk−1X

k−1 + · · · + r1X + r0 [23]. The vector
(r0, ..., rk−1) ∈ GF (2)k is called the signature of the test. For the general case,
the LFSR is extended to process several output streams in parallel, which leads
to MISR. Using only signatures for response analysis can lead to aliasing, i.e.
a faulty response sequence can be mapped to the same signature as the correct
response sequence. Fortunately, the probability of aliasing is rather low. For a
k- bit MISR it can be approximated by Paliasing ≈ 2−k, which means that the
quality of the compaction scheme mainly depends on the size of the MISR.

Example. Testing a circuit, which has 32 outputs, with 10,000 test pat-
terns and using a 32 bit MISR for output compaction, the compaction ratio
equals 10,000X and the aliasing probability Paliasing ≈ 2−32 ≈ 2, 33 · 10−10.

Describing this behavior with linear transformations by a Matrix H, a re-
sponse sequence Rl, . . . , R0 and an initial state x lead to a signature sequence
x,Hx + Rl, H

2x + HRl + Rl−1, . . . , H
l+1x + H lRl + · · · + HR1 + R0, and

H l+1 +H lRl + · · ·+R0 is the final signature.
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[1], [8], [19], [20]. For circuits with scan design the STUMPS (Self-test Using
MISR and Parallel Shift Register Sequence Generator) architecture shown in
figure 1 is widely used [4]. The test pattern generator (TPG) produces test
patterns, which are shifted into the scan design. When all the scan chains are
filled, the circuit works in normal mode for one clock cycle and the response is
captured in the scan chains. While shifting out the responses and processing
them with the multiple input signature register (MISR), the next pattern is
shifted in.

Figure 1: STUMPS Architecture

2.1. Test Pattern Generator (TPG)

The test pattern generator (TPG) is often based on linear feedback shift
registers (LFSR), which consist of flip-flops and a selected number of exclusive-
OR (XOR) gates [29]. A k-stage LFSR is shown in Figure 2.

Figure 2: k-stage LFSR

The structure can be described by a characteristic polynomial h(X) ∈
∈ GF (2)[X] of degree k

h(X) = Xk +
k−1

i=0 hiX
i,

whereby hi = 1, if there is a feedback path, and hi = 0 else. The state
transitions of the LFSR can also be described by a matrixH ∈M(k×k,GF (2)).
With the initial state x, the states of the LFSR provide the sequence

x, Hx, H2x, H3x, . . . .



165

Signature rollback with extreme compaction 165

The period of the sequence depends on the characteristic polynomial h(X) and
can reach 2k − 1 (all possible states without the all zero state). In this case,
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of extra memory. Therefore the responses must be compacted, such that only
a few bits characterize R. Signature analysis is the most popular response
compaction technique used today [29]. It compacts the output responses into
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embedded on-chip. This time-compaction technique is based on polynomial
division and implemented with an extended LFSR. For the sake of simplicity,
the basic principle is explained here only for a circuit with one output producing
a response sequence R = (Rl, ..., R0). The response sequence is combined with
an LFSR with feedback polynomial h(X) ∈ GF (2)[X]. Interpreting R as a
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R(X) = RlX
l + · · ·+R1X +R0 ∈ GF (2)[X],

the LFSR operation performs a polynomial division R(X)/h(X). When R(X)
is shifted in completely, the state register contains the coefficients of the re-
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k−1 + · · · + r1X + r0 [23]. The vector
(r0, ..., rk−1) ∈ GF (2)k is called the signature of the test. For the general case,
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response sequence. Fortunately, the probability of aliasing is rather low. For a
k- bit MISR it can be approximated by Paliasing ≈ 2−k, which means that the
quality of the compaction scheme mainly depends on the size of the MISR.

