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Abstract. In his book [7] J. Kubilius constructed a finite probability space
adapted for the investigation of additive functions. K.-H. Indlekofer pre-
sented in his articles [3], [4] a new method to investigate number theoretical
questions with the help of probability theory. In this paper we describe the
(finite) probability model of Kubilius and the model of Indlekofer which is
based on the Stone–Čech compactification of N.

1. Introduction

The book [7] of J. Kubilius mainly deals with the application of proba-
bility theory to the distribution of additive and multiplicative functions. In
order to give a probability-theoretic interpretation of additive functions, say,
he reduced questions on the distribution of the values of these functions to the
corresponding problems of the theory of series of independent random variables.
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He constructed a finite probability space on which independent random vari-
ables could be defined so as to mimic the (infrequency) behaviour of truncated
additive functions fr, defined by

fr(n) :=
∑
p|n
p≤r

f(p).

A direct application of this model gives, for example, the celebrated theorem
of Erdős and Kac.

Refinements and further applications can be found in Elliott’s monograph
[2].

Whereas the construction of Kubilius is adapted to the investigation of
additive functions the probabilistic model of Indlekofer is more general and
motivated by the following question:

Let A be an algebra of subsets of N and let δ be a content on N, i.e.
δ : A → R is finitely additive, How can one ”extend” δ uniquely to some
measure δ?

In this paper we describe the underlying ideas of the two models and give
some typical applications.

2. Model of Kubilius

Suppose we are given an arbitrary real-valued arithmetical function f : N→
→ R. Then

(2.1) Fn(x) :=
1

n
#{m ≤ n : f(m) ≤ x}, −∞ < x <∞

represents a distribution function. Obviously, the characteristic function for
Fn is

(2.2) ϕn(t) :=

∞∫
−∞

eitx dFn(x) =
1

n

n∑
m=1

eitf(m).

The known properties of distribution functions and characteristic functions lead
to the following criterion (Levy):

In order that the distribution functions (2.1) converge to some limiting
distribution F (x) at each of its points of continuity, it is necessary and sufficient
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that the ϕn(t) converge for all real t to some function ϕ(t), continuous at the
point t = 0. The function ϕ(t) is then the characterisitc function of the law
F (x).

Thus the question of the existence of a limiting distribution function for
(2.1) reduces to the study of trigonometric sums like (2.2). In the case in
which Kubilius was interested, that of additive arithmetical functions, he could
show that, properly interpreted, additive arithmetical functions behave like
sums of certain (simple) random variables. He could ascertain the probability-
theoretic nature of the distribution of the values of these functions and reduced
the questions of their asymptotic distribution to well-known limit theorems of
probability theory.

We shall describe here several variants of such an interpretation due to
Kubilius and follow the lines of the presentation in Chapter 2, pp 25-29 of his
monograph [7]. In order to ease notational difficulties and to make the basic
ideas clearer we restrict ourselves to strongly additive functions f , i.e.

(2.3) f =
∑
p

f(p)εp

where

(2.4) εp(n) =

{
1, if p|n,

0, otherwise.

First variant

Let E = {1, 2, . . . , n} denote the set of positive integers not exceeding n
and let A1 denote the algebra of all subsets of E. If we define a probability
measure νn for all A ∈ A1 by

(2.5) νn(A) := νn(m ∈ A) :=
1

n
#{m ≤ n : m ∈ A},

then, obviously, the triple Ω1 := (E,A1, νn) becomes a probability space.

Having chosen some integer r ≥ 2, we consider the functions fp = f(p)εp for
primes p ≤ r. The functions εp (and fp) can be regarded as random variables
on E with
(2.6)

1

n
#{m ≤ n : εp(m) = α} =


1
n

[
n
p

]
= 1

p +O
(
1
n

)
, if α = 1,

1− 1
n

[
n
p

]
= 1− 1

p +O
(
1
n

)
, if α = 0.
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Let p 6= q be two different prime numbers with p, q ≤ r. Since

1

n
#{m ≤ n : εp(m) = 1, εq(m) = 1} =

1

n

[
n

pq

]
=

1

pq
+O

(
1

n

)
it is obvious that for α ∈ {0, 1}, β ∈ {0, 1}

(2.7) νn(εp(m) = α, εq(m) = β) = νn(εp(m) = α)νn(εq(m) = β) +O

(
1

n

)
.

