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Abstract. In this paper, we embed the additive arithmetical semigroup

in a probability space Ω := (βG, σ(A), δ) where βG denotes the Stone-

Čech compactification of G. We show that every additive function g̃ on G,

g̃(a) =


pk||a
g̃(pk) (a ∈ G), can be identified with a sum X :=


p
Xp of

independent random variables on Ω. Further, we characterize the class of

essentially distributed additive functions.

1. Introduction

Let (G, ∂) be an additive arithmetical semigroup. By definition G is a
free commutative semigroup with identity element 1, generated by a countable
subset P of primes and admitting an integer valued degree mapping ∂ : G →
→ N ∪ {0} which satisfies

(i) ∂(1) = 0 and ∂(p) > 0 for all p ∈ P,
(ii) ∂(ab) = ∂(a) + ∂(b) for all a, b ∈ G,

(iii) the total number G(n) of elements a ∈ G of degree ∂(a) = n is
finite for each n ≥ 0.
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Obviously, G(0) = 1 and G is countable. Let

π(n) := #{p ∈ P : ∂(p) = n}

denote the total number of primes of degree n in G. We obtain the identity, at
least in the formal sense,

Z(y) :=
∞

n=0

G(n)yn =
∞

n=1

(1− yn)−π(n).

Z can be considered as the zeta-function associated with the semigroup (G, ∂).
In this paper, we assume that π(n) = O(qn/n) and the generating function of
(G, ∂) has the form

(1.1) Z(y) =
∞

n=0

G(n)yn =
H(y)

(1− qy)τ
(|y| < q−1),

where τ > 0 and H(y) = O(1) for |y| < q−1 and lim
y→q−1

H(y) exists and is

positive. By a paper of K.-H. Indlekofer (see [4]) lim
y→q−1

H(y) = H(q−1), and

(1.2) G(n) ∼ H(q−1)
Γ(τ)

qnnτ−1

holds.

Here, as in the classical case, an arithmetical function f̃ : G → R is
called multiplicative if f̃(ab) = f̃(a)f̃(b) whenever a, b ∈ G are coprime and
an arithmetical function g̃ on G is called additive if g̃(ab) = g̃(a) + g̃(b) for all
coprime a, b ∈ G. g̃ is said to be strongly additive if g̃(pk) = g̃(p) hold for all
k ≥ 2.

Let f̃ : G→ C. We define the average value of f̃ by

M(n, f̃) :=





1
G(n)


a∈G

∂(a)=n

f̃(a), if G(n) = 0,

0, if G(n) = 0.

We say that the function f̃ possesses an (arithmetical) mean-value M(f̃), if the
limit

M(f̃) := lim
n→∞

M(n, f̃)

exists.
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Now, we embed the additive arithmetical semigroup in a probability space
Ω := (βG, σ(A), δ) where βG denotes the Stone-Čech compactification of G.
For this suppose that A is an algebra of subsets of G, i.e.

(i) G ∈ A,
(ii) A,B ∈ A ⇒ A ∪B ∈ A,
(iii) A,B ∈ A ⇒ A \B ∈ A.

We embed G, endowed with the discrete topology, in the compact space
βG, the Stone-Čech compactification of G. This implies

Ā := {Ā : A ∈ A}

is an algebra in βG, where Ā := closβGA (for details see K.-H. Indlekofer [2],
[3] and K.-H. Indlekofer, E. Kaya [6].

Let δ(A) be a content on A and define δ̄ on Ā by

δ̄(Ā) = δ(A), Ā ∈ Ā.

Then δ̄ is a pseudo-measure in Ā and can be extended to a measure in σ(Ā).
This leads to the measure space (βG, σ(Ā), δ̄).

Let us consider the following example.

For prime elements p ∈ P let

Ap := {a ∈ G : p | a}

be the set of all elements of G divisible by p. Let A be the algebra generated
by the sets {Ap}. We assume that (see (1.1) and (1.2)

(1.3) G(n) ∼ H(q−1)
Γ(τ)

qnnτ−1 (τ > 0)

and consider, for A ∈ A, the means

M(n, 1A) =


a∈A

∂(a)=n

1


a∈G

∂(a)=n

1
,

where the indicator function 1A of A is defined by

1A(a) :=

 1, if a ∈ A,

0, otherwise.
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Note that the following relations of the indicator functions

1A∩B = 1A · 1B ,

1A\B = 1A − 1A · 1B ,

1A∪B = 1A + 1B − 1A · 1B

imply that the characteristic function of an arbitrary set A ∈ A is a finite
linear combination of products of 1Ap1

· · · 1Apr
. Put a = p1 · . . . · pr. Then

1Ap1
· . . . · 1Apr

= 1Aa where Aa := {a ∈ G : a | a}. Obviously, by (1.3),

lim
n→∞

M(n, 1Aa ) = lim
n→∞

G(n− ∂(a))
G(n)

=

= q−∂(a).