Example. Testing a circuit, which has 32 outputs, with 10,000 test pat-
terns and using a 32 bit MISR for output compaction, the compaction ratio
equals 10,000X and the aliasing probability Paliasing ≈ 2−32 ≈ 2, 33 · 10−10.
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H l+1 +H lRl + · · ·+R0 is the final signature.
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that all sessions have x = X/N patterns. For each session Ti the correct
signature Si must be determined and made available during test by storing it
on chip. During test, the i-th session starts with storing the initial state of the
MISR in the backup register. Then the patterns for session Ti are generated
and the test responses are compacted with the MISR. When the last response
is shifted out, the first pattern of the next session is already shifted in. There-
fore the state of the test pattern generator must be saved in the TPG backup
register for session Ti+1 before shifting out the last response of session Ti. At
this point the TPG backup register for session Ti cannot yet be overwritten,
because it may still be needed for a repetition of Ti. At the end of session Ti,
the obtained signature Qi in the MISR is compared with the correct signature
Si. In case of a mismatch, the test is repeated after restoring the initial states of
the TPG and the MISR from the backup registers. The number of repetitions
is limited by a user-defined parameter W . If there is still a signature mismatch
after W repetitions, then either a permanent fault has been detected or the
rate of temporary failures is unacceptably high. The test is stopped and the
device is rejected. The diagram in Figure 4 summarizes this flow. The actual
number of repetitions already performed for a session is denoted by w.

Figure 4: Test flow with rollback

For a given rate of temporary failures, the efficiency of the proposed scheme
depends on the choice of the parameters W and N . As already pointed out
above, the maximum number of iterations W reflects the acceptable error rate
during system operation. If a frequent rollback during system operation is
tolerable, then W can be increased. Selecting the appropriate number of test
sessions N is a more difficult task. On the one hand, a large value of N implies
shorter sessions with a lower risk of temporary failures and helps to reduce
yield loss. Furthermore, the time penalty is low when a short session has to
be repeated. On the other hand, the parameter N determines the number of
required reference signatures and thus the hardware overhead for an on-chip
implementation.
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2.3. Test in the presence of transient failures

While permanent defects are problems for the semiconductor manufacturer,
temporary transient failures due to external noises can be compensated during
system operation e.g. with hardware redundancy. If such temporary failures
occur during the manufacturing test, these failures have to be distinguishable
from the permanent defects. A straightforward technique is to repeat tests
with faulty outcomes. In case of a permanent defect the same faulty result can
be observed again, whereas for a temporary failure the second test is likely to
produce a different result. But simply repeating the complete test has a two-
fold disadvantage. Obviously, the probability of a temporary failure increases
with the test time. For high failure rates this implies that even several iterations
of the test may fail due to temporary failures. As a consequence, either a large
number of repetitions become necessary, or yield loss due to rejecting acceptable
devices still remains a problem. Both solutions are not satisfactory according
to the increasing susceptibility to temporary faults and the modern robust
designs. In the next section, the signature rollback scheme is described, which
addresses these problems by partitioning the test into several sessions.

3. Signature rollback

To distinguish between permanent and temporary failures, the technique
proposed in [2] partitions the test into sessions and triggers a rollback, if a
session results in a failure indication. In the sequel, the implementation of this
idea is described in more detail for the already discussed STUMPS architecture
and is shown in Figure 3. But the idea works also for a test with deterministic
test patterns, as described in [14].

Figure 3: Signature Rollback Architecture

To realize the test with rollback, a given test T with X patterns is parti-
tioned into N sessions T1, . . . , TN , and without loss of generality it is assumed
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that all sessions have x = X/N patterns. For each session Ti the correct
signature Si must be determined and made available during test by storing it
on chip. During test, the i-th session starts with storing the initial state of the
MISR in the backup register. Then the patterns for session Ti are generated
and the test responses are compacted with the MISR. When the last response
is shifted out, the first pattern of the next session is already shifted in. There-
fore the state of the test pattern generator must be saved in the TPG backup
register for session Ti+1 before shifting out the last response of session Ti. At
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because it may still be needed for a repetition of Ti. At the end of session Ti,
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the TPG and the MISR from the backup registers. The number of repetitions
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after W repetitions, then either a permanent fault has been detected or the
rate of temporary failures is unacceptably high. The test is stopped and the
device is rejected. The diagram in Figure 4 summarizes this flow. The actual
number of repetitions already performed for a session is denoted by w.
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For a given rate of temporary failures, the efficiency of the proposed scheme
depends on the choice of the parameters W and N . As already pointed out
above, the maximum number of iterations W reflects the acceptable error rate
during system operation. If a frequent rollback during system operation is
tolerable, then W can be increased. Selecting the appropriate number of test
sessions N is a more difficult task. On the one hand, a large value of N implies
shorter sessions with a lower risk of temporary failures and helps to reduce
yield loss. Furthermore, the time penalty is low when a short session has to
be repeated. On the other hand, the parameter N determines the number of
required reference signatures and thus the hardware overhead for an on-chip
implementation.
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A session is executed exactly w times, w < W , if the first w − 1 iterations
indicate a failure and the w-th iteration does not reveal any failure. The prob-
ability for this constellation is pw−1(1 − p) . Since the number of repetitions
is bounded by W , a session is executed exactly W times, if the first W − 1
iterations indicate a failure independent of the result of the W -th iteration.
The probability for W iterations is thus given by pW−1 . To determine the
time for w iterations, it is necessary to distinguish two cases as illustrated in
Figure 6.