Therefore the random variables εp, εq and fp, fq, respectively, are not, in gen-
eral, independent.

However, as (2.7) shows, the dependence of fp and fq is in some sense
weak and, in general, is weaker, the smaller p and q are in comparison with n.
Moreover, if r = r(n) ≥ 2 is a function of n with log r = o(log n) as n→∞ and
{p1, . . . , pk} is a set of primes, none of which exceeds r, then it can be shown
(see [7], p.22), that as n→∞,

(2.8) νn(εp(m) = α1, . . . , εpk(m) = αr) =

k∏
i=1

νn(εpi(m) = αi) + o(1),

and this suggests that under some assumptions on f well-known limit theorems
for sums of almost independent random variables could be applied. However,
Kubilius did not dwell on this since more general results can be obtained by
relating the limit laws for additive arithmetical functions to the well-developed
theory of sums of independent random variables. This aspect runs through the
next two variants as a common thread.

Second variant

Formulas (2.6), (2.7) and (2.8) suggest that the functions εp, p ≤ r can be
regarded as independent random variables if we change the space constructed
in the first variant, taking as E the set N of all natural numbers instead of
a finite segment of it, and as the probability measure νn(A) the asymptotic
density δ(A) := lim νn(m ∈ A) of the set A (if the limit exists). Thus we
proceed as follows.

Let r ≥ 2 be a constant. For p ≤ r let

(2.9) Ap := {m : p|m}

be the set of natural numbers divisible by p, and define A2 as the smallest
algebra containing all Ap, i.e. A2 is generated by sets Ap (and N \ Ap). Then
A2 can be described in the following way (cf. Elliott [2], Chapter 3).



On the models of Indlekofer and Kubilius 21

Let D denote the product of the primes not exceeding r,

D =
∏
p≤r

p.

For each k which divides D let

(2.10) Ek =
⋂
p|k

Ap
⋂

p|(D/k)

(N \Ap).

Obviously

lim
n→∞

νn(m ∈ Ek) =
1

k

∏
p|(D/k)

(
1− 1

p

)
.

For differing values of k these sets are disjoint and every A ∈ A2 is a union of
finitely many of them.

If

A =

m⋃
j=1

Eki

then

lim
n→∞

νn(m ∈ A) =

m∑
j=1

lim
n→∞

νn(m ∈ Eki)

and therefore all sets A ∈ A2 have asymptotic density δ(A).

Thus

(2.11) Ω2 := (N,A2, P )

with

P (A) := δ(A) for A ∈ A2

is a finite probability space.

With respect to this space the random variables fp for p ≤ r can be regarded
as random variables assuming the values f(p) and 0 with probabilities 1/p
and 1 − 1/p, respectively. Furthermore, the random variables fp (p ≤ r) are
independent.

Thus, with respect to the probabilty space Ω2 the ”truncated function”

(2.12) fr =
∑
p≤r

fp

is a sum of independent random variables.
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Combining the construction of the spaces Ω1 and Ω2 we arrive at the

Third variant

As in the first variant we take the finite segment E = {1, . . . , n} of N as the
set of elementary events. Similarly as in the second variant we define, for each
integer k which divides D, the set

(2.13) Ek :=
⋂
p|k

E(p)
⋂

p|(D/k)

(E \ E(p))

where

(2.14) E(p) := Ap ∩ E.

For differing values of k the sets Ek are disjoint. By taking unions of finitely
many of them we form A3, the least σ-algebra which contains the E(p) for
p ≤ r.

In terms of the frequency measure νn we have: If

A =

m⋃
j=1

Ekj

then

νm(A) =

m∑
j=1

νn(Ekj ).

The triple (E,A3, νn) becomes a finite probability space Ω3. Motivated by the
construction in the second variant we define another probability measure for
sets A ∈ A3. We put

P (Ek) =
1

k

∏
p|(D/k)

(
1− 1

p

)

and obtain

P (A) =

m∑
j=1

P (Ekj )

if

A =

m⋃
j=1

Ekj .

