ON THE VALUES OF ARITHMETIC FUNCTIONS IN SHORT INTERVALS

K. Chakraborty (Allahabad, India)
I. Kátai and Bui Minh Phong (Budapest, Hungary)

Dedicated to Professor Antal Iványi on his seventieth anniversary

Communicated by L. Germán

(Received July 10, 2012)

Abstract. In this short paper the following assertion is proved. For positive integer \(d \) and \(c > 0 \) let \(J_c(N) = \lfloor N, N + c\sqrt{N} \rfloor \) and \(K_d = \{ n \in \mathbb{N} \mid (n, d) = 1 \} \). Let \(1 < N_1 < N_2 < \cdots \) be an infinite sequence of integers and \(\ell_1, \ell_2, \cdots \) be integers coprime to \(d \). Assume that \(f \) and \(g \) are completely additive functions defined on \(K_d \), for which \(f(n) = g(n) \) if \(n \equiv \ell_j \pmod{d} \), \(n \in J_{\ell_j}(N_j) \) \((j = 1, 2, \cdots)\). If \(c > 2d \), then \(f(n) = g(n) \) identically on \(K_d \).

1. Introduction

1.1. Notations

Let \(\mathbb{N}, \mathbb{R}, \mathbb{C} \) be the sets of positive integers, real and complex numbers, respectively. Let \((G, +) \) and \((\mathbb{H}, \cdot) \) be commutative semigroups. We shall denote by \(\mathcal{A}_G \) \((\mathcal{A}_\mathbb{C})\) the set of additive (completely additive) arithmetical functions.

The last two authors have been supported for this project by the European Union and the European Social Fund under the grant agreement TÁMOP-4.2.1/B-09/1/KMR-2010-0003 and by the Hungarian and Vietnamese TET (grant agreement no. TET 10-1-2011-0645).
taking values on G. Similarly, let $\mathcal{M}_G (\mathcal{M}^*_G)$ be the set of multiplicative (completely multiplicative) arithmetical functions taking values on H. For $G = \mathbb{R}$ we write $\mathcal{A} (\mathcal{A}^*)$ instead of $\mathcal{A}_G (\mathcal{A}^*_G)$ and for $H = \mathbb{C}$ we write $\mathcal{M} (\mathcal{M}^*)$ instead of $\mathcal{M}_C (\mathcal{M}^*_C)$.

1.2. Known results

We state some of the known results in this direction.

Theorem A. ([1]) Let $f \in \mathcal{A}^*$, for which

$$f(n) = 0 \text{ holds for } n \in [N_j, N_j + 4\sqrt{N_j}]$$

$(j = 1, 2, \cdots)$, $1 < N_1 < N_2 < \cdots$ is an arbitrary infinite sequence of integers. Then $f(n) = 0$ identically.

Theorem B. ([3]) Let $f \in \mathcal{A}^*$. Let $\lambda(N) = (2 + \epsilon)\sqrt{N}$ for an arbitrary constant $\epsilon > 0$. Assume that $1 < N_1 < N_2 < \cdots$ is an infinite sequence of integers such that

$$f(n) \leq f(n + 1) \text{ holds for } n \in [N_j, N_j + \lambda(N_j)]$$

$(j = 1, 2, \cdots)$. Then $f(n) = c \log n$, where c is a constant.

Theorem C. ([3]) There exists an $f \in \mathcal{A}^*$ which is not identically zero, and for $1 < N_1 < N_2 < \cdots$ satisfies

$$f(n) = A_j \text{ if } n \in [N_j, N_j + \varrho(N_j)]$$

for $j = 1, 2, \cdots$ and

$$\varrho(N) = \exp \left(c \sqrt{\log N} \left(\log \log \log N \right) \right),$$

where c is a suitable positive constant and A_j are arbitrary complex or reals.