Figure 6: Time for w iterations of a session

If a session is executed for the first time, then the scan chains already contain
the first pattern at the beginning of the session, and the time needed for the
session is tapp(N). After a rollback, the initial state of the test pattern generator
must be loaded from the backup registers, and since the scan chains contain
the first pattern of the next session, extra time is needed to shift in the first
pattern again. As soon as the scan chains are completely loaded, the contents
of the MISR can be restored from the backup register, and test application
can be started. Independent of N , the time penalty trollback for the rollback is
therefore mainly determined by the length of the scan chains, and the overall
duration of a repeated session is trepeat(N) = tapp(N)+trollback. Consequently,
the time for w iterations of a session is given by tapp(N)+ (w− 1) · trepeat(N) .
This results in the following equation for the expected duration of a test session
with rollbacks.

E (tsess(N)) =

W−1
w=1

(w · tapp(N) + (w − 1) · trollback)pw−1(1− p)+

+ (W · tapp(N) + (W − 1) · trollback)pW−1.

(4.1)

Elementary formula manipulations for geometric series provide the following
expression for E(tsess(N)).

(4.2) E (tsess(N)) = trepeat(N) ·
1− pW

1− p
− trollback.

This formula confirms the intuitive conjecture that shorter sessions lead to
fewer failures and less penalty for iterations. The probability p = 1−e−λtapp(N)
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4. An analytical model for the test time and yield improvement

The problem of finding the number of test sessions improving the overall
test time and yield is similar to the problem of optimal checkpoint placement
in classical fault tolerance [17]. However, for classical checkpoint placement the
number of iterations is not limited. Therefore, in the sequel a specially tailored
model for the expected overall test time and yield improvement is presented.
To keep the analysis as simple as possible, the model developed in the next
subsections assumes that no permanent faults are present in the circuit. The
impact of permanent faults on the test time and yield is discussed in Section
4.3. Furthermore, aliasing in the MISR is not taken into account, since shorter
sessions also reduce the aliasing probability.

4.1. Duration of a test session with rollbacks

If no failure occurs during the test, partitioning the test into N sessions
leads to the timing diagram in Figure 5.

Figure 5: Minimum time for a successful test

After the first pattern has been loaded into the scan chains in tload time
units, the first session starts with the application of x = X/N patterns. The
test application time depends on N and is denoted by tapp(N). As soon as the
signature Qi is available, it is compared against the reference signature, and
the result is provided in the same clock cycle. At the end of a session the first
pattern of the next session has already been loaded into the scan chains, and
the next session can immediately start with test application. To determine the
expected duration of a session including possible rollbacks in the presence of
failures, let p denote the probability that at least one temporary failure occurs
during a session. Accordingly, 1 − p is the probability that no temporary
failure occurs. Assuming a constant rate λ of temporary failures, 1− p can be
determined using the exponential failure law from classical reliability theory
[17], and the probabilities 1− p and p are given by

1− p = e−λtapp(N), p = 1− e−λtapp(N).
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Figure 7: Test time as function of N(W=2)

Figure 8: Probability of successfully completing the test (W=2)

the other failure rates it can be observed, that with increasing N the probabil-
ity qN increases, too. For λ = 10−1 this effect is not yet observable even for a
value of N = 100. N has to be further increased significantly to prevent yield
loss.

4.3. Impact of permanent faults

If a permanent fault is present in the circuit, then in most cases the test
time will even decrease, because the test is stopped after the session detecting
the fault for the first time. In the worst case, the permanent fault appears in
the last session of a test and there are no temporary failures in this session.
In this case the time penalty for repeating this session W times is added. The
product quality is as good as a standard test, because the signature of the last
session is the ”normal“ signature of a standard test. Consequently, although the
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of a temporary failure decreases with increasing N , and
�
1− pW


/ (1− p)

decreases with decreasing p.