Thus we arrive at the probability space Ω3

′
:= (E,A3, P ).
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By sieve methods it can be shown (cf. Elliott [2], Chapter 3) that the
estimate

(2.15) νn(A) = P (A) +O(L)

where

(2.16) L = exp

(
−1

8

log n

log r
log

(
log n

log r

))
holds uniformly for all sets A in the algebra A3.

With respect to the measure P define the random variables Xp by putting
Xp(m) = fp(m). Then the random variable assumes the values f(p) and 0
with probabilities 1/p and 1− 1/p respectively. It is easy to see that the joint
distribution of random variables Xp (p ≤ r) is equal to the product over p ≤ r of
the one-dimensional distributions of the random variables Xp. Hence it follows
that the distribution with respect to the measure νn of the random variable

(2.17) fr =
∑
p≤r

fp

differs only by an amount O(L) from the distribution with respect to P of the
sum

∑
p≤xXp of independent random variables.

An immediate consequence of the above construction is as follows.

Proposition 2.1. (See Elliott [2], Lemma 3.2.) Let r and n be natural
numbers, 2 ≤ r ≤ n. Define the strongly additive function

g(m) =
∑
p|m
p≤r

f(p)

where the f(p) assume real values. Define the independent random variables

Xp on the probability space Ω3

′
:= (E,A3, P ), one for each prime not exceeding

r, by

Xp =

{
f(p), with probability 1

p ,

0, with probability 1− 1
p .

Then, the estimate

n−1#{m ≤ n : g(n) ≤ z} = P

∑
p≤r

Xp ≤ z

+

+O

(
exp

(
−1

8

log n

log r
log

(
log n

log r

)))
+O

(
n−

1
15

)
holds uniformly for all numbers f(p), z, n (n ≥ 2) and r (2 ≤ r ≤ n).
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The Kubilius model can directly be applied to obtain the theorem of Erdős
and Kac. For this we confine our attention to real-valued strongly additive
functions f . Let f be a (real-valued) strongly additive function. For positive
numbers x define the functions

A(x) =
∑
p≤x

f(p)p−1,

B(x) =

∑
p≤x

f2(p)p−1

 1
2

≥ 0.

Following Kubilius, we shall say that f belongs to the class H if there exists a
function r = r(x) so that as x→∞,

log r

log x
→ 0,

B(r)

B(x)
→ 1, B(x)→∞.

The following result of Kubilius is archetypal.

Proposition 2.2. (See Elliott [2], Theorem 12.1.) Let f be a strongly
additive function of class H. Then the frequencies

(2.18) x−1#{n ≤ x : f(n)−A(x) ≤ zB(x)}

converge weakly to a limiting distribution as x → ∞, if and only if there is a
distribution function K(u), so that almost surely in u

1

B2(x)

∑
p≤x

f(p)≤uB(x)

f2(p)

p
→ K(u) (asx→∞).

When this condition is satisfied the characteristic function ϕ(t) of the limit
law will be given by Kolmogorov’s formula

logϕ(t) =

∞∫
−∞

(eitu − 1− itu)u−2dK(u)

and the limit law will have mean zero, and variance 1.

Whether the frequencies (2.18) converge or not,

1

B(x)

∑
n≤x

(f(n)−A(x))→ 0,
1

xB2(x)

∑
n≤x

(f(n)−A(x))2 → 1,

holds as x→∞.
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Bearing in mind that in the Kolmogorov representation of the characteristic
function of the normal law with variance 1 we have

K(u) =

{
1, if u ≥ 0,
0, if u < 0.

Then we arrive at the following result.

Proposition 2.3. (See Elliott [2], Theorem 12.3.) Let f be a real valued
strongly additive function which satisfies |f(p)| ≤ 1 for every prime p. Let
B(x)→∞ as x→∞. Then

x−1#{n ≤ x : f(n)−A(x) ≤ zB(x)} ⇒ 1√
2π

z∫
−∞

e−ω
2/2dω.

Kubilius model may also be applied directly to the study of multiplicative
functions. The following result can be given.