Theorem D. ([6]) Let $\Phi_j(z) \in \mathbb{C}[z]$ be a sequence of polynomials with $\deg \Phi_j \leq h$ and $\alpha_h = \frac{h+1}{h+2}$. Assume that $b_j \to \infty$ is an infinite sequence of reals, $1 < N_1 < N_2 < \cdots$ is an infinite sequence of integers and a_1, a_2, \cdots is a sequence of arbitrary complex numbers. For $f \in \mathcal{A}^*$ assume that

$$\Phi_j(E)f(n) = a_j \text{ holds for } n \in [N_j, N_j + b_j N_j^{\alpha_j}]$$

$(j = 1, 2, \cdots)$. Then $f(n) = 0$, identically.
Here E is the shift operator. If $P(z) = a_0 + a_1 z + \cdots + a_k z^k$, then

$$P(E)f(n) = a_0 f(n) + a_1 f(n + 1) + \cdots + a_k f(n + k).$$

In [5] P. Erdős and I. Kátai showed the existence of a completely additive function which vanishes in particular short intervals but takes the value 1 in one interval. Here is their result.

Theorem E. ([5]) Let $x > x_0(\epsilon)$ for $\epsilon > 0$. Then there exists a function $f \in A^*$ for which

$$f(n) = 0 \text{ for } n \in [N + 1, N + \lambda(x)],$$

where $\frac{x}{2} \leq N \leq x$ and

$$\lambda(x) = \exp \left(\left(\frac{1}{2} - \epsilon \right) \frac{(\log x)(\log \log \log x)}{\log \log x} \right)$$

and which takes on a non-zero value in $[1, \sqrt{x}]$.

Remark 1. Existence of an $f(n)$ with infinitely many such intervals is yet to be established.

In [2] I. Kátai, examined arbitrary complex valued multiplicative functions which remain constant on square-free numbers in short intervals and proved the following theorem.

Theorem F. ([2]) Let $\theta = 0.6108$ and $J(N) = [N, N + N^\theta]$. Let f be a multiplicative function defined on the set of square-free numbers and $f(n) \neq 0, (n \in \mathbb{N})$. Assume that there exists a sequence of complex numbers a_1, a_2, \cdots and a sequence of positive integers $1 < N_1 < N_2 < \cdots$ such that

$$f(n) = a_j \text{ if } n \in J(N_j) \text{ (n is square-free}).$$

Then $f(n) = 1$ for every square-free n.

Remark 2. Theorem F remains valid with $\theta = 0.6$.

This comes from the following result of M. Filaseta:

Let $g(x)$ be a function, $1 \leq g(x) \leq \log x$ for x sufficiently large, and set $h(x) = x^\frac{1}{6}g(x)^3$. Then the number of square-free integers belonging to the interval $[x, x + h(x)]$ is

$$\frac{h(x)}{\xi(2)} + O\left(\frac{h(x)\log x}{g(x)^3} \right) + O\left(\frac{h(x)}{g(x)} \right).$$

The interested reader can look at [7] for a complete proof.
2. Results

Let \(J_c(N) = [N, N + c\sqrt{N}] \), where \(c \) is a fixed constant. For each positive integer \(d \), let \(\mathcal{K}_d = \{ n \in \mathbb{N} \mid (n, d) = 1 \} \). Here we prove the following results which are variants of the results quoted in the previous section.

Theorem 1. Let \(f \in \mathcal{M}^* \) be defined on \(\mathcal{K}_d \), where \(d \in \mathbb{N} \) is given. Assume that there exists an infinite sequence of integers \(1 < N_1 < N_2 < \cdots \), an infinite sequence of reduced residues \(\ell_1 \equiv 1 \pmod{d} \), \(\ell_2 \equiv 2 \pmod{d} \), \(\cdots \) and a sequence of nonzero complex numbers \(a_1, a_2, \cdots \) such that

\[
(2.1) \quad f(n) = a_{\ell_\nu} \quad \text{if} \quad n \in J_c(N_{\nu}) \quad \text{and} \quad n \equiv \ell_\nu \pmod{d}
\]

\((\nu = 1, 2, \cdots) \). If \(c > 2d \), then \(f(n) = \chi(n) \) for a Dirichlet character \(\chi \) \((\mod{d}) \).