4.2. Expected overall test time and yield improvement

For the test flow explained in Section 3, the overall test time depends on
the duration of single test sessions and on the number of test sessions that
are executed before the test is stopped. As explained in Section 3, the test is
stopped, if theW -th iteration of a test session still results in a faulty signature.
The probability for this event is pW . Let q = 1 − pW denote the probability
that the test is continued. Then the probability that the test is stopped after
exactly i sessions, i < N , is given by qi−1(1− q). Furthermore, the probability
that the test stops after exactly N sessions is qN−1. Using the result derived
in Section 4.1 for the expected duration of a test session with rollback, the
expected overall test time E (ttotal(N)) can be calculated as shown below.

E (ttotal(N)) = tload +

N−1
i=1

i · E (tsess(N)) qi−1(1− q)+

+N · E (tsess(N)) qN−1 =

= tload + E (tsess(N)) ·
1− qN

1− q
.

(4.3)

Figure 7 shows the evolution of E(ttotal(N)) for a test of the NXP circuit
p951k applying 10,000 patterns at a frequency of 20 MHz [13]. The circuit
contains 82 scan chains of maximum length 1122, the maximum number of
repetitions has been set to W = 2, the number of test sessions varies between
1 and 100, and the failure rates range between 10−5 and 10−1 failures per
millisecond. The curve for λ = 10−5 shows the minimum test time for the fault
free case for all values of N , and for λ = 10−3 this ideal value is already reached
for less than 20 test sessions. For λ = 10−2 the probability that two iterations
of a session fail is already very high and abortions of the test are very likely for
small values of N . Therefore the minimum test time is lower than for λ = 10−5

and for λ = 10−3. But with increasing N the probability of aborting the test
is decreasing, which explains the increase of the total test time for a growing
number of sessions. For λ = 10−1 even a value of N = 100 is not sufficient to
prevent yield loss.

The yield improvement can be characterized by analyzing the probability
qN that a test is successfully completed for varying N . Figure 8 shows the
results for the same scenario as investigated before.

The diagram confirms the interpretations given for the test times in Fig-
ure 7. The curve for λ = 10−5 already corresponds to the fault free case. For
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Figure 7: Test time as function of N(W=2)

Figure 8: Probability of successfully completing the test (W=2)

the other failure rates it can be observed, that with increasing N the probabil-
ity qN increases, too. For λ = 10−1 this effect is not yet observable even for a
value of N = 100. N has to be further increased significantly to prevent yield
loss.

4.3. Impact of permanent faults

If a permanent fault is present in the circuit, then in most cases the test
time will even decrease, because the test is stopped after the session detecting
the fault for the first time. In the worst case, the permanent fault appears in
the last session of a test and there are no temporary failures in this session.
In this case the time penalty for repeating this session W times is added. The
product quality is as good as a standard test, because the signature of the last
session is the ”normal“ signature of a standard test. Consequently, although the
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repetitions will be reduced. But if transient faults are masked in one session
and detected with certain latency in one of the following sessions, the yield
gain of the original technique will be reduced. Figure 10 shows an example.
Here, a transient fault in session Ti leads to a deviation of the actual signature
from the reference signature, i.e. Qi = Si. Since Π(Qi) = Π(Si) holds for the
respective parity bits, the error is not detected. The test continues and session
Ti+1 is started with a wrong seed for the MISR. This leads to a mismatch
Qi+1 = Si+1 after session Ti+1, but this time also Π(Qi+1) and Π(Si+1) differ.
As the initial MISR state for session Ti+1 is incorrect, the chip will be rejected
independent of the number of repetitions. At this point it should be noted
that a standard test without rollback would also reject the chip because of the
faulty signature caused by the transient fault. Overall, the yield for signature
rollback with additional compaction is still higher than that for a standard test,
but the benefits of the rollback technique cannot be fully exploited.

Figure 10: Aborted test due to fault detection latency.

For maximizing the yield gain, a method is needed which guarantees the
lowest possible error latency for transient faults. To reach this goal, a sequence
of consecutive parity bits of length L will be monitored at the end of each
session (cf. Figure 11). Accordingly, L parity bits per session will be stored.

Figure 11: Parity window around the signature Qi.
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actual test times are slightly different in the presence of permanent faults, the
analytical model presented in sections 4.1 and 4.2 still provides valid guidelines
to find the best trade-off between hardware overhead, yield improvement and
test time.

5. Compacting the Reference Signature

As illustrated by Figures 7 and 8, both the test time and the test quality
are improved with increasing number of test sessions N . To reach this effect
also for high failure rates, N has to be increased significantly. The problem is,
that this requires to store an increasing amount of reference data on chip. To
minimize the hardware overhead while maintaining the test quality, the method
in [15] works with compacted signatures, but doesn’t require additional test
generation procedures like the methods in [10] and [28].

