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Abstract. In this short paper the following assertion is proved. For

positive integer d and c > 0 let Jc(N) = [N, N + c
√

N ] and Kd = {n ∈
∈ N | (n, d) = 1}. Let 1 < N1 < N2 < · · · be an infinite sequence of

integers and `1, `2, · · · be integers coprime to d. Assume that f and g are

completely additive functions defined on Kd, for which f(n) = g(n) if n ≡
≡ `j (mod d), n ∈ Jc(Nj) (j = 1, 2, · · ·). If c > 2d, then f(n) = g(n)
identically on Kd.

1. Introduction

1.1. Notations

Let N,R,C be the sets of positive integers, real and complex numbers,
respectively. Let (G,+) and (H, ·) be commutative semigroups. We shall denote
by AG (A∗G) the set of additive (completely additive) arithmetical functions
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taking values on G. Similarly, let MH (M∗
H) be the set of multiplicative

(completely multiplicative) arithmetical functions taking values on H. For
G = R we write A (A∗) instead of AR (A∗R) and for H = C we write M
(M∗) instead of MC (M∗

C).

1.2. Known results

We state some of the known results in this direction.

Theorem A. ([1]) Let f ∈ A∗, for which

f(n) = 0 holds for n ∈ [Nj , Nj + 4
√

Nj ]

(j = 1, 2, · · ·), 1 < N1 < N2 < · · · is an arbitrary infinite sequence of integers.
Then f(n) = 0 identically.

Theorem B. ([3]) Let f ∈ A∗. Let λ(N) = (2 + ε)
√

N for an arbitrary
constant ε > 0. Assume that 1 < N1 < N2 < · · · is an infinite sequence of
integers such that

f(n) ≤ f(n + 1) holds for n ∈ [Nj , Nj + λ(Nj)]

(j = 1, 2, · · ·). Then f(n) = c log n, where c is a constant.

Theorem C. ([3]) There exists an f ∈ A∗ which is not identically zero,
and for 1 < N1 < N2 < · · · satisfies

f(n) = Aj if n ∈ [Nj , Nj + %(Nj)]

for j = 1, 2, · · · and

%(N) = exp
(
c
√

(log N) (log log log N)
)
,

where c is a suitable positive constant and Aj are arbitrary complex or reals.

Theorem D. [6]) Let Φj(z) ∈ C[z] be a sequence of polynomials with
deg Φj ≤ h and αh = h+1

h+2 . Assume that bj → ∞ is an infinite sequence of
reals, 1 < N1 < N2 < · · · is an infinite sequence of integers and a1, a2, · · · is a
sequence of arbitrary complex numbers. For f ∈ A∗ assume that

Φj(E)f(n) = aj holds for n ∈ [Nj , Nj + bjN
αh
j ]

(j = 1, 2, · · ·). Then f(n) = 0, identically.
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Here E is the shift operator. If P (Z) = a0 + a1z + · · ·+ akzk, then

P (E)f(n) = a0f(n) + a1f(n + 1) + · · ·+ akf(n + k).

In [5] P. Erdős and I. Kátai showed the existence of a completely additive
function which vanishes in particular short intervals but takes the value 1 in
one interval. Here is their result.

Theorem E. ([5]) Let x > x0(ε) for ε > 0. Then there exists a function
f ∈ A∗ for which

f(n) = 0 for n ∈ [N + 1, N + λ(x)],

where x
2 ≤ N ≤ x and

λ(x) = exp
((

1
2
− ε

)
(log x)(log log log x)

log log x

)

and which takes on a non-zero value in [1,
√

x].

Remark 1. Existence of an f(n) with infinitely many such intervals is
yet to be established.

In [2] I. Kátai, examined arbitrary complex valued multiplicative functions
which remain constant on square-free numbers in short intervals and proved
the following theorem.

Theorem F. ([2]) Let θ = 0, 6108 and J(N) = [N, N + Nθ]. Let f be a
multiplicative function defined on the set of square-free numbers and f(n) 6=
6= 0, (n ∈ N). Assume that there exists a sequence of complex numbers
a1, a2, · · · and a sequence of positive integers 1 < N1 < N2 < · · · such that

f(n) = aj if n ∈ J(Nj) (n is square − free).

Then f(n) = 1 for every square-free n.

Remark 2. Theorem F remains valid with θ = 0, 6.

This comes from the following result of M. Filaseta:

Let g(x) be a function, 1 ≤ g(x) ≤ log x for x sufficiently large, and set
h(x) = x

1
5 g(x)3. Then the number of square-free integers belonging to the

interval [x, x + h(x)] is

h(x)
ξ(2)

+ O
(h(x) log x

g(x)3
)

+ O
(h(x)

g(x)

)
.