Proposition 2.4. (See Elliott [2], Lemma 3.10.) Let r and x be real num-
bers, 2 ≤ r ≤ x. Define the (strongly) multiplicative function

g(n) =
∏
p|n
p≤r

f(p)

where the f(p) assume real values. Define independent random variables Xp,
one for each prime p not exceeding r, by

Xp =

{
f(p), with probability 1

p ,

1, with probability 1− 1
p .

Then the estimate

x−1#{n ≤ x : g(n) ≤ z} = P

∏
p≤r

Xp ≤ z

+O(L),

where

L = exp

(
−1

8

log x

log r
log

(
log x

log r

))
+ x−

1
15

holds uniformly for all real numbers f(p), z, x (x ≥ 2) and r (2 ≤ r ≤ x).

Remark 2.5. The above considerations are also applicable when the ad-
ditive arithmetical function is studied on some sequence of positive integers
instead of on the entire set N, provided only that it is possible to apply Sel-
berg’s (or another) sieve method to this sequence.
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3. The model of Indlekofer

The limitation in the second variant in Section 2 is that the construction
cannot be extended to the algebra generated by the sets Ap for all primes p.
The crux of this matter is that not every algebra of sets of positive integers
which have asymptotic density forms a probability space or can be extended
to a probability space.

For example, let A be generated by the finite sets of natural numbers. Then
all sets have an asymptotic density δ (0 or 1). Within A the asymptotic density
is finitely additive but not countably additive. Indeed, let A(n) := {n}. Then

δ

( ∞⋃
n=1

A(n)

)
= δ(N) = 1

while
∞∑
n=1

δ(A(n)) = 0.

As a further example let A′2 be generated by the sets Ap defined in (2.9) for all

primes p. Then all sets A in A′2 have asymptotic density δ(A). Within A′2 the
asymptotic density δ is finitely additive but cannot be extended to a countably
additive measure δ on the σ-algebra σ(A′2) generated by A′2.

For the proof assume that δ is a measure on σ(A′2) extending δ.

Put

A′(n) :=
⋂
p-n

(N \Ap).

Then

A′(n) = {m : p|m⇒ p|n} ∈ σ(A
′

2)

and δ(A′(n)) exists for every n ∈ N.

Since ∑
m

m∈A′(n)

m−1/2 =
∏
p|n

(
1− p−1/2

)−1
<∞

we obviously have

1

N

∑
m≤N

m∈A′(n)

1 ≤ N− 1
2

∑
m

m∈A′(n)

m−
1
2 = O(N−

1
2 ),
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and thus δ(A′(n)) = 0. Then

N =
⋃
n

A′(n)

and

1 = δ

(⋃
n

A′(n)

)
≤
∑
n

δ(A′(n)) = 0

which contradicts the assumption.

More generally, Indlekofer considers the following problem:

Let A be an algebra of subsets of N, and let δ be finitely additive on A.
How can one build up an ”integration theory” on N?

In his papers [3], [4] Indlekofer developed such an integration theory. The
underlying idea is as follows: Embedding N (and A) into the Stone–Čech com-
pactification βN and extending δ in a natural way, i.e.

N ↪→ βN
A 7→ A
δ 7→ δ

leads in an unique way to an algebra A together with a premeasure δ.

In this environment, for example, additive arithmetical functions can be
seen as a sum of independent random variables.

In the following we describe the model of Indlekofer and give some applica-
tions regarding spaces of arithmetical functions.

Suppose that A is an algebra of subsets of N, i.e.

(i) N ∈ A,

(ii) A,B ∈ A ⇒ A ∪B ∈ A,

(iii) A,B ∈ A ⇒ A \B ∈ A.

We embed N, endowed with the discrete topology, in the compact space βN,
the Stone–Čech compactification of N. This implies

Ā := {Ā : A ∈ A}

is an algebra in βN, where Ā := clβNA (for details see K.-H. Indlekofer [3], [4]).

Let δ be a content on A, i.e. δ : A → R≥0 is finitely additive, and define δ̄
on Ā by

δ̄(Ā) = δ(A), Ā ∈ Ā.
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Then δ̄ is a pseudo-measure on Ā and can be extended to a measure on σ(Ā)
which we denote by δ̄, too. This leads to the measure space (βN, σ(Ā), δ̄).