5.1. Architecture

To reduce the amount of reference data, the signatures are compacted as
shown in Figure 9. Instead of storing the complete k- bit signatures

Si = (Si0, . . . , Sik−1) ∈ GF (2)k,

only the parities Π(Si) :=
k−1

j=0 Sij are stored. The actual parities Π(Qi)
obtained at the end of the sessions are compared to the reference parities Π(Si).

Figure 9: Architecture for embedded test with extreme compaction.

Due to the compaction some errors may be masked, although they could
be observed within the MISR. Therefore, the following cases have to be dis-
tinguished: if the complete reference signature for the last session, i.e. for the
whole test T , is still stored, then the fault coverage for permanent faults will
be as high as for a standard BIST without signature rollback. If due to the
compaction transient faults are masked during the whole test, the number of
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repetitions will be reduced. But if transient faults are masked in one session
and detected with certain latency in one of the following sessions, the yield
gain of the original technique will be reduced. Figure 10 shows an example.
Here, a transient fault in session Ti leads to a deviation of the actual signature
from the reference signature, i.e. Qi = Si. Since Π(Qi) = Π(Si) holds for the
respective parity bits, the error is not detected. The test continues and session
Ti+1 is started with a wrong seed for the MISR. This leads to a mismatch
Qi+1 = Si+1 after session Ti+1, but this time also Π(Qi+1) and Π(Si+1) differ.
As the initial MISR state for session Ti+1 is incorrect, the chip will be rejected
independent of the number of repetitions. At this point it should be noted
that a standard test without rollback would also reject the chip because of the
faulty signature caused by the transient fault. Overall, the yield for signature
rollback with additional compaction is still higher than that for a standard test,
but the benefits of the rollback technique cannot be fully exploited.

Figure 10: Aborted test due to fault detection latency.

For maximizing the yield gain, a method is needed which guarantees the
lowest possible error latency for transient faults. To reach this goal, a sequence
of consecutive parity bits of length L will be monitored at the end of each
session (cf. Figure 11). Accordingly, L parity bits per session will be stored.

Figure 11: Parity window around the signature Qi.
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case of a 64-bit MISR the data volume is reduced to one eighth. For higher
MISR lengths the reduction can be even better. This estimation also holds, if
an error in the circuit influences several scan elements and erroneous data enter
the MISR at several points in time. In this case it can be assumed without loss
of generality, that t = i is the last point in time, at which the MISR receives
an erroneous input.

6. Experiments

To validate the method proposed in Section 5.1-5.2 a series of experiments
for ISCAS’89 [7], ITC’99 [12] and NXP benchmark circuits has been performed.
The relevant characteristics of the examined benchmark circuits are listed in
Table 1.

Circuit (P)PI (P)PO FF Scan Max.
chains length

s13207.1 700 790 638 10 79

s15850.1 611 684 534 18 41

s35932 1763 2048 1728 32 64

s38417 1664 1742 1636 26 67

s38584 1464 1730 1426 26 67

b17 1452 1512 1415 18 84

b22 767 757 735 12 64

p330k 18010 17468 17226 64 282

p388k 25005 24065 24065 50 569

p418k 30430 29809 29205 64 664

p469k 635 403 332 1 635

p483k 33264 32610 32409 71 469

p500k 30768 30840 30731 76 406

p533k 33373 32610 32409 71 471

p874k 61977 70863 42076 59 1202

p951k 91994 104714 104624 82 1277

Table 1: Characteristics of the examined circuits.

The first series of experiments examined the error detection latencies for
transient faults for an extreme compaction into a single parity bit. A test with
10,000 random patterns was partitioned into 10 sessions of equal length. A
single transient fault was randomly injected into the circuit during the first
session. The test was simulated until the first deviation from the expected
parity Π(Qi) = Π(Si) was detected in session Ti, i.e. with latency i − 1,
or the test was successfully completed, which corresponds to an infinite error
detection latency. Each experiment was repeated 100 times. Table 2 lists the
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To accomplish this, the proposed architecture of Figure 9 has to be slightly
extended. Instead of using a single flip-flop to store the parity bit, a shift-
register is needed to accommodate the L-bit parity sequence. The necessary
size L of the parity window can be determined with the help of the behavior
of a MISR shown in section 5.2.