The interested reader can look at [7] for a complete proof.
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2. Results

Let Jc(N) = [N, N + c
√

N ], where c is a fixed constant. For each positive
integer d, let Kd = {n ∈ N | (n, d) = 1}. Here we prove the following results
which are variants of the results quoted in the previous section.

Theorem 1. Let f ∈M∗ be defined on Kd, where d ∈ N is given. Assume
that there exists an infinite sequence of integers 1 < N1 < N2 < · · ·, an infinite
sequence of reduced residues `1 (mod d), `2 (mod d), · · · and a sequence of
nonzero complex numbers a1, a2, · · · such that

(2.1) f(n) = a`ν
if n ∈ Jc(Nν) and n ≡ `ν (mod d)

(ν = 1, 2, · · ·). If c > 2d, then f(n) = χ(n) for a Dirichlet character χ
(mod d).

Theorem 2. Let d, the sequences Nν , `ν be as in Theorem 1. Let g ∈ A∗
be defined on Kd. Assume that

(2.2) g
(
n
) ≤ g

(
n + d

)
if n ∈ Jc(Nν) and n ≡ `ν (mod d)

(ν = 1, 2, · · ·). If c > 2d, then there exists a constant A such that

g(n) = A log n for n ∈ Kd.

Now for the Abelian group G let

XG = { g ∈ A∗gg | g(n) = g(m) all n, m ∈ Kd, n ≡ m (mod d)}.

Theorem 3. Let g ∈ A∗G be defined on Kd. Assume that there exists an
infinite sequence of integers 1 < N1 < N2 < · · ·, an infinite sequence of reduced
residues `1 (mod d), `2 (mod d), · · · and a sequence a1, a2, · · · of elements of
G such that

(2.3) g(n) = a`ν if n ∈ Jc(Nν) and n ≡ `ν (mod d)

(ν = 1, 2, · · ·). If c > 2d, then g ∈ XG.
We provide the proofs of Theorems 1, 2 and omit the proof of Theorem 3

as it is similar.
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3. Proof of Theorem 1

Assume that c, d, the sequences Nν , `ν are as in the statement of
Theorem 1 with c > 2d. As the sequence of reduced residues `1 (mod d),
`2 (mod d), · · · is infinite, there exists a reduced residue ` (mod d) such that
`ν ≡ ` (mod d) holds for infinitely many ν. Consequently, the condition (2.1)
can be replaced by the following:

(3.1) f(n) = a` if n ∈ Jc(Nν) and n ≡ ` (mod d), (ν = 1, 2, · · ·),

where ` ∈ Kd is fixed integer and a` is a nonzero complex number.

First we deduce the following lemma.

Lemma 1. Assuming (3.1) and if

du2 − (c
√

Nν − d2)u + Nνd ≤ 0,

then

(3.2) f(u) = f(u + d).

Proof. Indeed, if du2 − (c
√

Nν − d2)u + Nνd ≤ 0, then

c
√

Nνu ≥ du(u + d) + Nνd

and so
Nν + c

√
Nν

u + d
− Nν

u
≥ d.

Thus there exists an r for which ur ≡ ` (mod d) and

r ∈
[Nν

u
,

Nν + c
√

Nν

u

]
, r ∈

[ Nν

u + d
,

Nν + c
√

Nν

u + d

]
,

i.e
ru ≡ r(u + d) ≡ ` (mod d), and ru, r(u + d) ∈ Jc(Nν).

Hence, from (3.1) we have

f(ru) = a` and f(r(u + d)) = a`,

which with a` 6= 0 implies that f(u) = f(u + d). Thus the assertion follows.
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Now we shall verify that

(3.3) du2 − (c
√

Nν − d2)u + Nνd ≤ 0.

Clearly the condition c > 2d implies that

(c
√

Nν − d2)2 − 4d2Nν ≥
[
(c2 − 4d2)

√
Nν − 2cd2

]
+ d4 > 0

for all ν > ν0, where

Nν0 ≥
( 2cd2

c2 − 4d2

)2

.

Let

ξ1,2 =
(c
√

Nν − d2)∓
√

(c
√

Nν − d2)2 − 4d2Nν

2d

and let

λ1 =
c−√c2 − 4d2

2d
, λ2 =

c +
√

c2 − 4d2

2d
.

It is clear that

ξ1 = (1 + oν(1))λ1

√
Nν and ξ2 = (1 + oν(1))λ2

√
Nν

and that (3.3) holds for all u ∈ [ξ1, ξ2].