Remark 3.1. It is worthwhile to notice the following characterizations of
the Stone–Čech compactification of N which are contained in Propositions 9
and 10 of [4].

Proposition. There exists a compactification βN of N with the following
equivalent properties.

(i) Every mapping f from N into any compact Hausdorff space Y has a con-
tinuous extension f̄ from βN into Y .

(ii) Every bounded real-valued function on N has an extension to a function
in C(βN).

(iii) For any two subsets A and B of N,

A ∩B = Ā ∩ B̄,

where Ā = clβNA and B̄ = clβNB are the closures of A and B in βN,
respectively.

(iv) Any two disjoint subsets of N have disjoint closures in βN.

(v) For any algebra A in N the family

Ā := {Ā : A ∈ A}

is an algebra in βN.

This ends Remark 3.1.

Here we restrict ourselves to applications of this model to the investigation
of spaces of arithmetical functions.

Let A be an algebra of subsets of N. Then, if E denotes the family of
bounded functions on N, the set

E(A) :=
{
s ∈ E , s =

m∑
j=1

αj1Aj ; αj ∈ C, Aj ∈ A, j = 1, . . . ,m
}

of simple functions on A is a vector space. We introduce the following spaces.
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For a function f : N→ C, we define the seminorm || · ||α for 1 ≤ α <∞ by

‖f‖α :=

lim sup
x→∞

1

x

∑
n≤x

|f(n)|α


1
α

.

Let
Lα := {f : N→ C : ‖f‖α <∞}

denote the linear space of functions on N with bounded seminorm ‖f‖α. By Lα

we denote the quotient space Lα modulo null-functions (i.e functions f with
‖f‖α = 0).

Definition 3.2. For a given algebra A and for 1 ≤ α < ∞ the space
L∗α(A) is defined as the ‖ ·‖α-closure of E(A). A function f ∈ L∗α(A) is called
uniformly (A)-summable. By L∗α(A) we denote the quotient space L∗α(A)
modulo null functions.

Definition 3.3.

(i) A nonnegative arithmetical function f is called A-measurable in case each
truncation function fK = min{K, f} lies in L∗1(A) and f is tight, i.e. for
every ε > 0 the estimate

lim sup
n→∞

1

n

∑
k≤n

|f(k)|>K

1 < ε

holds for some K.

(ii) A real-valued arithmetical function f is called A-measurable in case its
positive and negative parts f+ and f− are A-measurable.

(iii) A complex-valued arithmetical function f is called A-measurable in case
Ref, Imf are A-measurable. The space of all A-measurable functions
is denoted by L∗(A). Further we define L∗(A) as L∗(A) modulo null
functions, i.e. functions f for δ({m : f(m) 6= 0}) = 0.

In the following we assume that A is an algebra such that the asymptotic
density δ(A) exists for every A ∈ A.

We say that an arithmetical function f possesses an (arithmetical ) mean-
value M(f) if

M(f) := lim
n→∞

1

n

∑
k≤n

f(k)

exists.
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If we put, for every subset A ⊂ N,

1A(n) =

{
1, n ∈ A,
0, otherwise

then
δ(A) = M(1A)

for every A ∈ A.

A first consequence of the above construction is that, for all s ∈ E(A),

M(s) =

∫
βN

s̄dδ̄,

where s̄ : βN→ C denotes the extension of s.

Starting from this we consider measurable and integrable functions on the
probability space (βN, σ(Ā), δ̄) and relate these to the functions from L∗(A).

The probability space (βN, σ(Ā), δ̄) leads to the well-known space

L(βN, σ(Ā), δ̄) := {f̄ : βN→ C, σ(Ā)−measurable} modulo null-functions

and

L1((βN, σ(Ā), δ̄)) := {f̄ : βN→ C, ‖f̄‖ <∞} modulo null-functions

where

‖f̄‖ :=

∫
βN

|f̄ |dδ̄.

There exists a vector-space isomorphism between the spaces L∗(A) and L∗1(A)
and there exists a norm-preserving vector-space isomorphism between L and
L1. For details see [3] and [4].