5.2. Error propagation in a MISR

Observation 5.1. Consider a MISR with a primitive feedback-polynomial
h(X) ∈ GF (2)[X]. Assume, that at time t = i a possible error impacts an odd
(even) number of bits in the MISR. Then the probability, that the error always
impacts an odd (even) number of bits up to the time t = i+L, can be estimated
by 2−L.

Proof. According to the matrix representation of a MISR introduced in
Section 2.2, in case of an error at time t = i the vector Rl−i+ e instead of Rl−i

enters the MISR. It is easy to check, that the following states differ from the
fault free states by He,H2e,H3e, . This implies that error propagation behaves
like the state sequence of an LFSR with feedback-polynomial h(X) and initial
state e. Since h(X) is primitive, an odd number of feedback-coefficients must
be nonzero. If the state bit xk−1 equals 1, an odd number of bits are inverted
and so the parity changes. Furthermore, as the LFSR has the properties of a
pseudo-random generator in autonomous mode, the probability of a 1 at xk−1 is
approximately 2−1. Accordingly, the probability, that an error always impacts
an odd (even) number of bits, can be estimated by 2−L. 

Figure 12: MISR

As a result of the theorem, observing a parity sequence of length L at the end
of each session reduces the probability of error masking to 2−L. Accordingly,
the probability of error detection is given by 1−2−L. For L = 8 the probability
of error propagation is already lower than 0.01. So the reduction in yield
improvement compared to the original rollback scheme is less than 1 %. In the
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case of a 64-bit MISR the data volume is reduced to one eighth. For higher
MISR lengths the reduction can be even better. This estimation also holds, if
an error in the circuit influences several scan elements and erroneous data enter
the MISR at several points in time. In this case it can be assumed without loss
of generality, that t = i is the last point in time, at which the MISR receives
an erroneous input.

6. Experiments

To validate the method proposed in Section 5.1-5.2 a series of experiments
for ISCAS’89 [7], ITC’99 [12] and NXP benchmark circuits has been performed.
The relevant characteristics of the examined benchmark circuits are listed in
Table 1.

Circuit (P)PI (P)PO FF Scan Max.
chains length

s13207.1 700 790 638 10 79

s15850.1 611 684 534 18 41

s35932 1763 2048 1728 32 64

s38417 1664 1742 1636 26 67

s38584 1464 1730 1426 26 67

b17 1452 1512 1415 18 84

b22 767 757 735 12 64

p330k 18010 17468 17226 64 282

p388k 25005 24065 24065 50 569

p418k 30430 29809 29205 64 664

p469k 635 403 332 1 635

p483k 33264 32610 32409 71 469

p500k 30768 30840 30731 76 406

p533k 33373 32610 32409 71 471

p874k 61977 70863 42076 59 1202

p951k 91994 104714 104624 82 1277

Table 1: Characteristics of the examined circuits.

The first series of experiments examined the error detection latencies for
transient faults for an extreme compaction into a single parity bit. A test with
10,000 random patterns was partitioned into 10 sessions of equal length. A
single transient fault was randomly injected into the circuit during the first
session. The test was simulated until the first deviation from the expected
parity Π(Qi) = Π(Si) was detected in session Ti, i.e. with latency i − 1,
or the test was successfully completed, which corresponds to an infinite error
detection latency. Each experiment was repeated 100 times. Table 2 lists the
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compared to the reference sequence. Once the error was detected, the error
latency was determined and the test was aborted. Table 4 shows the summary
of all results. For the sake of clarity the obtained data are consolidated. For
every parity window size only the number of critical cases, where 0 < LD <∞,
is shown. The results show, that for L ≥ 7 only a few experiments yield a
critical error latency resulting in unnecessary test aborts. Again these results
confirm the estimations made in Section 5.1-5.2.