Let ε > 0 be an arbitrary constant such that λ1 + ε < λ2 − ε. Let

S = [λ1 + ε, λ2 − ε].

Next we denote by ν1 the least index for which ν1 > ν0 and

S
√

Nν = [(λ1 + ε)
√

Nν , (λ2 − ε)
√

Nν ] ⊆ [ξ1, ξ2]

is satisfied for all ν > ν1.

Let tj =
√

Nj+ν1 . Then (3.3) holds for each u ∈ Stj , which implies from
(3.2) that f(u) = f(u + d). Thus, we have proved that

(3.4) f(n1) = f(n2) 6= 0 if n1 ≡ n2 (mod d), n1, n2 ∈ Stj , n1 ∈ Kd.

Now we complete the proof of Theorem 1.

Proof. Let uj = (λ1 + ε)tj , vj = (λ2 − ε)tj . It is easy to check that if

n ∈ Kd, n > n0 =
(λ1 + ε)d

λ2 − λ1 − 2ε
,
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then

vj

n + d
− uj

n
=

[
(λ2 − λ1 − 2ε

)
n− (λ1 + ε)d

]
tj

n(n + d)
≥ d

for all sufficiently large integer j. This shows that

[uj

n
,

vj

n

]⋂ [ uj

n + d
,

vj

n + d

]

contains an interval of length ≥ d, consequently there exists m ∈ Kd for which
nm ∈ [uj , vj ] and (n + d)m ∈ [uj , vj ]. Thus, (3.4) implies f(nm) = f

[
(n +

+d)m
] 6= 0, and so f(n) = f(n + d).

It implies that f(n) is a periodic function (mod d) on the set n ∈ Kd.
Since f(n) 6= 0, it should be a character. This completes the proof.

4. Proof of Theorem 2

The basic idea is the same as that of the proof of Theorem 1. Let us start
with the following lemma.

Lemma 2. Let JN,M = [N, N + M ]. Assume that

(4.1) g(ν + d)− g(ν) ≥ 0 holds for ν ≡ ` (mod d),

ν ∈ JN,M , where (`, d) = 1.
Assume that ur ≡ ` (mod d), and that ur ∈ JN,M , (u + d)r ∈ JN,M .

Then

(4.2) g(u + d)− g(u) ≥ 0.

Proof. Assume that ur ≡ ` (mod d), and that ur ∈ JN,M , (u + d)r ∈
∈ JN,M . Then ur + kd ≡ ` (mod d) and ur + kd ∈ JN,M for k = 0, 1, · · · r.
Thus, we infer from (4.1) that

g(ur + dr)− g(ur) =
r∑

k=1

{
g
(
ur + kd

)− g
(
ur + (k − 1)d

)} ≥ 0.
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Proof. (Proof of Theorem 2) Repeating the argument used in the proof
of Theorem 1, in this case we obtain the following assertion:

(4.3) g(n + d)− g(n) ≥ 0 if n ∈ Stj , n ∈ Kd,

where Stj = [uj , vj ] =
[
(λ1 + ε)tj , (λ2 − ε)tj

]
.

As in the proof of Theorem 1, by using (4.3) we can prove that if j is a
sufficiently large integer, then for each n ∈ Kd there exists m ∈ Kd for which
nm ∈ [uj , vj ] and (n + d)m ∈ [uj , vj ]. Then we have

nm + kd ∈ [uj , vj ], nm + kd ∈ Kd, (k = 0, 1, · · · ,m)

and so (4.3) implies that

g
(
nm + dm

)− g(nm) =
r∑

k=1

{
g
(
nm + kd

)− g
(
nm + (k − 1)d

)} ≥ 0,

Consequently, g(n + d)− g(n) ≥ 0 for every n ∈ Kd. Now we can deduce easily
that g(n) = c log n, if (n, d) = 1.

Let p and q be primes, p 6= q, (pq, d) = 1. Let P = pk0 ≡ 1 (mod d), Q =
= q`0 ≡ 1 (mod d). Let uh, vh be such a sequence of integers for which Puh <

< Qvh < Puh+1. It is obvious that uh

vh
→ log Q

log P as h →∞.

Furthermore g(Puh) ≤ g(Qvh) ≤ g(Puh+1), whence

uh

vh
≤ g(Q)

g(P )
≤ uh + 1

vh
,

and so
k0

`0

uh

vh
≤ g(q)

g(p)
≤ k0

`0

uh + 1
vh

.

Consequently,
g(q)
g(p)

=
log q

log p
.
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