Let us consider the following applications.

Almost even functions

For primes p and k = 0, 1, . . . let

Apk := {n ∈ N : pk||n}.

Let A4 be the algebra generated by the sets Apk . Then the asymptotic density
of Apk equals

δ(Apk) =
1

pk

(
1− 1

p

)
.
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Because of the following relation of the characteristic functions

1A∩B = 1A · 1B ,
1A\B = 1A − 1A · 1B
1A∪B = 1A + 1B − 1A · 1B

we obtain that the characteristic function of a set A ∈ A4 is a finite linear
combination of products of 1A

p
k1
1

· · · 1A
p
kr
r

. Then δ(A) exists for every A ∈ A4.

By the above construction we obtain that (βN, σ(Ā4), δ̄) is a probability
space and we arrive at the space L(βN, σ(Ā4), δ̄) which corresponds to the
space of almost-even functions.

Distribution of additive functions

If f is a real valued additive function, we can put

f =
∑
p

fp

where fp is defined by

fp(n) =

{
f(pk), if n ∈ Apk ,

0, otherwise,

Obviously, every fp is uniformly A4 summable, and we denote f̄p its unique
extension to an integrable function on βN. Then {f̄p}p prime is a set of inde-
pendent random variables and

∑
p f̄p converges a.s. if and only if f possesses

a limit distribution.

This result can be seen as another a posteriori justification of the men-
tioned idea of Kac connected with the role of independence in probabilistic
number theory. By this model we obtain the result of Erdős and Kac which we
constituted in Proposition 2.3. (For details see Indlekofer [4])

Remark 3.4. In the case of multiplicative functions we proceed in a similar
manner. If a real-valued multiplicative function g is given we put

g =
∏
p

gp

where

gp(n) :=

{
g(pk), if pk||n,

1, otherwise.
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The unique extension ḡp of gp build a set ḡp of independent random variables,
and an application of Zolotarev’s result [8] concerning the characteristic func-
tion of products of random variables gives necessary and sufficient conditions
for the convergence of the product

∏
p ḡp which turns out to be equivalent to

the existence of the limit distribution of g.

Erdős–Wintner Theorem

For primes p let
Ap := {n ∈ N : p|n}

be the set of all natural numbers divisible by p. Let A′2 be the algebra generated
by the sets Ap. Then obviously each A ∈ A′2 possesses an asymptotic density
δ(A) and δ(Ap) = 1

p (p prime). The above construction leads to the probability

space (βN, σ(A′2), P ) where P := δ̄, i.e. P (Āp) = 1
p (p prime).

Let f be strongly additive function. Then f can be written in the form

f =
∑
p

f(p)εp

where εp denote the characteristic function of Ap. There is a unique extension
of εp to a function ε̄p on βN, and

f =
∑
p

f(p)εp → X :=
∑
p

f(p)ε̄p =
∑
p

Xp

with

P (Xp = f(p)) =
1

p
and P (Xp = 0) = 1− 1

p
.

The ε̄p are independent, i.e. X =
∑
p
Xp is a sum of independent random

variables.

An immediate consequence of the above construction is as follows

Theorem 3.5. Let f be real-valued strongly additive function. Then the
following assertions are equivalent:

(i) f =
∑
p
fp possesses a limit distribution,

(ii) f̄ =
∑
p
Xp converges P -almost everywhere,

(iii) the series∑
p

|f(p)|>1

P (Āp),
∑
p

|f(p)|≤1

E[Xp],
∑
p

|f(p)|≤1

V ar[Xp]

converge (Three series theorem),
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(iv) the series

∑
|f(p)|>1

1

p
,

∑
|f(p)|≤1

f(p)

p
,

∑
|f(p)|≤1

f2(p)

p

converge.

More applications can be found in Indlekofer’s articles [3] and [4]. In the
recent papers [5] by E. Kaya and K.-H. Indlekofer and [1] by A. Barát, E. Kaya
and K.-H. Indlekofer the model has been adapted to additive arithmetical semi-
groups. In [6] Indlekofer successfully applied the model to prove a conjecture
of P. Erdös about the distribution of additive functions.
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