Circuit Aliasing sequences: Proportion of sequences of length L
L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

s13207.1 0.50006 0.25022 0.12472 0.06255 0.03114 0.01568

s15850.1 0.49877 0.2507 0.12513 0.06273 0.0313 0.01547

s35932 0.50018 0.24961 0.12498 0.0626 0.03133 0.01565

s38417 0.50038 0.24956 0.12498 0.06265 0.0313 0.0155

s38584 0.49986 0.24982 0.12517 0.06263 0.0315 0.01541

b17 0.50082 0.25005 0.12468 0.06217 0.03103 0.01559

b22 0.49999 0.24987 0.12508 0.06255 0.03105 0.01576

p330k 0.49914 0.25029 0.12578 0.0622 0.03132 0.01559

p388k 0.50051 0.2496 0.12494 0.06234 0.03127 0.01569

p418k 0.50114 0.24959 0.12429 0.06217 0.03144 0.01567

p469k 0.49944 0.25069 0.12488 0.06244 0.03126 0.01565

p483k 0.50038 0.24946 0.12499 0.06248 0.0314 0.01551

p500k 0.49923 0.25002 0.12521 0.06247 0.03175 0.01568

p533k 0.49939 0.24971 0.12531 0.06258 0.03164 0.01567

p874k 0.50083 0.24983 0.1247 0.06206 0.03109 0.01556

p951k 0.49983 0.24951 0.12533 0.06305 0.03098 0.01554

Table 3: Aliasing sequences

Assuming a parity window of size L = 8, the possible reduction of the
storage requirements for the reference data depends on the MISR-size k. The
storage reduction can be calculated as k×N

8×N = k
8 and is between 4 and 12 in

our experiments. The additional hardware consists of only one XOR-tree to
generate the parities and one additional L bit register for accommodating the
actually computed parities. The size of the XOR-tree depends on the MISR-size
(k − 1 XOR-gates).

7. Conclusion

Static and dynamic parameter variations, device degradations and an in-
creased susceptibility to soft errors make a robust design mandatory. Recent
approaches efficiently implement time redundancy to cope with various types of
delay errors and other timing problems. While these design efforts try to ensure
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frequency distribution of the error detection latencies LD. The values confirm
the problems pointed out above with respect to the extreme compaction into
a single parity bit. Even for the best case (s13207.1) the error was detected
immediately only in 75 % of the experiments. In 25 % of the experiments the
error was detected with latency LD, 0 < LD <∞. In these cases the test was
aborted unnecessarily. In the worst case (p330k), the values are shifting to 26%
for immediate detection and 74% for unnecessary test aborts.

Circuit Number of experiments with detection latency LD

LD = 0 LD = 1 LD = 2 LD = 3 LD = 4 LD =∞
s13207.1 75 15 0 10 0 0

s15850.1 31 37 1 16 1 0

s35932 31 37 1 16 1 0

s38417 46 16 17 21 0 0

s38584 46 16 17 21 0 0

b17 45 33 15 7 0 0

b22 48 32 9 3 8 0

p330k 26 55 3 4 4 0

p388k 33 17 11 25 1 0

p418k 33 17 11 25 1 0

p469k 61 22 12 1 3 0

p483k 61 22 12 1 3 0

p500k 70 13 8 8 1 0

p533k 59 26 11 2 0 0

p874k 50 37 6 0 1 0

p951k 53 43 3 1 0 0

Table 2: Frequency distribution of error-latency for 1 parity bit.

The second series of experiments validated the estimation of error propa-
gation inside the MISR. Again, a transient fault was randomly injected into
the circuit during the first session. But this time the parities were monitored
continuously. For every MISR-cycle the actually computed and the reference
parities were compared. If the parities are indistinguishable for LMISR-cycles,
this will be called aliasing-sequence of length L. In Table 3 the frequency dis-
tributions of aliasing-sequences are shown. The values represent the average
percentage of aliasing-sequences of length L within the whole set of aliasing-
sequences for 10 experiments per benchmark. It can be seen, that the values
are very close to the predicted trend 2−L. Finally, the error detection latency
was analyzed for the proposed method with respect to the size of the parity
window. For this, again a transient fault was randomly injected into the cir-
cuit during the first session. As in the first series of experiments the MISR
was monitored during the whole test. Furthermore the parity sequences were
calculated, and at the end of each session the computed parity sequence was
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compared to the reference sequence. Once the error was detected, the error
latency was determined and the test was aborted. Table 4 shows the summary
of all results. For the sake of clarity the obtained data are consolidated. For
every parity window size only the number of critical cases, where 0 < LD <∞,
is shown. The results show, that for L ≥ 7 only a few experiments yield a
critical error latency resulting in unnecessary test aborts. Again these results
confirm the estimations made in Section 5.1-5.2.