Putting, for every A ∈ A

δ(A) := lim
n→∞

M(n, 1A),

we obtain a content on A. The extension δ̄ of δ

δ̄(Ā) := δ(A) (Ā ∈ Ā)

defines a premeasure on Ā and leads to a measure P , induced by

δ∗(A) := lim
n→∞

M(n, 1A) for all A ⊂ G,

and to a probability space (Ω, σ(Ā), P ) with Ω = βG and P (Āp) = q−∂(p) (p
prime).

To avoid notational difficulties we shall prove the results for strongly
additive functions. The general case follows by standard arguments.

Let g̃ : G → R be a real-valued strongly additive function on G. Then g̃
can be written as

g̃ =


p∈P

g̃(p)εp,

where εp denotes the indicator function of Ap.

For each p ∈ P the function εp can uniquely be extended to a function εp

on βG. With this notation we write

g̃ =


p

g̃(p)εp → X :=


p

g̃(p)ε̄p =


p

Xp
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with
P (Xp = g̃(p)) = q−∂(p) and P (Xp = 0) = 1− q−∂(p).

The ε̄p are independent, i.e.

X =


p

Xp

is a sum of independent random variables. In the paper [6] K.-H. Indlekofer
and E. Kaya showed, that if

Fn(x) :=
1

G(n)
#{a ∈ G, ∂(a) = n : g̃(a) ≤ x}

denotes the distribution function of the additive function g̃, then the conver-
gence of Fn to a limit distribution is equivalent to the convergence of the
following series (Three-Series Theorem)



|g̃(p)|>1

q−∂(p),


|g̃(p)|≤1

g̃(p)q−∂(p),


|g̃(p)|≤1

g̃2(p)q−∂(p).

In this paper, we shall characterize the class of essentially distributed
additive functions on G, which will be defined in the following section, and
which corresponds to the case where the sum (1.4) is essentially convergent.
For this we put Gn := {a ∈ G : ∂(a) = n} and define finitely distributed
functions on G (see A. Barát [1]).

Definition 1.1. A function h̃ : G → R is called finitely distributed if there
exists a sequence of integers (n1, n2, ...) and a subset H ⊆ G such that for every
nl, #(H ∩Gnl

) ≥ cG(nl) and |h̃(a1)− h̃(a2)| < C for all a1, a2 ∈ H ∩Gnl
with

some parameters c > 0, C > 0.

Although this definition appears unwieldly, functions of this kind are
convenient to use, because of the characterization described in the next section.

2. Finitely distributed functions on G

Here we shall characterize all additive functions which, after a suitable
translation, possess a limiting distribution.
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Theorem 2.1. Let (G, ∂) be an additive arithmetical semigroup such that

Z(y) =
∞

n=0

G(n)yn = exp

 ∞
m=1

Λ(m)
m

ym


=

H(y)
(1− qy)τ

,

where H(y) = O(1) for |y| < q−1, lim
y→ 1

q
−
H(y) exists and is positive and τ > 0.

Assume that Λ(m) = O(qm).
Let g̃ be a real-valued additive function on G. Then the following assertions

hold:

(i) If, for some α(n) the frequencies

1
G(n)

#{a ∈ G, ∂(a) = n : g̃(a)− α(n) ≤ x}

converge to a weak limit as n→∞, then g̃ is finitely distributed.

(ii) If g̃ is finitely distributed, then it has a decomposition g̃(a) = c∂(a) + h̃(a)
with a real constant c and an additive function h̃ where both the series

(2.1)

p

|h̃(p)|>1

1
q∂(p)


p

|h̃(p)|≤1

h̃(p)2

q∂(p)

converge.

(iii) If g̃ has a representation c∂ + h̃, where the series (2.1) both converge, and
if we define

α(n) = cn+


∂(p)≤n,|h̃(p)|≤1

h̃(p)
q∂(p)

(n ≥ 1),

then the frequencies

Gn(x) :=
1

G(n)
#{a ∈ G, ∂(a) = n : g̃(a)− α(n) ≤ x}

converge to a weak limit as n→∞.