Theorem 2. Let \(d \), the sequences \(N_\nu, \ell_\nu \) be as in Theorem 1. Let \(g \in \mathcal{A}^*_G \) be defined on \(\mathcal{K}_d \). Assume that

\[
(2.2) \quad g(n) \leq g(n + d) \quad \text{if} \quad n \in J_c(N_{\nu}) \quad \text{and} \quad n \equiv \ell_\nu \pmod{d}
\]

\((\nu = 1, 2, \cdots) \). If \(c > 2d \), then there exists a constant \(A \) such that

\[
g(n) = A \log n \quad \text{for} \quad n \in \mathcal{K}_d.
\]

Now for the Abelian group \(G \) let

\[
\mathcal{X}_G = \{ \, g \in \mathcal{A}^*_{gg} \mid g(n) = g(m) \quad \text{all} \quad n, m \in \mathcal{K}_d, \quad n \equiv m \pmod{d} \}.
\]

Theorem 3. Let \(g \in \mathcal{A}^*_G \) be defined on \(\mathcal{K}_d \). Assume that there exists an infinite sequence of integers \(1 < N_1 < N_2 < \cdots \), an infinite sequence of reduced residues \(\ell_1 \equiv 1 \pmod{d} \), \(\ell_2 \equiv 2 \pmod{d} \), \(\cdots \) and a sequence \(a_1, a_2, \cdots \) of elements of \(\mathbb{G} \) such that

\[
(2.3) \quad g(n) = a_{\ell_\nu} \quad \text{if} \quad n \in J_c(N_{\nu}) \quad \text{and} \quad n \equiv \ell_\nu \pmod{d}
\]

\((\nu = 1, 2, \cdots) \). If \(c > 2d \), then \(g \in \mathcal{X}_G \).

We provide the proofs of Theorems 1, 2 and omit the proof of Theorem 3 as it is similar.
3. Proof of Theorem 1

Assume that \(c, d \), the sequences \(N_\nu, \ell_\nu \) are as in the statement of Theorem 1 with \(c > 2d \). As the sequence of reduced residues \(\ell_1 \pmod{d}, \ell_2 \pmod{d}, \cdots \) is infinite, there exists a reduced residue \(\ell \pmod{d} \) such that \(\ell_\nu \equiv \ell \pmod{d} \) holds for infinitely many \(\nu \). Consequently, the condition (2.1) can be replaced by the following:

\[
(3.1) \quad f(n) = a_\ell \text{ if } n \in J_c(N_\nu) \text{ and } n \equiv \ell \pmod{d}, \quad (\nu = 1, 2, \cdots),
\]

where \(\ell \in \mathcal{K}_d \) is fixed integer and \(a_\ell \) is a nonzero complex number.

First we deduce the following lemma.

Lemma 1. Assuming (3.1) and if

\[
du^2 - (c\sqrt{N_\nu} - d^2)u + N_\nu d \leq 0,
\]

then

\[
(3.2) \quad f(u) = f(u + d).
\]

Proof. Indeed, if \(du^2 - (c\sqrt{N_\nu} - d^2)u + N_\nu d \leq 0 \), then

\[
c\sqrt{N_\nu}u \geq du(u + d) + N_\nu d
\]

and so

\[
\frac{N_\nu + c\sqrt{N_\nu}}{u + d} \geq \frac{N_\nu}{u} \geq d.
\]

Thus there exists an \(r \) for which \(ur \equiv \ell \pmod{d} \) and

\[
r \in \left[\frac{N_\nu}{u}, \frac{N_\nu + c\sqrt{N_\nu}}{u} \right], \quad r \in \left[\frac{N_\nu}{u + d}, \frac{N_\nu + c\sqrt{N_\nu}}{u + d} \right],
\]

i.e

\[
r(\nu + d) \equiv \ell \pmod{d}, \quad \text{and} \quad ru, \; r(u + d) \in J_c(N_\nu).
\]