Circuit Aliasing sequences: Proportion of sequences of length L
L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

s13207.1 0.50006 0.25022 0.12472 0.06255 0.03114 0.01568

s15850.1 0.49877 0.2507 0.12513 0.06273 0.0313 0.01547

s35932 0.50018 0.24961 0.12498 0.0626 0.03133 0.01565

s38417 0.50038 0.24956 0.12498 0.06265 0.0313 0.0155

s38584 0.49986 0.24982 0.12517 0.06263 0.0315 0.01541

b17 0.50082 0.25005 0.12468 0.06217 0.03103 0.01559

b22 0.49999 0.24987 0.12508 0.06255 0.03105 0.01576

p330k 0.49914 0.25029 0.12578 0.0622 0.03132 0.01559

p388k 0.50051 0.2496 0.12494 0.06234 0.03127 0.01569

p418k 0.50114 0.24959 0.12429 0.06217 0.03144 0.01567

p469k 0.49944 0.25069 0.12488 0.06244 0.03126 0.01565

p483k 0.50038 0.24946 0.12499 0.06248 0.0314 0.01551

p500k 0.49923 0.25002 0.12521 0.06247 0.03175 0.01568

p533k 0.49939 0.24971 0.12531 0.06258 0.03164 0.01567

p874k 0.50083 0.24983 0.1247 0.06206 0.03109 0.01556

p951k 0.49983 0.24951 0.12533 0.06305 0.03098 0.01554

Table 3: Aliasing sequences

Assuming a parity window of size L = 8, the possible reduction of the
storage requirements for the reference data depends on the MISR-size k. The
storage reduction can be calculated as k×N

8×N = k
8 and is between 4 and 12 in

our experiments. The additional hardware consists of only one XOR-tree to
generate the parities and one additional L bit register for accommodating the
actually computed parities. The size of the XOR-tree depends on the MISR-size
(k − 1 XOR-gates).

7. Conclusion

Static and dynamic parameter variations, device degradations and an in-
creased susceptibility to soft errors make a robust design mandatory. Recent
approaches efficiently implement time redundancy to cope with various types of
delay errors and other timing problems. While these design efforts try to ensure
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Circuit Number of Experiments with Latency 0 < LD < ∞
using a parity-window with L bits

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8

s13207.1 25 9 7 3 0 1 0 0

s15850.1 69 48 39 24 23 1 0 0

s35932 58 27 15 0 0 0 0 0

s38417 54 26 8 8 9 0 0 0

s38584 42 27 37 20 0 3 0 0

b17 55 40 18 12 8 1 0 0

b22 52 26 6 3 1 0 0 0

p330k 74 35 7 8 4 0 0 0

p388k 67 9 4 0 0 0 0 0

p418k 63 28 30 1 0 0 0 0

p469k 39 17 5 5 1 3 1 0

p483k 66 26 16 15 13 7 0 0

p500k 30 20 5 2 1 0 0 0

p533k 41 19 6 0 0 0 0 0

p874k 50 29 29 0 0 0 2 0

p951k 47 19 19 3 5 0 0 0

Table 4: Error latency depending on the number of parity bits

a correct behavior in the presence of temporary failures, testing still has to ad-
dress the circuit structure to identify permanent faults. The presented scheme
for signature rollback targets an improved yield by distinguishing between crit-
ical permanent faults and non-critical transient failures. The presented scheme
also reduces the storage amount of the necessary reference data.
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(Received December 30, 2012; accepted January 17, 2013)

Abstract. Let d, m, and q be positive integers and A(q) = {0, . . . , q − 1}
be an alphabet. We investigate a generalization of the well-known sub-
word complexity of d-dimensional matrices containing the elements of A(q).
Let L = (L1, . . . ,Lm) be a list of distinct d-dimensional vectors, where
Li = (ai1, . . . , aid). The prism complexity of a d-dimensional q-ary matrix
M is denoted by C(d, q,L,M) and is defined as the number of distinct
d-dimensional q-ary submatrices, whose permitted sizes are listed in L.
We review and extend the earlier results, first of all results concerning
maximum complexity of matrices and performance parameters of the con-
struction algorithms.

1. Introduction

Let d, m, n, and q be positive integers, A(q) = {0, . . . , q − 1} be an al-
phabet, ε be the empty matrix, A(q, d)∗ be the set of d-dimensional q-ary
matrices, A(q, d)+ be the set of nonempty d-dimensional q-ary matrices. Let
L = (L1, . . . ,Lm) be a list of d-dimensional vectors, where Li gives the size of
an ai1 × · · · × aid sized submatrix of M.

The (q, d,L)-complexity (or shortly prism complexity) C(q, d,L,M) of a
matrix M is defined as follows.
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