Remark. The first author proved Theorem 2.1 in her PhD thesis under
the additional conditions

(2.2) G(n)  qnnτ−1 and
G(n− 1)
G(n)

= q−1 + o(1) n→∞,



Two-series theorem in additive arithmetical semigroups 315

(for details see A. Barát [1]). By a paper of the second author [4] the
assumptions of Theorem 2.1 imply that

G(n) ∼ H(q−1)
Γ(τ)

qnnτ−1

holds, and therefore the conditions in (2.2) are satisfied.

All finitely distributed functions on G have a representation g̃ = c∂ + h̃
with convergent series (2.1). We shall study the case c = 0.

Definition 2.2. The additive function g̃ is called essentially distributed
iff the series 

p
|g̃(p)|>1

1
q∂(p)

,

p

|g̃(p)|≤1

g̃(p)2

q∂(p)

converge.

An easy but interesting consequence of Theorem 2.1 is formulated in

Corollary 2.3. Let an additive arithmetical semigroup G satisfy the
assumptions of Theorem 2.1, and let g̃ be an additive function with only one
sign defined on G. There exist two numbers x1 < x2 such that

(2.3) lim sup
n→∞

(Fn(x2)−Fn(x1)) > 0

if and only if {Fn} converges weakly.

Proof. If (2.3) holds, then g̃ is finitely distributed, g̃ has the representation
g̃(a) = c∂(a) + h̃(a) where the series (2.1) converge, and the frequencies Gn

converge to a distribution function. Further, there exists a subsequence {nk}
and a real constant c1 such that

(2.4) lim
k→∞

(Fnk(x2)−Fnk(x1)) = c1 > 0.

Clearly

(2.5) Fnk(x) = Gnk(x− α(nk)).

Assume that |α(nk)| → ∞ as k →∞. Then, since Gn ⇒ G

lim
k→∞

(Fnk(x2)−Fnk(x1)) = lim
k→∞

(Gnk(x2 − α(nk))− Gnk(x1 − α(nk))) = 0
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which contradicts (2.4). Since

α(n) =cn+


∂(p)≤n

|h̃(p)|≤1

q−∂(p)h̃(p) =

=cn+O


 

m≤n

q−mπ(m)


 =

=cn+O


 

m≤n

1
m


 =

=cn+O(logn)

we conclude c = 0 and, because g̃(a) has only one sign,

(2.6)

p∈P

|h̃(p)|≤1

h̃(p)
q∂(p)

converges.

Thus g̃(a) = h̃(a) with convergent series (2.1) and (2.6). Then (Three-Series
Theorem) {Fn} converges weakly.

In the other direction, the weak convergence of {Fn} trivially implies (2.3),
and Corollary 2.3 is proven.

3. Two-Series Theorem

Putting
α(n) =


∂(p)≤n
|g̃(p)|≤1

q−∂(p)g̃(p)

and

ap = E(Xs
p), Yp = Xp − ap, Sn :=



∂(p)≤n

Xp, Tn :=


∂(p)≤n

Yp

where Xs
p denotes the truncation of Xp at s > 0, we prove
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Theorem 3.1. Let an additive arithmetical semigroup G satisfy the
assumptions of Theorem 2.1, and let g̃ be an additive function defined on G.
Then the following assertions are equivalent.

(i) g̃ is essentially distributed.
(ii) The distribution functions

Gn(x) :=
1

G(n)
#{a ∈ G, ∂(a) = n : g̃(a)− α(n) ≤ x}

converge weakly as n→∞.
(iii) The series 

p
|g̃(p)|>1

q−∂(p),

p

|g̃(p)|≤1

q−∂(p)g̃(p)2

are convergent.
(iv) The series


p
Xp is essentially convergent, i.e. the series Y =


p
(Xp−ap)

converges a.s..
(v) For some s > 0 the two series


p

P (|Xp| > s) and


p

σ2(Xp)

converge.
(vi) The limit

lim
n→∞



∂(p)≤n

|1 + q−∂(p)(eitg̃(p) − 1)|

exists on a set of positive Lebesgue measure.

Proof. The equivalence of (i), (ii) and (iii) follows from Theorem 2.1.
The equivalence of (iii) and (v) is obvious, whereas the remaining assertions of
Theorem 3.1 are well-known (cf. P. Loeve [7]).

If all the values g̃(a) of an additive function g̃ are ≥ 0 (or ≤ 0) we have
seen (Corollary 2.3) that the condition (2.3) holds if and only if the frequencies
Fn converge weakly. We shall deal with an analogue characterization of real-
valued additive functions in a later joint paper of the authors, and prove a
result, which corresponds to a conjecture of Erdős about additive functions on
N.
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