Hence, from (3.1) we have

\[
f(r(u)) = a_\ell \quad \text{and} \quad f(r(u + d)) = a_\ell,
\]

which with \(a_\ell \neq 0 \) implies that \(f(u) = f(u + d) \). Thus the assertion follows.
Now we shall verify that
\[(3.3) \quad du^2 - (c\sqrt{N_\nu} - d^2)u + N_\nu d \leq 0.\]

Clearly the condition \(c > 2d\) implies that
\[
(c\sqrt{N_\nu} - d^2)^2 - 4d^2N_\nu \geq \left[(c^2 - 4d^2)\sqrt{N_\nu} - 2cd^2\right] + d^4 > 0
\]
for all \(\nu > \nu_0\), where
\[
N_{\nu_0} \geq \left(\frac{2cd^2}{c^2 - 4d^2}\right)^2.
\]

Let
\[
\xi_{1,2} = \left(\frac{c\sqrt{N_\nu} - d^2}{2d}\right) \pm \sqrt{\left(\frac{c\sqrt{N_\nu} - d^2}{2d}\right)^2 - 4d^2N_\nu}
\]
and let
\[
\lambda_1 = \frac{c - \sqrt{c^2 - 4d^2}}{2d}, \quad \lambda_2 = \frac{c + \sqrt{c^2 - 4d^2}}{2d}.
\]

It is clear that
\[
\xi_1 = (1 + o_{\nu}(1))\lambda_1 \sqrt{N_\nu} \quad \text{and} \quad \xi_2 = (1 + o_{\nu}(1))\lambda_2 \sqrt{N_\nu}
\]
and that (3.3) holds for all \(u \in [\xi_1, \xi_2]\).

Let \(\epsilon > 0\) be an arbitrary constant such that \(\lambda_1 + \epsilon < \lambda_2 - \epsilon\). Let
\[
S = [\lambda_1 + \epsilon, \lambda_2 - \epsilon].
\]

Next we denote by \(\nu_1\) the least index for which \(\nu_1 > \nu_0\) and
\[
S \sqrt{N_\nu} = [(\lambda_1 + \epsilon)\sqrt{N_\nu}, (\lambda_2 - \epsilon)\sqrt{N_\nu}] \subseteq [\xi_1, \xi_2]
\]
is satisfied for all \(\nu > \nu_1\).

Let \(t_j = \sqrt{N_{j+n_1}}\). Then (3.3) holds for each \(u \in S t_j\), which implies from (3.2) that \(f(u) = f(u + d)\). Thus, we have proved that
\[(3.4) \quad f(n_1) = f(n_2) \neq 0 \quad \text{if} \quad n_1 \equiv n_2 \pmod{d}, n_1, n_2 \in S t_j, n_1 \in K_d.
\]

Now we complete the proof of Theorem 1.

Proof. Let \(u_j = (\lambda_1 + \epsilon)t_j, \quad v_j = (\lambda_2 - \epsilon)t_j\). It is easy to check that if
\[
n \in K_d, \quad n > n_0 = \frac{(\lambda_1 + \epsilon)d}{\lambda_2 - \lambda_1 - 2\epsilon},
\]

then
\[\frac{v_j}{n+d} - \frac{u_j}{n} = \frac{\left(\lambda_2 - \lambda_1 - 2\epsilon\right)n - (\lambda_1 + \epsilon)d}{n(n+d)} t_j \geq d \]
for all sufficiently large integer \(j\). This shows that
\[\left[\frac{u_j}{n}, \frac{v_j}{n} \right] \cap \left[\frac{u_j}{n+d}, \frac{v_j}{n+d} \right] \]
contains an interval of length \(\geq d\), consequently there exists \(m \in K_d\) for which
\(nm \in [u_j, v_j]\) and \((n + d)m \in [u_j, v_j]\). Thus, (3.4) implies \(f(nm) = f((n + +d)m) \neq 0\), and so \(f(n) = f(n + d)\).

It implies that \(f(n)\) is a periodic function \((\mod d)\) on the set \(n \in K_d\).
Since \(f(n) \neq 0\), it should be a character. This completes the proof.

4. Proof of Theorem 2

The basic idea is the same as that of the proof of Theorem 1. Let us start with the following lemma.

Lemma 2. Let \(J_{N,M} = [N, N + M]\). Assume that

\[g(u + d) - g(u) \geq 0 \] holds for \(u \equiv \ell \pmod{d}\),

\(u \in J_{N,M}\), where \((\ell, d) = 1\).

Assume that \(ur \equiv \ell \pmod{d}\), and that \(ur \in J_{N,M}\), \((u + d)r \in J_{N,M}\).

Then

\[g(u + d) - g(u) \geq 0. \]

Proof. Assume that \(ur \equiv \ell \pmod{d}\), and that \(ur \in J_{N,M}\), \((u + d)r \in J_{N,M}\). Then \(ur + kd \equiv \ell \pmod{d}\) and \(ur + kd \in J_{N,M}\) for \(k = 0, 1, \ldots r\). Thus, we infer from (4.1) that
\[g(ur + dr) - g(ur) = \sum_{k=1}^{r} \left(g(ur + kd) - g(ur + (k - 1)d) \right) \geq 0. \]
Proof. (Proof of Theorem 2) Repeating the argument used in the proof of Theorem 1, in this case we obtain the following assertion:

\[(4.3) \quad g(n + d) - g(n) \geq 0 \quad \text{if} \quad n \in St_j, \quad n \in \mathcal{K}_d, \]

where \(St_j = [u_j, v_j] = [(\lambda_1 + \epsilon)t_j, (\lambda_2 - \epsilon)t_j] \).

As in the proof of Theorem 1, by using (4.3) we can prove that if \(j \) is a sufficiently large integer, then for each \(n \in \mathcal{K}_d \) there exists \(m \in \mathcal{K}_d \) for which \(nm \in [u_j, v_j] \) and \((n + d)m \in [u_j, v_j] \). Then we have

\[nm + kd \in [u_j, v_j], \quad nm + kd \in \mathcal{K}_d, \quad (k = 0, 1, \ldots, m) \]

and so (4.3) implies that

\[g(nm + dm) - g(nm) = \sum_{k=1}^{r} \{ g(nm + kd) - g(nm + (k - 1)d) \} \geq 0, \]

Consequently, \(g(n + d) - g(n) \geq 0 \) for every \(n \in \mathcal{K}_d \). Now we can deduce easily that \(g(n) = c \log n \), if \((n, d) = 1 \).

Let \(p \) and \(q \) be primes, \(p \neq q \), \((pq, d) = 1 \). Let \(P = p^{k_0} \equiv 1 \pmod{d}, Q = q^{\ell_0} \equiv 1 \pmod{d} \). Let \(u_h, v_h \) be such a sequence of integers for which \(P^{u_h} < Q^{v_h} < P^{u_h+1} \). It is obvious that \(\frac{u_h}{v_h} \rightarrow \frac{\log Q}{\log P} \) as \(h \rightarrow \infty \).

Furthermore \(g(P^{u_h}) \leq g(Q^{v_h}) \leq g(P^{u_h+1}) \), whence

\[\frac{u_h}{v_h} \leq \frac{g(Q)}{g(P)} \leq \frac{u_h + 1}{v_h}, \]

and so

\[\frac{k_0 u_h}{\ell_0 v_h} \leq \frac{g(q)}{g(p)} \leq \frac{k_0 u_h + 1}{\ell_0 v_h}. \]

Consequently,

\[\frac{g(q)}{g(p)} = \frac{\log q}{\log p}. \]

References

K. Chakraborty
School of Mathematics
Harish-Chandra Research Institute
Chhatnag Road, Jhusi
Allahabad 211 019, India
kalyan@hri.res.in

I. Kátaı and Bui Minh Phong
Department of Computer Algebra
Eötvös Loránd University
Pázmány Péter sét. 1/C
H-1117 Budapest, Hungary
katai@compalg.inf.elte.hu
bui@compalg.inf.elte.hu